Socioeconomic Risks and Their Impacts on Ecological River Health in South Korea: An Application of the Analytic Hierarchy Process
Abstract
:1. Introduction
2. Research Methodology
3. Results and Discussion
3.1. Respondent Profile and Sample Size
3.2. Weight Value Analysis of Socioeconomic Factors Affecting River Impairment
3.2.1. Population
3.2.2. Policy and Facilities
3.2.3. Primary Industries
3.2.4. Secondary Industries
3.2.5. Tertiary Industries
3.2.6. Urbanization
3.2.7. Overall Weights
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sanchez, G.M.; Nejadhashemi, A.P.; Zhang, Z.; Marquart-Pyatt, S.; Habron, G.; Shortridge, A. Linking Watershed-Scale Stream Health and Socioeconomic Indicators with Spatial Clustering and Structural Equation Modeling. Environ. Model. Softw. 2015, 70, 113–127. [Google Scholar] [CrossRef]
- Kang, B.; Son, J. The Study on the Evaluation of Environment Function at Small Stream -In the Case of Hongdong Stream in Hongsung-Gun-. J. Korea Soc. Environ. Restor. Technol. 2011, 14, 81–101. [Google Scholar]
- EPA. The Causal Analysis/Diagnosis Decision Information System (CADDIS); EPA: Washington, DC, USA, 2017. [Google Scholar]
- Nichols, S.; Webb, A.; Stewardson, M. Eco Evidence Analysis Methods Manual: A Systematic Approach to Evaluate Causality in Environmental Science; eWater CooperativeResearch Centre: Canberra, Australia, 2011. [Google Scholar]
- Stewart, A. Conservation Standards 4.0 Revisions Committee. Available online: https://conservationstandards.org/wp-content/uploads/sites/3/2020/10/CMP-Open-Standards-for-the-Practice-of-Conservation-v4.0.pdf (accessed on 18 February 2021).
- Ge, Y.; Dou, W.; Gu, Z.; Qian, X.; Wang, J.; Xu, W.; Shi, P.; Ming, X.; Zhou, X.; Chen, Y. Assessment of Social Vulnerability to Natural Hazards in the Yangtze River Delta, China. Stoch Environ. Res Risk Assess. 2013, 27, 1899–1908. [Google Scholar] [CrossRef]
- Tate, E. Uncertainty Analysis for a Social Vulnerability Index. Ann. Assoc. Am. Geogr. 2013, 103, 526–543. [Google Scholar] [CrossRef]
- Boruff, B.J.; Emrich, C.; Cutter, S.L. Erosion Hazard Vulnerability of US Coastal Counties. J. Coast. Res. 2005, 215, 932–942. [Google Scholar] [CrossRef] [Green Version]
- Cutter, S.L.; Finch, C. Temporal and Spatial Changes in Social Vulnerability to Natural Hazards. Proc. Natl. Acad. Sci. USA 2008, 105, 2301–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards. Soc. Sci. Q 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Ebert, A.; Kerle, N.; Stein, A. Urban Social Vulnerability Assessment with Physical Proxies and Spatial Metrics Derived from Air- and Spaceborne Imagery and GIS Data. Nat. Hazards 2009, 48, 275–294. [Google Scholar] [CrossRef]
- Flanagan, B.E.; Gregory, E.W.; Hallisey, E.J.; Heitgerd, J.L.; Lewis, B. A Social Vulnerability Index for Disaster Management. J. Homel. Secur. Emerg. Manag. 2011, 8. [Google Scholar] [CrossRef]
- Meyer, V.; Scheuer, S.; Haase, D. A Multicriteria Approach for Flood Risk Mapping Exemplified at the Mulde River, Germany. Nat. Hazards 2009, 48, 17–39. [Google Scholar] [CrossRef]
- Meyer, V.; Priest, S.; Kuhlicke, C. Economic Evaluation of Structural and Non-Structural Flood Risk Management Measures: Examples from the Mulde River. Nat. Hazards 2012, 62, 301–324. [Google Scholar] [CrossRef]
- Yohe, G.; Tol, R.S.J. Indicators for Social and Economic Coping CapacityF Moving toward a Working Definition of Adaptive Capacity. Glob. Environ. Chang. 2002, 16, 25–40. [Google Scholar] [CrossRef]
- Zahran, S.; Brody, S.D.; Peacock, W.G.; Vedlitz, A.; Grover, H. Social Vulnerability and the Natural and Built Environment: A Model of Flood Casualties in Texas. Disasters 2008, 32, 537–560. [Google Scholar] [CrossRef]
- Witter, J.V.; van Stokkom, H.T.C.; Hendriksen, G. From River Management to River Basin Management: A Water Manager’s Perspective. Hydrobiologia 2006, 565, 317–325. [Google Scholar] [CrossRef]
- Handler, N.B.; Paytan, A.; Higgins, C.P.; Luthy, R.G.; Boehm, A.B. Human Development Is Linked to Multiple Water Body Impairments along the California Coast. Estuaries Coasts 2006, 29, 860–870. [Google Scholar] [CrossRef]
- Sabater, S.; Barceló, D.; De Castro-Català, N.; Ginebreda, A.; Kuzmanovic, M.; Petrovic, M.; Picó, Y.; Ponsatí, L.; Tornés, E.; Muñoz, I. Shared Effects of Organic Microcontaminants and Environmental Stressors on Biofilms and Invertebrates in Impaired Rivers. Environ. Pollut. 2016, 210, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Luo, K.; Hu, X.; He, Q.; Wu, Z.; Cheng, H.; Hu, Z.; Mazumder, A. Impacts of Rapid Urbanization on the Water Quality and Macroinvertebrate Communities of Streams: A Case Study in Liangjiang New Area, China. Sci. Total Environ. 2018, 621, 1601–1614. [Google Scholar] [CrossRef]
- Othman, F.; Muhammad, S.A.; Azahar, S.A.H.; Alaa Eldin, M.E.; Mahazar, A.; Othman, M.S. Impairment of the Water Quality Status in a Tropical Urban River. Desalin. Water Treat. 2015, 1–7. [Google Scholar] [CrossRef]
- Yang, S.; Büttner, O.; Jawitz, J.W.; Kumar, R.; Rao, P.S.C.; Borchardt, D. Spatial Organization of Human Population and Wastewater Treatment Plants in Urbanized River Basins. Water Resour. Res. 2019, 55, 6138–6152. [Google Scholar] [CrossRef] [Green Version]
- Joo, J.H.; Yang, J.E.; Ok, Y.S.; Oh, S.E.; Yoo, K.Y.; Yang, S.C.; Jung, Y.S. Assessment of Pollutant Loads from Alpine Agricultural Practices in Nakdong River Basin. Korean J. Environ. Agric. 2007, 26, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Teng, Y.; Li, J.; Wu, J.; Wang, J. Source Apportionment of Trace Metals in River Sediments: A Comparison of Three Methods. Environ. Pollut. 2016, 211, 28–37. [Google Scholar] [CrossRef]
- Choo, C.O.; Lee, J.K.; Jeong, C.-C. Dissolution Mechanism of Abandoned Metal Ores and Formation of Ochreous Precipitates, Dalseong Mine. J. Eng. Geol. 2008, 18, 577–586. [Google Scholar]
- Lee, E.K.; Lee, B.-Y.; Yang, J.E.; Ok, Y.S.; Kim, S.-C.; Kim, D.K. Abandoned Mine Effects on Soil and Water Quality in Han-River Watershed in Kangwon Province. Korean Soc. Environ. Agric. 2008, 2008, 239. [Google Scholar] [CrossRef]
- Seo, J.H.; Kang, S.W.; Ji, W.H.; Jung, J.H. Toxicity Monitoring of Effluents from Acid Mine Drainage Treatment Plants. In Proceedings of the Korean Soc. Water Qual 2009 Fall Meeting, Incheon, Korea, 17 August 2009; pp. 203–204. [Google Scholar]
- Byrne, P.; Wood, P.J.; Reid, I. The Impairment of River Systems by Metal Mine Contamination: A Review Including Remediation Options. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2017–2077. [Google Scholar] [CrossRef]
- Wright, I.A.; Belmer, N.; Davies, P.J. Coal Mine Water Pollution and Ecological Impairment of One of Australia’s Most ‘Protected’ High Conservation-Value Rivers. Water Air Soil Pollut. 2017, 228, 90. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Do, D.D.; Nguyen, T.X.; Nguyen, V.N.; Phuc Nguyen, D.T.; Nguyen, M.H.; Thi Truong, H.T.; Dong, H.P.; Le, A.H.; Bach, Q.-V. Seasonal, Spatial Variation, and Pollution Sources of Heavy Metals in the Sediment of the Saigon River, Vietnam. Environ. Pollut. 2020, 256, 113412. [Google Scholar] [CrossRef]
- Liu, B.; Peng, S.; Liao, Y.; Long, W. The Causes and Impacts of Water Resources Crises in the Pearl River Delta. J. Clean. Prod. 2018, 177, 413–425. [Google Scholar] [CrossRef]
- UNEP. Water Security and Ecosystem Services—The Critical Connection; United Nations Environment Program: Nairobi, Kenya, 2009. [Google Scholar]
- Eden, S.; Tunstall, S. Ecological versus Social Restoration? How Urban River Restoration Challenges but Also Fails to Challenge the Science–Policy Nexus in the United Kingdom. Environ. Plan. C Gov. Policy 2006, 24, 661–680. [Google Scholar] [CrossRef]
- Slootweg, R.; Vanclay, F.; Van Schooten, M. Function Evaluation as a Framework for the Integration of Social and Environmental Impact Assessment. Impact Assess. Proj. Apprais. 2001, 19, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Tolun, L.G.; Ergenekon, S.; Hocaoglu, S.M.; Donertas, A.S.; Cokacar, T.; Husrevoglu, S.; Beken, C.P.; Baban, A. Socioeconomic Response to Water Quality: A First Experience in Science and Policy Integration for the Izmit Bay Coastal System. Ecol. Soc. 2012, 17, 1–14. [Google Scholar]
- Shekhovtsov, A.; Kołodziejczyk, J. Do Distance-Based Multi-Criteria Decision Analysis Methods Create Similar Rankings? Procedia Comput. Sci. 2020, 176, 3718–3746. [Google Scholar] [CrossRef]
- Shekhovtsov, A.; Sałabun, W. A Comparative Case Study of the VIKOR and TOPSIS Rankings Similarity. Procedia Comput. Sci. 2020, 176, 3730–3740. [Google Scholar] [CrossRef]
- Sałabun, W.; Wątróbski, J.; Shekhovtsov, A. Are MCDA Methods Benchmarkable? A Comparative Study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II Methods. Symmetry 2020, 12, 1549. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Wątróbski, J.; Sałabun, W. Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study. Energies 2020, 13, 6548. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process; Springer: New York, NY, USA, 2012. [Google Scholar]
- Kluczek, A.; Gladysz, B. Analytical Hierarchy Process/Technique for Order Preference by Similarity to Ideal Solution-Based Approach to the Generation of Environmental Improvement Options for Painting Process e Results from an Industrial Case Study. J. Clean. Prod. 2015, 101, 360–367. [Google Scholar] [CrossRef]
- Pawlewicz, K.; Senetra, A.; Gwiaździńska-Goraj, M.; Krupickaitė, D. Differences in the Environmental, Social and Economic Development of Polish–Lithuanian Trans-Border Regions. Soc. Indic. Res. 2020, 147, 1015–1038. [Google Scholar] [CrossRef] [Green Version]
- Sarul, L.S.; Eren, Ö. The Comparison of MCDM Methods Including AHP, TOPSIS and MAUT with an Application on Gender Inequality Index. Eur. J. Interdiscip. Stud. 2016, 2, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, E.; Oya, T. Strategic Decision-Making Methods AHP; Cheogram Book: Seoul, Korea, 2012. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; The McGraw Hill Building: New York, NY, USA, 1980. [Google Scholar]
- Kim, J.-B.; Jo, Y.-G.; Jo, G.-T.; Kim, Y.-B. Development of new consistency criteria to overcome Limitation of 9 scales in the AHP. In Proceedings of the Korean Operations Research and Management Science Society, Seoul, Korea, 21–22 February 2004; pp. 175–178. [Google Scholar]
- An, K.; Kim, S.; Lee, S.-W. Analysis of Relative Importance of Socio · Economic Factors in Establishing Diagnosis Systems for Impaired Stream Ecosystem. Korea Soc. Environ. Restor. Reveg. Technol. 2018, 21, 13–26. [Google Scholar]
- Xu, M.; Cao, H.; Xie, P.; Deng, D.; Feng, W.; Xu, J. Use of PFU Protozoan Community Structural and Functional Characteristics in Assessment of Water Quality in a Large, Highly Polluted Freshwater Lake in China. J. Environ. Monit. 2005, 7, 670–674. [Google Scholar] [CrossRef]
- Mohseni-Bandpei, A.; Yousefi, Z. Status of Water Quality Parameters along Haraz River. Int. J. Environ. Res. 2013, 7, 1029–1038. [Google Scholar]
- Sivri, N.; Ongen, A.; Aydin, S.; Gungor, Y.; Azaz, D. Water Quality Assessment and Monitoring Pollution in an Unsanitary Dumpsite: Case Study on Narman (Erzurum). Fresenius Environ. Bull. 2014, 23, 3374–3383. [Google Scholar]
- Chen, Q.; Mei, K.; Dahlgren, R.A.; Wang, T.; Gong, J.; Zhang, M. Impacts of Land Use and Population Density on Seasonal Surface Water Quality Using a Modified Geographically Weighted Regression. Sci. Total Environ. 2016, 572, 450–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downes, B.J. Back to the Future: Little-Used Tools and Principles of Scientific Inference Can Help Disentangle Effects of Multiple Stressors on Freshwater Ecosystems. Freshw. Biol. 2010, 55, 60–79. [Google Scholar] [CrossRef]
- Pistocchi, A.; Udias, A.; Grizzetti, B.; Gelati, E.; Koundouri, P.; Ludwig, R.; Papandreou, A.; Souliotis, I. An Integrated Assessment Framework for the Analysis of Multiple Pressures in Aquatic Ecosystems and the Appraisal of Management Options. Sci. Total Environ. 2017, 575, 1477–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aires, R.F.D.F.; Ferreira, L. The rank reversal problem in multi-criteria decision making: A literature review. Pesqui. Oper. 2018, 38, 331–362. [Google Scholar] [CrossRef]
Intensity of Importance | Definition | Explanation |
---|---|---|
1 | Equal importance | Two activities contribute equally to the objective |
2 | Weak | |
3 | Moderate importance | Experience and judgment slightly favor one activity over another |
4 | Moderate plus | |
5 | Strong importance | Experience and judgment strongly favor one activity over another |
6 | Strong plus | |
7 | Very strong or demonstrated importance | An activity is favored very strongly over another; its dominance is demonstrated in practice |
8 | Very, very strong | |
9 | Extreme importance | The evidence favoring one activity over another is of the highest possible order of affirmation |
Division | Sample Size (N) | Percentage | |
---|---|---|---|
Total | 35 | 100.0 | |
Gender | Male | 32 | 91.4 |
Female | 3 | 8.6 | |
Age | 30s | 7 | 20.0 |
40s | 17 | 48.6 | |
50s | 11 | 31.4 | |
Affiliation | Public enterprise | 6 | 17.1 |
National research center | 2 | 5.7 | |
University | 14 | 40.0 | |
Private business | 13 | 37.1 | |
Subject | Aquatic ecology | 16 | 45.7 |
Landscape architecture | 13 | 37.1 | |
Water resources | 4 | 11.4 | |
Other | 2 | 5.7 | |
Experience (Years) | <10 | 10 | 28.6 |
11–20 | 13 | 37.1 | |
21–30 | 12 | 34.3 | |
Public service | Yes | 32 | 91.4 |
No | 3 | 8.6 |
Division | N | Population | Policy and Facilities | Primary Industries | Secondary Industries | Tertiary Industries | Urbanization | |
---|---|---|---|---|---|---|---|---|
Total | 35 | 0.127 | 0.199 | 0.172 | 0.200 | 0.146 | 0.156 | |
Gender | Male | 32 | 0.130 | 0.206 | 0.168 | 0.197 | 0.144 | 0.155 |
Female | 3 | 0.094 | 0.135 | 0.213 | 0.229 | 0.168 | 0.162 | |
Age | 30s | 7 | 0.115 | 0.301 | 0.166 | 0.166 | 0.123 | 0.129 |
40s | 17 | 0.118 | 0.184 | 0.188 | 0.230 | 0.134 | 0.145 | |
50s | 11 | 0.144 | 0.166 | 0.148 | 0.175 | 0.178 | 0.189 | |
Affiliation | Public enterprise | 6 | 0.123 | 0.245 | 0.110 | 0.192 | 0.146 | 0.184 |
National research center | 2 | 0.080 | 0.291 | 0.083 | 0.099 | 0.200 | 0.248 | |
University | 14 | 0.123 | 0.191 | 0.200 | 0.162 | 0.165 | 0.159 | |
Private business | 13 | 0.134 | 0.167 | 0.190 | 0.269 | 0.115 | 0.124 | |
Subject | Aquatic ecology | 16 | 0.160 | 0.171 | 0.162 | 0.198 | 0.151 | 0.158 |
Landscape architecture | 13 | 0.110 | 0.247 | 0.147 | 0.187 | 0.134 | 0.174 | |
Water resources | 4 | 0.086 | 0.177 | 0.345 | 0.202 | 0.111 | 0.078 | |
Other | 2 | 0.075 | 0.140 | 0.135 | 0.228 | 0.235 | 0.187 | |
Experience (Years) | <10 | 10 | 0.119 | 0.262 | 0.146 | 0.150 | 0.156 | 0.167 |
11–20 | 13 | 0.101 | 0.216 | 0.165 | 0.226 | 0.135 | 0.157 | |
21–30 | 12 | 0.163 | 0.139 | 0.198 | 0.214 | 0.145 | 0.141 | |
Public service | Yes | 32 | 0.129 | 0.203 | 0.156 | 0.199 | 0.148 | 0.164 |
No | 3 | 0.087 | 0.135 | 0.415 | 0.178 | 0.108 | 0.077 |
Division | N | Density | Fluctuation | |
---|---|---|---|---|
Total | 35 | 0.638 | 0.362 | |
Gender | Male | 32 | 0.624 | 0.376 |
Female | 3 | 0.766 | 0.234 | |
Age | 30s | 7 | 0.566 | 0.434 |
40s | 17 | 0.689 | 0.311 | |
50s | 11 | 0.599 | 0.401 | |
Affiliation | Public enterprise | 6 | 0.405 | 0.595 |
National research center | 2 | 0.528 | 0.472 | |
University | 14 | 0.665 | 0.335 | |
Private business | 13 | 0.721 | 0.279 | |
Subject | Aquatic ecology | 16 | 0.656 | 0.344 |
Landscape architecture | 13 | 0.568 | 0.432 | |
Water resources | 4 | 0.771 | 0.229 | |
Other | 2 | 0.634 | 0.366 | |
Experience (Years) | <10 | 10 | 0.532 | 0.468 |
11–20 | 13 | 0.625 | 0.375 | |
21–30 | 12 | 0.730 | 0.270 | |
Public service | Yes | 32 | 0.638 | 0.362 |
No | 3 | 0.636 | 0.364 |
Division | N | Budget Scale of Local Streams | Sewage Terminal Treatment Facility | Budget Scale of Civic Groups and NGOs | |
---|---|---|---|---|---|
Total | 35 | 0.387 | 0.500 | 0.113 | |
Gender | Male | 32 | 0.394 | 0.491 | 0.115 |
Female | 3 | 0.314 | 0.600 | 0.086 | |
Age | 30s | 7 | 0.398 | 0.509 | 0.094 |
40s | 17 | 0.374 | 0.507 | 0.118 | |
50s | 11 | 0.399 | 0.483 | 0.118 | |
Affiliation | Public enterprise | 6 | 0.481 | 0.416 | 0.104 |
National research center | 2 | 0.277 | 0.633 | 0.089 | |
University | 14 | 0.385 | 0.475 | 0.139 | |
Private business | 13 | 0.362 | 0.543 | 0.095 | |
Subject | Aquatic ecology | 16 | 0.371 | 0.498 | 0.131 |
Landscape architecture | 13 | 0.467 | 0.440 | 0.093 | |
Water resources | 4 | 0.317 | 0.605 | 0.078 | |
Other | 2 | 0.185 | 0.632 | 0.183 | |
Experience (Years) | <10 | 10 | 0.390 | 0.478 | 0.132 |
11–20 | 13 | 0.378 | 0.511 | 0.111 | |
21–30 | 12 | 0.394 | 0.506 | 0.100 | |
Public service | Yes | 32 | 0.379 | 0.506 | 0.115 |
No | 3 | 0.471 | 0.439 | 0.090 |
Division | N | Rice Field Area | Field Area | Aquaculture Area | Number of Livestock | |
---|---|---|---|---|---|---|
Total | 35 | 0.129 | 0.142 | 0.221 | 0.508 | |
Gender | Male | 32 | 0.130 | 0.134 | 0.219 | 0.517 |
Female | 3 | 0.117 | 0.253 | 0.235 | 0.395 | |
Age | 30s | 7 | 0.141 | 0.198 | 0.255 | 0.406 |
40s | 17 | 0.125 | 0.133 | 0.202 | 0.540 | |
50s | 11 | 0.127 | 0.123 | 0.229 | 0.521 | |
Affiliation | Public enterprise | 6 | 0.136 | 0.116 | 0.266 | 0.482 |
National research center | 2 | 0.185 | 0.344 | 0.158 | 0.313 | |
University | 14 | 0.117 | 0.114 | 0.261 | 0.509 | |
Private business | 13 | 0.128 | 0.164 | 0.172 | 0.536 | |
Subject | Aquatic ecology | 16 | 0.131 | 0.212 | 0.180 | 0.477 |
Landscape architecture | 13 | 0.141 | 0.097 | 0.239 | 0.523 | |
Water resources | 4 | 0.097 | 0.098 | 0.299 | 0.506 | |
Other | 2 | 0.090 | 0.100 | 0.293 | 0.517 | |
Experience (Years) | <10 | 10 | 0.113 | 0.143 | 0.287 | 0.457 |
11–20 | 13 | 0.130 | 0.155 | 0.180 | 0.534 | |
21–30 | 12 | 0.141 | 0.125 | 0.219 | 0.514 | |
Public service | Yes | 32 | 0.126 | 0.146 | 0.210 | 0.517 |
No | 3 | 0.153 | 0.096 | 0.363 | 0.388 |
Division | N | Mining Area | Aggregate Extraction | Power Plants | Industrial Estates | |
---|---|---|---|---|---|---|
Total | 35 | 0.215 | 0.262 | 0.145 | 0.378 | |
Gender | Male | 32 | 0.207 | 0.251 | 0.142 | 0.400 |
Female | 3 | 0.281 | 0.370 | 0.167 | 0.183 | |
Age | 30s | 7 | 0.263 | 0.215 | 0.137 | 0.385 |
40s | 17 | 0.198 | 0.280 | 0.155 | 0.367 | |
50s | 11 | 0.213 | 0.266 | 0.136 | 0.386 | |
Affiliation | Public enterprise | 6 | 0.303 | 0.197 | 0.146 | 0.354 |
National research center | 2 | 0.199 | 0.364 | 0.118 | 0.320 | |
University | 14 | 0.211 | 0.243 | 0.165 | 0.381 | |
Private business | 13 | 0.185 | 0.300 | 0.127 | 0.387 | |
Subject | Aquatic ecology | 16 | 0.191 | 0.300 | 0.141 | 0.369 |
Landscape architecture | 13 | 0.239 | 0.183 | 0.142 | 0.436 | |
Water resources | 4 | 0.192 | 0.421 | 0.115 | 0.273 | |
Other | 2 | 0.250 | 0.250 | 0.250 | 0.250 | |
Experience (Years) | <10 | 10 | 0.278 | 0.213 | 0.156 | 0.354 |
11–20 | 13 | 0.155 | 0.285 | 0.119 | 0.440 | |
21–30 | 12 | 0.238 | 0.273 | 0.163 | 0.326 | |
Public service | Yes | 32 | 0.208 | 0.254 | 0.145 | 0.393 |
No | 3 | 0.284 | 0.337 | 0.145 | 0.234 |
Division | N | Water Sports Users | Local Fair | Accommodation | Restaurant | |
---|---|---|---|---|---|---|
Total | 35 | 0.161 | 0.170 | 0.260 | 0.409 | |
Gender | Male | 32 | 0.157 | 0.171 | 0.254 | 0.419 |
Female | 3 | 0.199 | 0.157 | 0.335 | 0.308 | |
Age | 30s | 7 | 0.173 | 0.179 | 0.261 | 0.387 |
40s | 17 | 0.143 | 0.163 | 0.265 | 0.430 | |
50s | 11 | 0.184 | 0.174 | 0.252 | 0.390 | |
Affiliation | Public enterprise | 6 | 0.219 | 0.227 | 0.222 | 0.332 |
National research center | 2 | 0.073 | 0.153 | 0.291 | 0.484 | |
University | 14 | 0.180 | 0.173 | 0.251 | 0.396 | |
Private business | 13 | 0.136 | 0.144 | 0.278 | 0.442 | |
Subject | Aquatic ecology | 16 | 0.170 | 0.152 | 0.274 | 0.404 |
Landscape architecture | 13 | 0.143 | 0.198 | 0.236 | 0.423 | |
Water resources | 4 | 0.154 | 0.128 | 0.271 | 0.447 | |
Other | 2 | 0.221 | 0.240 | 0.270 | 0.270 | |
Experience (Years) | <10 | 10 | 0.187 | 0.205 | 0.251 | 0.357 |
11–20 | 13 | 0.118 | 0.142 | 0.255 | 0.485 | |
21–30 | 12 | 0.192 | 0.171 | 0.267 | 0.370 | |
Public service | Yes | 32 | 0.154 | 0.167 | 0.261 | 0.418 |
No | 3 | 0.247 | 0.199 | 0.244 | 0.310 |
Division | N | Commercial Area | Residential Area | Road Area | Green Area | |
---|---|---|---|---|---|---|
Total | 35 | 0.430 | 0.241 | 0.211 | 0.119 | |
Gender | Male | 32 | 0.431 | 0.254 | 0.210 | 0.105 |
Female | 3 | 0.341 | 0.111 | 0.181 | 0.366 | |
Age | 30s | 7 | 0.391 | 0.234 | 0.204 | 0.172 |
40s | 17 | 0.444 | 0.209 | 0.210 | 0.137 | |
50s | 11 | 0.421 | 0.296 | 0.209 | 0.073 | |
Affiliation | Public enterprise | 6 | 0.440 | 0.233 | 0.227 | 0.100 |
National research center | 2 | 0.449 | 0.189 | 0.192 | 0.170 | |
University | 14 | 0.380 | 0.256 | 0.232 | 0.132 | |
Private business | 13 | 0.476 | 0.234 | 0.183 | 0.107 | |
Subject | Aquatic ecology | 16 | 0.415 | 0.230 | 0.234 | 0.121 |
Landscape architecture | 13 | 0.475 | 0.220 | 0.198 | 0.108 | |
Water resources | 4 | 0.315 | 0.372 | 0.154 | 0.159 | |
Other | 2 | 0.465 | 0.225 | 0.219 | 0.091 | |
Experience (Years) | <10 | 10 | 0.408 | 0.225 | 0.222 | 0.145 |
11–20 | 13 | 0.460 | 0.259 | 0.188 | 0.093 | |
21–30 | 12 | 0.412 | 0.233 | 0.225 | 0.130 | |
Public service | Yes | 32 | 0.443 | 0.233 | 0.212 | 0.112 |
No | 3 | 0.290 | 0.324 | 0.179 | 0.207 |
Subcategory | Overall Weight | Overall Rankings |
---|---|---|
Sewage terminal treatment facility | 0.099 | 1 |
Number of livestock | 0.087 | 2 |
Population density | 0.081 | 3 |
Budget scale of local streams | 0.077 | 4 |
Industrial estates | 0.076 | 5 |
Commercial area | 0.067 | 6 |
Restaurant | 0.060 | 7 |
Aggregate extraction area | 0.052 | 8 |
Population fluctuation | 0.046 | 9 |
Mining area | 0.043 | 10 |
Farming area | 0.038 | 11 |
Accommodation | 0.038 | 11 |
Residential area | 0.038 | 11 |
Road | 0.033 | 14 |
Power plants | 0.029 | 15 |
Local fair | 0.025 | 16 |
Field area | 0.024 | 17 |
Water sports users | 0.024 | 17 |
Budget scale of civic groups and NGOs | 0.022 | 19 |
Rice field area | 0.022 | 19 |
Green area | 0.019 | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, S.-W.; Park, S.-R.; Shin, Y.; An, K. Socioeconomic Risks and Their Impacts on Ecological River Health in South Korea: An Application of the Analytic Hierarchy Process. Sustainability 2021, 13, 6287. https://doi.org/10.3390/su13116287
Kim S, Lee S-W, Park S-R, Shin Y, An K. Socioeconomic Risks and Their Impacts on Ecological River Health in South Korea: An Application of the Analytic Hierarchy Process. Sustainability. 2021; 13(11):6287. https://doi.org/10.3390/su13116287
Chicago/Turabian StyleKim, Suyeon, Sang-Woo Lee, Se-Rin Park, Yeeun Shin, and Kyungjin An. 2021. "Socioeconomic Risks and Their Impacts on Ecological River Health in South Korea: An Application of the Analytic Hierarchy Process" Sustainability 13, no. 11: 6287. https://doi.org/10.3390/su13116287
APA StyleKim, S., Lee, S.-W., Park, S.-R., Shin, Y., & An, K. (2021). Socioeconomic Risks and Their Impacts on Ecological River Health in South Korea: An Application of the Analytic Hierarchy Process. Sustainability, 13(11), 6287. https://doi.org/10.3390/su13116287