A Systematic Review on Seaweed Functionality: A Sustainable Bio-Based Material
Abstract
:1. Highlights
- A systematic review on seaweed functionality;
- Seaweed characteristics and potential value chains;
- The exploitation of quantitative and qualitative analysis seaweed value chain benefits;
- Summary of the “PBFS” approach, essential for considering seaweed-based products’ feasibility.
2. Introduction
3. What Is Seaweed?
4. Seaweed Market
5. Seaweed Characteristics
5.1. Lipids
5.2. Carbohydrates
5.3. Proteins
5.4. Pigments
5.5. Other Constituents
6. Seaweed Cultivation
- Land-based—indoor cultivation;
- Land-based—outdoor pond, open-air cultivation;
- Shallow sea—semi-floating or pole system;
- Shallow sea—U-type floating system (in a subtidal zone);
- Shallow sea fixed support system (in an intertidal zone).
7. Sustainability in Seaweed Cultivation
8. Seaweed Applications
8.1. Seaweed in Food Applications
8.2. Seaweed into Furfural
8.3. Seaweed into Hydrogen as a Fuel Application
8.4. Seaweed into Biofuel
8.5. Seaweed as an Animal Feed
8.6. Seaweed in Pharmaceuticals
8.7. Seaweed in Cosmetics
9. Sustainable Seaweed Applications
10. Techno-Economic Assessment
11. A Way Forward
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CC | Climate Change |
CED-T | Cumulative Energy Demand, Total |
ME | Marine Eutrophication |
FWE | Fresh Water Eutrophication |
HT-C | Human Toxicity, Cancer |
HT-NC | Human Toxicity, Non-Cancer |
OLD | Ozone Layer Depletion |
HTP | Human Toxicity Potential |
FAETP | Fresh Aquatic Eco-toxicity Potential |
MAETP | Marine Aquatic Eco-toxicity Potential |
TETP | Terrestrial Eco-toxicity Potential |
AD | Abiotic Depletion |
EP | Eutrophication Potential |
GWP | Global Warming Potential |
AP | Acidification Potential |
ODP | Ozone Depletion Potential |
TA | Terrestrial Acidification |
FD | Fossil Depletion |
WD | Water Depletion |
IR | Ionizing Radiation |
GHG | Green House Gas |
5-HMF | 5-Hydroxymethylfurfural |
FFC | Fossil fuel consumption |
RD | Resource Depletion |
NMVOC | Non-Methane Volatile Organic Compound |
PM | Particulate Matter |
NREU | Non-Renewable Energy Use |
PBFS | Process development, By-product promotion, Financial assistance, and Social acceptance |
References
- Dupont-inglis, J.; Borg, A. Destination bioeconomy—The path towards a smarter, more sustainable future. New Biotechnol. 2017, 6784, 30041–30049. [Google Scholar] [CrossRef] [PubMed]
- Mengal, P.; Wubbolts, M.; Zika, E.; Ruiz, A.; Brigitta, D.; Pieniadz, A.; Black, S. Bio-based Industries Joint Undertaking: The catalyst for sustainable bio-based economic growth in Europe. New Biotechnol. 2018, 40, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Schütte, G. What kind of innovation policy does the bioeconomy need? New Biotechnol. 2017, 40, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.; Paula, L.; Dodd, T.; Németh, S.; Nanou, C.; Mega, V.; Campos, P. EU ambition to build the world’s leading bioeconomy—Uncertain times demand innovative and sustainable solutions. New Biotechnol. 2017, S1871-6784, 30022–30025. [Google Scholar] [CrossRef] [PubMed]
- Dietz, T.; Börner, J.; Förster, J.J.; Von Braun, J. Governance of the Bioeconomy: A Global Comparative Study of National Bioeconomy Strategies. Sustainability 2018, 10, 3190. [Google Scholar] [CrossRef] [Green Version]
- European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment; European Commission: Luxembourg, 2018; pp. 1–107. [Google Scholar]
- Moreno, A.D.; Susmozas, A.; Oliva, J.M.; Negro, M.J. Overview of bio-based industries. In Biobased Products and Industries; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–40. [Google Scholar]
- Krüger, A.; Schäfers, C.; Schröder, C.; Antranikian, G. Towards a sustainable biobased industry—Highlighting the impact of extremophiles. New Biotechnol. 2018, 40, 144–153. [Google Scholar] [CrossRef]
- United States Department of Agriculture. An Economic Impact Analysis of the U.S. Biobased Products Industry; United States Department of Agriculture: Washington, DC, USA, 2018; pp. 1–108.
- Andrea, C.; Nicolas, R.; Klas, J.; Roberto, P.; Sara, G.-C.; Raul, L.-L.; van der Marijn, V.; Tevecia, R.; Patricia, G.; Robert, M.; et al. Biomass production, supply, uses and flows in the European Union. Environ. Impacts Bioenergy 2018, 1–126. [Google Scholar] [CrossRef]
- Resurreccion, E.P.; Colosi, L.M.; White, M.A.; Clarens, A.F. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach. Bioresour. Technol. 2012, 126, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, K.R.; Ilangovan, K.; Khan, A.B. Floristic and macro faunal diversity of Pondicherry mangroves, South India. Trop. Ecol. 2008, 49, 91–94. [Google Scholar]
- Ramani, G.; Tulasi, M.S.; Bhai, V.A. Seaweed: A Novel Biomaterial. Int. J. Pharm. Pharm. Sci. 2013, 5, 40–44. [Google Scholar]
- Delaney, A.; Frangoudes, K.; Li, S. Society and Seaweed: Understanding the Past and Present. Seaweed Health Dis. Prev. 2016, 2, 7–40. [Google Scholar]
- Evans, F.D.; Critchley, A.T. Seaweeds for animal production use. J. Appl. Phycol. 2014, 26, 891–899. [Google Scholar] [CrossRef]
- White, W.L.; Wilson, P. World seaweed utilization. In Seaweed Sustainability; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 7–26. [Google Scholar]
- Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, A.; Hernández-gonzález, M.C.; Pereda, S.V.; Gomez-, J.L.; Golberg, A.; Tadmor-shalev, N.; et al. Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 2017, 52, 391–406. [Google Scholar] [CrossRef]
- Bruhn, A.; Dahl, J.; Nielsen, H.B.; Nikolaisen, L.; Rasmussen, M.B.; Markager, S.; Olesen, B.; Arias, C.; Jensen, P.D. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresour. Technol. 2011, 102, 2595–2604. [Google Scholar] [CrossRef]
- Mazarrasa, I.; Olsen, Y.S.; Mayol, E.; Marbà, N.; Duarte, C.M. Global unbalance in seaweed production, research effort and biotechnology markets. Biotechnol. Adv. 2014, 32, 1028–1036. [Google Scholar] [CrossRef]
- Mazarrasa, I.; Olsen, Y.S.; Mayol, E.; Marbà, N.; Duarte, C.M. Rapid growth of seaweed biotechnology provides opportunities for developing nations. Nat. Publ. Gr. 2013, 31, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Arnaud-haond, S.; Arrieta, J.M.; Duarte, C.M. Marine Biodiversity and Gene Patents. Sci. Glob. Genet. Resour. 2011, 331, 1521–1522. [Google Scholar] [CrossRef] [PubMed]
- Usman, A.; Khalid, S.; Usman, A.; Hussain, Z.; Wang, Y. Algal Polysaccharides, Novel Application, and Outlook. In Algae Based Polymers, Blends, and Composites; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 115–153. [Google Scholar]
- Venkatesan, J.; Lowe, B.; Anil, S.; Manivasagan, P.; Kheraif, A.A.; Kang, K.-H.; Kim, S.-K. Seaweed polysaccharides and their potential biomedical applications. Starch 2015, 66, 1–10. [Google Scholar] [CrossRef]
- Werner, A.; Clarke, D.; Kraan, S. Strategic Review of the Feasibility of Seaweed; National Development Plan: Galway, Ireland, 2004; pp. 1–123. [Google Scholar]
- Lunardello, K.A.; Yamashita, F.; Benassi Toledo, M.; Rensis Barros, C.; Maciel, V. The physicochemical characteristics of nonfat set yoghurt containing some hydrocolloids. Int. J. Dairy Technol. 2011, 65, 260–267. [Google Scholar] [CrossRef]
- Jard, G.; Marfaing, H.; Carrère, H.; Delgenes, J.P.; Steyer, J.P.; Dumas, C. French Brittany macroalgae screening: Composition and methane potential for potential alternative sources of energy and products. Bioresour. Technol. 2013, 144, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Hamid, N.; Ma, Q.; Boulom, S.; Liu, T.; Zheng, Z.; Balbas, J.; Robertson, J. Seaweed minor constituents. In Seaweed Sustainability; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 193–242. [Google Scholar]
- Lang, I.; Hodac, L.; Friedl, T.; Feussner, I. Fatty acid profiles and their distribution patterns in microalgae: A comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 2011, 11, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colin, B.; Fereidoon, S. Marine Netraceuticals and Functional Foods; CRC Press: Boca Raton, FL, USA, 2008; pp. 1–512. [Google Scholar]
- Laurens, L.M.L.; Lane, M.; Nelson, R.S. Sustainable Seaweed Biotechnology Solutions for Carbon Capture, Composition, and Deconstruction. Trends Biotechnol. 2020, 38, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Masakazu, M.; Nakazoe, J. Production and Use of Marine Algae in Japan. Jpn. Agric. Res. Q. JARQ 2001, 35, 281–290. [Google Scholar]
- Narayan, B.; Miyashita, K.; Hosakawa, M. Comparative Evaluation of Fatty Acid Composition of Different Sargassum (Fucales, Phaeophyta) Species Harvested from Temperate and Tropical Waters. J. Aquat. Food Prod. Technol. 2008, 13, 53–70. [Google Scholar] [CrossRef]
- Khotimchenko, S.V. Lipids from the Marine Alga Gracilaria verrucosa. Chem. Nat. Compd. 2005, 41, 230–232. [Google Scholar] [CrossRef]
- Hay, C.H.; Villouta, E. Seasonality of the Adventive Asian Kelp Undaria pinnatifida in New Zealand. Bot. Mar. 1993, 36, 461–476. [Google Scholar] [CrossRef]
- Nelson, M.M.; Nichols, P.D.; Scientific, T.C. Seasonal Lipid Composition in Macroalgae of the Northeastern Pacific Ocean Seasonal Lipid. Bot. Mar. 2002, 45, 58–65. [Google Scholar] [CrossRef]
- Kim, K.; Lee, O.; Lee, B. Genotoxicity studies on fucoidan from Sporophyll of Undaria pinnatifida. Food Chem. Toxicol. 2010, 48, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- Popper, Z.A.; Michel, G.; Domozych, D.S.; Willats, W.G.T.; Tuohy, M.G.; Kloareg, B.; Stengel, D.B. Evolution and Diversity of Plant Cell Walls: From Algae to Flowering Plants. Annu. Rev. Plant Biol. 2011, 62, 567–590. [Google Scholar] [CrossRef] [Green Version]
- Enquist-newman, M.; Faust, A.M.E.; Bravo, D.D.; Santos, C.N.S.; Raisner, R.M.; Hanel, A.; Sarvabhowman, P.; Le, C.; Regitsky, D.D.; Cooper, S.R.; et al. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 2014, 505, 239–243. [Google Scholar] [CrossRef]
- Fleurence, J. Seaweed proteins. In Proteins in Food Processing; Woodhead Publishing Limited.: Cambridge, UK, 1999; pp. 197–213. [Google Scholar]
- Dumay, J.; Morançais, M. Proteins and Pigments. In Seaweed in Health and Disease Prevention; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 275–318. [Google Scholar]
- Fleurence, J. The enzymatic degradation of algal cell walls: A useful approach for improving protein accessibility? J. Appl. Phycol. 1999, 11, 313–314. [Google Scholar] [CrossRef]
- Fujiwara-arasakjl, T.; Mino, N.; Kuroda, M. The protein value in human nutrition of edible marine algae in Japan. Hydrobiologia 1984, 116/117, 513–516. [Google Scholar] [CrossRef]
- Baghel, R.S.; Kumari, P.; Reddy, C.R.K.; Bhavanath, J. Growth, pigments, and biochemical composition of marine red alga Gracilaria crassa. J. Appl. Phycol. 2014, 26, 2143–2150. [Google Scholar] [CrossRef]
- Denis, C.; Morançais, M.; Li, M.; Deniaud, E.; Gaudin, P.; Wielgosz-collin, G.; Barnathan, G.; Jaouen, P.; Fleurence, J. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem. 2010, 119, 913–917. [Google Scholar] [CrossRef]
- Dumay, J.; Morançais, M.; Munier, M.; Cecile, G.; Fleurence, J. Phycoerythrins: Valuable Proteinic Pigments in Red Seaweeds. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2014; Volume 71, pp. 321–343. [Google Scholar]
- Baweja, P.; Kumar, S.; Sahoo, D.; Levine, I. Biology of Seaweeds. In Seaweed in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2016; pp. 41–106. [Google Scholar]
- South, G.R.; Whittick, A. Introduction to Phycology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 1–352. [Google Scholar]
- Macartain, P.; Gill, C.I.R.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional Value of Edible Seaweeds. Nutr. Rev. 2007, 1, 535–543. [Google Scholar] [CrossRef]
- Xiu-geng, F.; Ying, B.; Shan, L. Seaweed Cultivation: Traditional Way and its Reformation. Chin. J. Oceanol. Limnol. 1999, 17, 193–199. [Google Scholar] [CrossRef]
- Monagail, M.M.; Cornish, L.; Morrison, L.; Araújo, R.; Critchley, A.T. Sustainable harvesting of wild seaweed resources. Eur. J. Phycol. 2017, 52, 371–390. [Google Scholar] [CrossRef]
- ISO 2006a. Environmental Management: Life Cycle Assessment: Principles and Framework; ISO: Geneva, Switzerland, 2007; Volume 2, pp. 1–20. [Google Scholar]
- ISO 2006b. Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO: Geneva, Switzerland, 2007; Volume 2, pp. 1–20. [Google Scholar]
- Holdt, S.L.; Edwards, M.D. Cost-effective IMTA: A comparison of the production efficiencies of mussels and seaweed. J. Appl. Phycol. 2014, 26, 933–945. [Google Scholar] [CrossRef]
- Taelman, S.E.; Champenois, J.; Edwards, M.D.; De Meester, S.; Dewulf, J. Comparative environmental life cycle assessment of two seaweed cultivation systems in North West Europe with a focus on quantifying sea surface occupation. Algal Res. 2015, 11, 173–183. [Google Scholar] [CrossRef]
- Seghetta, M.; Goglio, P. Life Cycle Assessment of Seaweed Cultivation Systems. Methods Mol. Biol. 2018, 1980, 103–119. [Google Scholar]
- Seghetta, M.; Romeo, D.; Este, M.D.; Alvarado-morales, M.; Bastianoni, S.; Thomsen, M. Seaweed as innovative feedstock for energy and feed—Evaluating the impacts through a Life Cycle Assessment. J. Clean. Prod. 2017, 150, 1–15. [Google Scholar] [CrossRef]
- Van Oirschot, R.; Thomas, J.E.; Gröndahl, F.; Fortuin, K.P.J.; Brandenburg, W.; Potting, J. Explorative environmental life cycle assessment for system design of seaweed cultivation and drying. Algal Res. 2017, 27, 43–54. [Google Scholar] [CrossRef]
- Aitken, D.; Bulboa, C.; Godoy-faundez, A.; Turrion-gomez, J.L.; Antizar-ladislao, B. Life cycle assessment of macroalgae cultivation and processing for biofuel production. J. Clean. Prod. 2014, 75, 45–56. [Google Scholar] [CrossRef]
- Langlois, J.; Sassi, J.-F.; Jard, G.; Steyer, J.-P.; Delgenes, J.-P.; Helias, A. Life cycle assessment of biomethane from offshore- Cultivated Seaweed. Biofuels Bioprod. Biorefining 2012, 6, 387–404. [Google Scholar] [CrossRef]
- Ghosh, A.; Anand, K.G.V.; Seth, A. Life cycle impact assessment of seaweed based biostimulant production from onshore cultivated Kappaphycus alvarezii (Doty ) Doty ex Silva—Is it environmentally sustainable ? Algal Res. 2015, 12, 513–521. [Google Scholar] [CrossRef]
- Anand, K.G.V.; Eswaran, K.; Ghosh, A. Life cycle impact assessment of a seaweed product obtained from Gracilaria edulis—A potent plant biostimulant. J. Clean. Prod. 2018, 170, 1621–1627. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B 2011, 42, 856–873. [Google Scholar] [CrossRef] [Green Version]
- Bouafif, H.; Koubaa, A.; Perré, P.; Cloutier, A. Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites. Compos. Part A 2009, 40, 1975–1981. [Google Scholar] [CrossRef]
- Burg, S.W.; Van Den, K.; Van Duijn, A.P.; Bartelings, H.; Van Krimpen, M.M.; Poelman, M. The economic feasibility of seaweed production in the North Sea. Aquac. Econ. Manag. 2016, 20, 235–252. [Google Scholar] [CrossRef] [Green Version]
- Dave, A.; Huang, Y.; Rezvani, S.; Mcilveen-wright, D.; Novaes, M.; Hewitt, N. Techno-economic assessment of biofuel development by anaerobic digestion of European marine cold-water seaweeds. Bioresour. Technol. 2013, 135, 120–127. [Google Scholar] [CrossRef]
- Zimmermann, A.W.; Wunderlich, J.; Müller, L.; Buchner, G.A.; Marxen, A.; Michailos, S.; Armstrong, K.; Naims, H.; Mccord, S.; Styring, P.; et al. Techno-Economic Assessment Guidelines for CO2 Utilization. Front. Energy Res. 2020, 8, 1–23. [Google Scholar] [CrossRef] [Green Version]
- FAO. Declaration of the world Summit on Food Security. In World Summit on Food Security; FAO: Quebec City, QC, Canada, 2009; pp. 1–7. [Google Scholar]
- Van Hal, J.W.; Huijgen, W.J.J.; Lopez-Contreras, A.M. Opportunities and challenges for seaweed in the biobased economy. Trends Biotechnol. 2014, 32, 231–233. [Google Scholar] [CrossRef]
- Geldermann, J.; Kolbe, L.M.; Krause, A.; Mai, C.; Militz, H.; Osburg, V.-S.; Schöbel, A.; Schumann, M.; Toporowski, W.; Westpha, S. Improved Resource Efficiency and Cascading Utilisation of Renewable Materials. J. Clean. Prod. 2015, 110, 1–8. [Google Scholar] [CrossRef]
- Mendis, E.; Kim, S. Present and Future Prospects of Seaweeds in Developing Functional Foods. In Marine Medicinal Foods; Elsevier: Amsterdam, The Netherlands, 2011; Volume 64, pp. 1–15. [Google Scholar]
- Kumar, S.; Sahoo, D.; Levine, I. Assessment of nutritional value in a brown seaweed Sargassum wightii and their seasonal variations. Algal Res. 2015, 9, 117–125. [Google Scholar] [CrossRef]
- Nisizawa, K.; Noda, H.; Kikuchi, R.; Watanabe, T. The main seaweed foods in Japan. Hydrobiologia 1987, 29, 5–29. [Google Scholar] [CrossRef]
- Glicksman, M. Utilization of seaweed hydrocolloids in the food industry. Hydrobiologia 1987, 151/152, 31–47. [Google Scholar] [CrossRef]
- Fleurence, J. Seaweeds as Food. In Seaweed in Health and Disease Prevention; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 149–167. [Google Scholar]
- Li, H.; Ren, J.; Zhong, L.; Sun, R.; Liang, L. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst. Bioresour. Technol. 2015, 176, 242–248. [Google Scholar] [CrossRef]
- Bhaumik, P.; Dhepe, P.L. Effects of careful designing of SAPO-44 catalysts on the efficient synthesis of furfural. Catal. Today 2014, 251, 66–72. [Google Scholar] [CrossRef]
- Climent, M.J.; Corma, A.; Iborra, S. Cponversion of biomass platform mpolecules into fuel additives and liquid hydrocarbon fuels. Green Chem. 2014, 16, 516–547. [Google Scholar] [CrossRef] [Green Version]
- Mamman, A.S.; Lee, J.; Kim, Y.; Hwang, I.T.; Park, N.; Hwang, Y.K.; Chang, J.; Hwang, J.-S. Furfural: Hemicellulose/xylose- derived biochemical. Biofuels Bioprod. Biorefining 2008, 2, 438–454. [Google Scholar] [CrossRef]
- Park, G.; Jeon, W.; Ban, C.; WOO, H.C.; Kim, D.H. Direct catalytic conversion of brown seaweed-derived alginic acid to furfural using 12-tungstophosphoric acid catalyst in tetrahydrofuran/water co-solvent. Energy Convers. Manag. 2016, 118, 135–141. [Google Scholar] [CrossRef]
- Xia, A.; Cheng, J.; Ding, L.; Lin, R.; Song, W.; Su, H.; Zhou, J.; Cen, K. Substrate consumption and hydrogen production via co-fermentation of monomers derived from carbohydrates and proteins in biomass wastes. Appl. Energy 2015, 139, 9–16. [Google Scholar] [CrossRef]
- Sambusiti, C.; Bellucci, M.; Zabaniotou, A.; Beneduce, L.; Monlau, F. Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review. Renew. Sustain. Energy Rev. 2015, 44, 20–36. [Google Scholar] [CrossRef]
- Pierra, M.; Trably, E.; Godon, J.; Bernet, N. Fermentative hydrogen production under moderate halophilic conditions. Hydrog. Energy 2013, 39, 1–10. [Google Scholar] [CrossRef]
- De Vrije, T.; Mars, A.E.; Budde, M.A.W.; Lai, M.H.; Dijkema, C.; De, W.P.; Claassen, P.A.M. Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl. Microbiol. Biotechnol. 2007, 74, 1358–1367. [Google Scholar] [CrossRef]
- Fang, H.H.P.; Liu, H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 2002, 82, 87–93. [Google Scholar] [CrossRef]
- Matsumura, Y.; Sato, K.; Al-saari, N.; Nakagawa, S.; Sawabe, T. Enhanced hydrogen production by a newly described heterotrophic marine bacterium, Vibrio tritonius strain AM2, using seaweed as the feedstock. Int. J. Hydrog. Energy 2014, 39, 7270–7277. [Google Scholar] [CrossRef] [Green Version]
- Xia, A.; Jacob, A.; Herrmann, C.; Tabassum, M.R.; Murphy, J.D. Production of hydrogen, ethanol and volatile fatty acids from the seaweed carbohydrate mannitol. Bioresour. Technol. 2015, 193, 488–497. [Google Scholar] [CrossRef]
- Wang, J.J.; Bensmail, H.; Yao, N.; Gao, X. Discriminative sparse coding on multi-manifolds. Knowl. Based Syst. 2013, 54, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.K.; Beardall, J.; Mehta, S.; Sahoo, D.; Stojkovic, S. Using marine macroalgae for carbon sequestration: A critical appraisal. J. Appl. Phycol. 2011, 23, 877–886. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, R.; Kumar, G.; Sahoo, D.; Kuhad, R.C. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 2013, 135, 150–156. [Google Scholar] [CrossRef]
- McHugh, D.J. A Guide to the Seaweed Industry; ISO: Geneva, Switzerland, 2003; pp. 1–118. [Google Scholar]
- Yeon, J.-H.; Lee, S.-E.; Choi, W.Y.; Kang, D.H.; Lee, H.-Y.; Jung, K.-H. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microb. Biotechnol. 2016, 21, 323–331. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Nakamura, K.; Ariga, O.; Nakasaki, K. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem. 2011, 46, 2111–2116. [Google Scholar] [CrossRef]
- Kim, H.M.; Wi, S.G.; Jung, S.; Song, Y.; Bae, H. Efficient approach for bioethanol production from red seaweed Gelidium amansii. Bioresour. Technol. 2015, 175, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Council for Agricultural Science and Technology (CAST). Animal Feed vs. Human Food: Challenges and Opportunities in Sustaining Animal Agriculture Toward 2050; Iowa State University, Department of Economics: Ames, IA, USA, 2013; pp. 1–16. [Google Scholar]
- Van Den Burg, S.; Stuiver, M.; Veenstra, F.; Bikker, P.; Contreras, A.L.; Palstra, A.; Broeze, J.; Jansen, H.; Jak, R.; Gerritsen, A.; et al. A Triple P Review of the Feasibility of Sustainable Offshore Seaweed Production in the North Sea; Wageningen UR: Wageningen, The Netherlands, 2013; pp. 1–108. [Google Scholar]
- Reilly, P.; Doherty, J.V.O.; Pierce, K.M.; Callan, J.J.; Sullivan, J.T.O.; Sweeney, T. The effects of seaweed extract inclusion on gut morphology, selected intestinal microbiota, nutrient digestibility, volatile fatty acid concentrations and the immune status of the weaned pig. Anim. Int. J. Anim. Biosci. 2008, 2, 1465–1473. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, G.E.; Campbell, A.J.; Doherty, J.V.O.; Pierce, E.; Lynch, P.B.; Leonard, F.C.; Stanton, C.; Ross, R.P.; Lawlor, P.G. Effect of Ascophyllum nodosum extract on growth performance, digestibility, carcass characteristics and selected intestinal microflora populations of grower—Finisher pigs. Anim. Feed Sci. Technol. 2008, 141, 259–273. [Google Scholar] [CrossRef]
- Kolb, N.; Vallorani, L.; Milanovi, N.; Stocchi, V. Evaluation of Marine Algae Wakame (Undaria pinnatifida) and Kombu (Laminaria digitata japonica) as Food Supplements. Food Technol. Biotehnol. 2004, 42, 57–61. [Google Scholar]
- Gouveia, L.; Batista, A.P.; Sousa, I.; Raymundo, A.; Bandarra, N.M. Microalgae in Novel Food Products. In Food Chemistry Research Development; Nova Science Publishers: New York, NY, USA, 2008; pp. 1–37. [Google Scholar]
- Funahashi, H.; Imai, T.; Tanaka, Y.; Tsukamura, K.; Hayakawa, Y.; Kikumori, T.; Mase, T.; Itoh, T.; Nishikawa, M.; Hayashi, H.; et al. Wakame Seaweed Suppresses the Proliferation of 7, 12-Dimethylbenz (a)- anthracene-induced Mammary Tumors in Rats. Jpn. J. Cancer Res. 1999, 90, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, J.; Kim, E. Fucoidan from Seaweed Fucus vesiculosus Inhibits Migration and Invasion of Human Lung Cancer Cell via PI3K-Akt-mTOR Pathways. PLoS ONE 2012, 7, e50624. [Google Scholar] [CrossRef]
- Nelson, T.E.; Lewis, B.A. Separation and characterization of the soluble insoluble components of insoluble Laminaran. Carbohydr. Res. 1974, 33, 63–74. [Google Scholar] [CrossRef]
- Park, E.; Pezzuto, J.M. Antioxidant Marine Products in Cancer Chemoprevention. Antioxid. Redox Signal. 2013, 19, 115–140. [Google Scholar] [CrossRef]
- Déléris, P.; Nazih, H.; Bard, J. Seaweeds in Human Health. In Seaweed in Health and Disease Prevention; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 319–367. [Google Scholar]
- Paradis, M.; Couture, P.; Lamarche, B. A randomised crossover placebo-controlled trial investigating the effect of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) on postchallenge plasma glucose and insulin levels in men and women. Appl. Physiol. Nutr. Metab. 2011, 36, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Ching, S.H.; Bansal, N.; Bhandari, B. Alginate gel particles—A review of production techniques and physical properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 1133–1152. [Google Scholar] [CrossRef] [PubMed]
- Couteau, C.; Coiffard, L. Seaweed Application in Cosmetics. In Seaweed in Health and Disease Prevention; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 423–441. [Google Scholar]
- Wang, H.D.; Chen, C.; Huynh, P.; Chang, J. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 2015, 184, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Price, R.D.; Berry, M.G.; Navsaria, H.A. Hyaluronic acid: The scientific and clinical evidence. J. Plast. Recontstruction Asthetic Surg. 2007, 60, 1110–1119. [Google Scholar] [CrossRef]
- Pangestuti, R.; Kim, S. Biological activities and health benefit effects of natural pigments derived from marine algae. J. Funct. Foods 2011, 3, 255–266. [Google Scholar] [CrossRef]
- Pallela, R.; Na-young, Y.; Kim, S. Anti-photoaging and Photoprotective Compounds Derived from Marine Organism. Mar. Drugs 2010, 8, 1189–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations. Fishery and Aquaculture Statistics; FAO: Quebec City, QC, Canada, 2016; pp. 1–108. [Google Scholar]
- Adams, J.M.M.; Toop, T.A.; Donnison, I.S.; Gallagher, J.A. Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour. Technol. 2011, 102, 9976–9984. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency (IEA) Bioenergy. Biorefineries: Adding Value to the Sustainable Utilization of Biomass; International Energy Agency (IEA) Bioenergy: Paris, France, 2009; pp. 1–16. [Google Scholar]
- Laurens, L.M.; McMillan, J.D.; Baxter, D.; Cowie, A.L.; Saddler, J.; Barbosa, M.; Murphy, J.; Drosg, B.; Elliot, D.C.; Sandquist, J.; et al. State of Technology Review—Algae Bioenergy: An IEA Bioenergy Inter-Task Strategic Project; International Energy Agency (IEA) Bioenergy: Paris, France, 2017; pp. 1–158. [Google Scholar]
- Roesijadi, G.; Jones, S.B.; Snowden-Swan, L.J.; Zhu, Y. Macroalgae as a Biomass Feedstock: A Preliminary Analysi; Pacific Northwest National Lab.: Richland, WA, USA, 2010; pp. 1–50. [Google Scholar]
- Vera, J.; Castro, J.; Gonzalez, A.; Moenne, A. Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants. Mar. Drugs 2011, 9, 2514–2525. [Google Scholar] [CrossRef]
- Bikker, P.; Van Krimpen, M.M.; Van Wikselaar, P.; Houweling-tan, B.; Scaccia, N.; Van Hal, J.W.; Huijgen, W.J.J.; Cone, J.W.; Lopez-Contreras, A.M. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J. Appl. Phycol. 2016, 28, 3511–3525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, M.; Collet, P.; Lardon, L.; Hélias, A.; Steyer, J.; Bernard, O. Life-cycle assessment of microalgal-based biofuel. In Biomass, Biofuels and Biochemicals; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 507–550. [Google Scholar]
- Urban, R.A.; Bakshi, B.R. 1, 3-Propanediol from Fossils versus Biomass: A Life Cycle Evaluation of Emissions and Ecological Resources. Ind. Eng. Chem. Resour. 2009, 48, 8068–8082. [Google Scholar] [CrossRef]
- Gnansounou, E.; Raman, J.K. Life cycle assessment of algae biodiesel and its co-products. Appl. Energy. 2016, 161, 300–308. [Google Scholar] [CrossRef]
- Corona, A.; Biddy, M.J.; Vardon, D.R.; Birkved, M.; Houschild, M.; Beckkam, T. Life Cycle Assessment of Adipic Acid Production from Lignin. Green Chem. 2018, 20, 3857–3866. [Google Scholar] [CrossRef] [Green Version]
- Montazeri, M.; Eckelman, M.J. Life cycle assessment of UV-Curable bio-based wood flooring coatings. J. Clean. Prod. 2018, 192, 932–939. [Google Scholar] [CrossRef]
- Smidt, M.; Hollander, J.D.; Bosch, H.; Xiang, Y.; Van der Graaf, M.; Lambin, A.; Duda, J.-P. Life Cycle Assessment of Biobased and Fossil Based Succinic Acid. In Sustainability Assessment of Renewables-Based Products: Methods and Case Studies; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 307–321. [Google Scholar]
- Brentner, L.B.; Eckelman, M.J.; Zimmerman, J.B. Combinatorial Life Cycle Assessment to Inform Process Design of Industrial Production of Algal Biodiesel. Environ. Sci. Technol. 2011, 45, 7060–7067. [Google Scholar] [CrossRef] [PubMed]
- Raman, J.K.; Gnansounou, E. Life Cycle Assessment of Vetiver- Based Biorefinery With Production of Bioethanol and Furfural. In Life-Cycle Assessment of Biorefineries; Elsevier B.V.: Amsterdam, The Netherlands, 2017; pp. 147–165. [Google Scholar]
- Pilicka, I.; Blumberga, D.; Romagnoli, F. Life Cycle Assessment of Biogas Production from Marine Macroalgae: A Latvian Scenario. Sci. J. Riga Tech. Univ. 2011, 6, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Alvarado-morales, M.; Boldrin, A.; Karakashev, D.B.; Holdt, S.L.; Angelidaki, I.; Astrup, T. Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. Bioresour. Technol. 2013, 129, 92–99. [Google Scholar] [CrossRef]
- Ertem, F.C.; Neubauer, P.; Junne, S. Environmental life cycle assessment of biogas production from marine macroalgal feedstock for the substitution of energy crops. J. Clean. Prod. 2017, 140, 977–985. [Google Scholar] [CrossRef]
- Seghetta, M.; Hou, X.; Bastianoni, S.; Bjerre, A.; Thomsen, M. Life cycle assessment of macroalgal biore fi nery for the production of ethanol, proteins and fertilizers e A step towards a regenerative bioeconomy. J. Clean. Prod. 2016, 137, 1158–1169. [Google Scholar] [CrossRef]
- Cappelli, A.; Gigli, E.; Romagnoli, F.; Simoni, S.; Palerno, M.; Guerriero, E. Co-digestion of macroalgae for biogas production: An LCA-based environmental evaluation. Energy Procedia 2015, 72, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Czyrnek-delêtre, M.M.; Rocca, S.; Agostini, A.; Giuntoli, J.; Murphy, J.D. Life cycle assessment of seaweed biomethane, generated from seaweed sourced from integrated multi-trophic aquaculture in temperate oceanic climates. Appl. Energy 2017, 196, 34–50. [Google Scholar] [CrossRef]
- Giwa, A. Comparative cradle-to-grave life cycle assessment of biogas production from marine algae and cattle manure biorefineries. Bioresour. Technol. 2017, 244, 1470–1479. [Google Scholar] [CrossRef]
- Parsons, S.; Allen, M.J.; Abeln, F.; Mcmanus, M.; Chuck, C.J. Sustainability and life cycle assessment (LCA) of macroalgae-derived single cell oils. J. Clean. Prod. 2019, 232, 1272–1281. [Google Scholar] [CrossRef]
- Pérez-lópez, P.; Balboa, E.M.; González-garcía, S.; Domínguez, H.; Feijoo, G.; Moreira, M.T. Comparative environmental assessment of valorization strategies of the invasive macroalga Sargassum muticum. Bioresour. Technol. 2014, 161, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Plouviez, M.; Shilton, A.; Packer, M.A.; Guieysse, B. N2O emissions during microalgae outdoor cultivation in 50 L column photobioreactors. Algal Res. 2017, 26, 348–353. [Google Scholar] [CrossRef]
- Fagerstone, K.D.; Quinn, J.C.; Bradley, T.H.; De Long, S.K.; Marchese, A.J. Quantitative Measurement of Direct Nitrous Oxide Emissions from Microalgae Cultivation. Environ. Sci. Technol. 2011, 45, 9449–9456. [Google Scholar] [CrossRef]
- Soleymani, M.; Rosentrater, K.A. Techno-Economic Analysis of Biofuel Production from Macroalgae (Seaweed). Bioengineering 2017, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Clarens, A.F.; Resurreccion, E.P.; White, M.A.; Colosi, L.M. Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks. Environ. Sci. Technol. 2010, 44, 1813–1819. [Google Scholar] [CrossRef]
- Jorquera, O.; Kiperstok, A.; Sales, E.A.; Embiruçu, M.; Ghirardi, M.L. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol. 2010, 101, 1406–1413. [Google Scholar] [CrossRef]
Constituents | Brown Seaweed (Phaeophyta) | Red Seaweed (Rhodophyta) | Green Seaweed (Chlorophyta) |
---|---|---|---|
Most discussed species |
|
|
|
Water content | 50–75% | 60–88% | 60–80% |
Ash content | 15–25% | 15–30% | 8–20% |
Carbohydrate content | Alginate 15–30% Mannitol 5–10% | 30–45% | 30–45% |
Protein | 4–10% | 8–40% | 15–25% |
Fats | 1–4.5% | 0.3–2% | 0.6–0.7% |
Potassium | 3–4% | 5–7% | 0.7–1% |
Magnesium | 0.5–0.9% | 0.4–0.5% | 0.2–0.5% |
Sodium | 1–3% | 1–3% | 2–4% |
Other | Fucoidan 4–10% | Xylan 20–40% | Xylan 30–40% |
Sr. No. | LCA Study | FU | System Boundary | Impacts Studied * | Hotspot for Environmental Impact | Ref. |
---|---|---|---|---|---|---|
1 | Seaweed as a Feedstock for Energy and Feed | 1 ha of offshore cultivation area | Cradle-to-Gate 1 | (ReCiPe Midpoint) CC, CED-T, ME FWE, HT-C, HT-NC | Design of Seeded line, Low protein output, Land occupation impacts | [57] |
2 | LCA for system design of Seaweed cultivation and drying | 1 ton protein production from dried seaweed | Cradle-to-Gate 1 | (CML 2001) OLD, HTP, FAETP, MAETP, TETP, AD, EP, CC | Design of dried Seaweed production system, Protein production, the drying process | [58] |
3 | LCA of microalgae cultivation | 1 ha area of cultivation | Cradle-to-Gate 2 | (CML-2001) GWP, AP, ODP, EP, HTP | Diesel consumption for harvesting, Hatchery, Cultivation process | [59] |
4 | Comparative LCA of two Seaweed cultivation systems | 18 ha of floating longlines, and 0.6 ha of raft systems | Cradle-to-Gate 1 | Exergetic life cycle Assessment expressed in MJex MJex−1 | Distance between cultural ropes, Biomass Yield, Hatchery, the distance between facilities | [55] |
5 | LCA of Biomethane from offshore cultivated Seaweed | 1 km trip with a gas-powered car | Cradle-to-Grave | CC, ODP, FEW, TA, ME, FD, WD | Electricity consumption during the drying process, Drying process | [60] |
6 | LCA of Seaweed-based Biostimulant production | Production of 1 kg of Extract | Cradle-to-Gate 2 | (ReCiPe Midpoint)ME, FWE, FD, HTP, IR, WD, TA | Electricity, Cultivation Process | [61] |
7 | LCA of Seaweed-based Biostimulant production | Production of 1 kL of Extract | Cradle-to-Gate 2 | (ReCiPe Midpoint)ME, FWE, FD, HTP, IR, WD, TA | Electricity, Cultivation Process | [62] |
Sr. No. | LCA Study | FU | System Boundary | Impacts Studied * | Hotspots | Ref. |
---|---|---|---|---|---|---|
1 | LCA of 1,3-Propanediol production from fossil and Biomass comparison | Production of 1 kg 1,3-Propanediol produced from Biomass | Cradle-to-gate | GWP, EP, FFC | Land use, water, Soil erosion, Nutrient run-off, Ecosystem vulnerability | [121] |
2 | LCA of Algal Biodiesel and co-products | Production of 1 kg Biodiesel (Dry weight basis) | Cradle-to-Grave | Land use, GHG, FD | Value chain of co-products | [122] |
3 | LCA of Bio-based Adipic acid from Lignin | Production of 1 kg polymer grade Adipic acid | Cradle-to-Gate 2 | (TRACI Midpoint) OD, GHG, Smog, AP, FD, HT-NC, HT-C | Valorization potential of feedstock, Nitrous oxide emission, NaOH utilization, and heating | [123] |
4 | LCA of Bio-based (Corn and Starch based) wood flooring coating | 1 m2 of coating | Cradle-to-Gate 2 | (TRACI 2.1) GWP, OD, AP, EP, | Diacrylate monomer, Itaconic acid, Epoxy resins | [124] |
5 | LCA of Bio-based and Fossil-based Succinic acid | Production of 1 kg Succinic acid | Cradle-to-Gate 2 | (ReCiPe 1.0) CC, OD, HT, IR, TA, FEW, ME, WD, FD | Ecosystem impacts are high, Dextrose production | [125] |
6 | LCA of Industrial production of Algal Biodiesel | Production of 10 GJ Biodiesel | Cradle-to-Gate 2 | GWP, CED | Solar energy and temperature affect algal growth, Land use | [126] |
7 | LCA of Vetiver based Biorefinery | Biofuel production from 1 kg Vetiver Biomass | Cradle-to-Gate 2 | (ReCiPe) FD, Carbon Dioxide emission | The energy required for Furfural production, Impact of Enzyme production not included | [127] |
8 | LCA of Biogas production from Marin algae | 1.1 TJ of energy produced in 1 Year | Cradle-to-Grave | (Impact 2000+) CC, RD | Anaerobic Fermentation Unit, Energy input | [128] |
9 | LCA of Biofuel production from Brown seaweed | Cultivation and Processing of 1 t of dry biomass produced in Denmark for Biofuel production | Cradle-to-Grave | GWP, AP, TETP | Cultivation process, Energy consumption, Anaerobic digestion | [129] |
10 | LCA of Biogas production from Marine macroalgae | 1 kg feedstock mixture fed to the digester, and 1 MJ energy produced from biogas | Cradle-to-Grave | (ReCiPe Midpoint 1.06) GWP, AP, EP | Restricted consideration of Pre-treatment methods, Feedstock variation, Toxicity of Phenols | [130] |
11 | LCA of Macroalgal Biorefinery for production of Bioethanol, Protein, and Fertilizer | 1 ha of the sea under cultivation | Cradle-to-Grave | (ReCiPe Midpoint 1.06) CC, CED-T, HT-C, HT-NC, ME, | Energy consumption for the drying process, Biofertilizers, | [131] |
12 | LCA of Biogas production from co-digestion of macroalgae | Production of 1 m3 of biogas | Cradle-to-Grave | CC, ME, FD, FWE, Land use | Eco-design phase, Energy | [132] |
13 | LCA of Seaweed into Biomethane | Production of 1 MJ of compressed Biomethane | Cradle-to-Gate 2 | GWP, AP, FAETP, TETP, MAETP | Digestion process, Field application, Electricity consumption | [133] |
14 | LCA of Biogas production from Marine macroalgae | Production of 1 GJ of Biogas from macroalgae | Cradle-to-Grave | CC, Land use, AP, EP, OLD, FAETP, MAETP | Electricity, Process material | [134] |
15 | LCA of Seaweed into Fuel and Energy | 1 ha of offshore cultivation area | Cradle-to-Grave | CC, Land use, CED, HT, | Seeded line, Energy, Sugar-to-Protein conversion, | [57] |
16 | LCA of Macroalgae derived single cell oil | Production of 1 t single cell oil | Cradle-to-Gate 2 | CC, FAETP, MAETP, HT, TETP, WD | Fermentation, Acid pre-treatment, Enzymatic hydrolysis, Energy demand | [135] |
17 | LCA of Valorization strategies of macroalgae | 1 kg of valorized biomass | Cradle-to-Gate 2 | AP, EP, GWP, HTP, FAETP, MAETP, TETP, ADP | Electricity, Extraction process, Organic solvents, Pre-treatment | [136] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakhate, P.; van der Meer, Y. A Systematic Review on Seaweed Functionality: A Sustainable Bio-Based Material. Sustainability 2021, 13, 6174. https://doi.org/10.3390/su13116174
Nakhate P, van der Meer Y. A Systematic Review on Seaweed Functionality: A Sustainable Bio-Based Material. Sustainability. 2021; 13(11):6174. https://doi.org/10.3390/su13116174
Chicago/Turabian StyleNakhate, Pranav, and Yvonne van der Meer. 2021. "A Systematic Review on Seaweed Functionality: A Sustainable Bio-Based Material" Sustainability 13, no. 11: 6174. https://doi.org/10.3390/su13116174