Investing in Sustainable Built Environments: The Willingness to Pay for Green Roofs and Green Walls
Abstract
:1. Introduction
2. Methodology
2.1. Survey and Sample Selection
2.2. Questionnaire Design
2.3. Data Analysis
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Bivariate Correlations
4. Conclusions and Policy Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raji, B.; Tenpierika, M.; Dobbelsteen, A.V.D. The impact of greening systems on building energy performance: A literature review. Renew. Sustain. Energy Rev. 2015, 45, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Grimmond, S. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Saiz, S.; Kennedy, C.; Bass, B.; Pressnail, K. Comparative Life Cycle Assessment of Standard and Green Roofs. Environ. Sci. Technol. 2006, 40, 4312–4316. [Google Scholar] [CrossRef] [PubMed]
- Chemisana, D.; Lamnatou, C. Photovoltaic-green roofs: An experimental evaluation of system performance. Appl. Energy 2014, 119, 246–256. [Google Scholar] [CrossRef]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Zhang, Q.; Miao, L.; Wang, X.; Liu, D.; Zhu, L.; Zhou, B.; Sun, J.; Liu, J. The capacity of greening roof to reduce stormwater runoff and pollution. Landsc. Urban Plan. 2015, 144, 142–150. [Google Scholar] [CrossRef]
- Yang, J.; Yu, Q.; Gong, P. Quantifying air pollution removal by green roofs in Chicago. Atmos. Environ. 2008, 42, 7266–7273. [Google Scholar] [CrossRef]
- Lee, J.; Moon, H.; Kim, T.; Kim, H.; Han, M. Quantitative analysis on the urban flood mitigation effect by the extensive green roof system. Environ. Pollut. 2013, 181, 257–261. [Google Scholar] [CrossRef]
- Benvenuti, S. Wildflower green roofs for urban landscaping, ecological sustainability and biodiversity. Landsc. Urban Plan. 2014, 124, 151–161. [Google Scholar] [CrossRef]
- Li, X.-X.; Norford, L.K. Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore. Urban Clim. 2016, 16, 59–74. [Google Scholar] [CrossRef]
- Thøgersen, J.; Noblet, C. Does green consumerism increase the acceptance of wind power? Energy Policy 2012, 51, 854–862. [Google Scholar] [CrossRef] [Green Version]
- Carter, T.; Keeler, A. Life-cycle cost–benefit analysis of extensive vegetated roof systems. J. Environ. Manag. 2008, 87, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, A. The Future of Sustainable Cities: Critical Reflections. Hous. Stud. 2013, 28, 799–800. [Google Scholar] [CrossRef]
- Xie, X.; Lu, Y.; Gou, Z. Green Building Pro-Environment Behaviors: Are Green Users Also Green Buyers? Sustainability 2017, 9, 1703. [Google Scholar] [CrossRef] [Green Version]
- Herbes, C.; Friege, C.; Baldo, D.; Mueller, K.-M. Willingness to pay lip service? Applying a neuroscience-based method to WTP for green electricity. Energy Policy 2015, 87, 562–572. [Google Scholar] [CrossRef]
- Hu, H.; Geertman, S.; Hooimeijer, P. Green Apartments in Nanjing China: Do Developers and Planners Understand the Valuation by Residents? Hous. Stud. 2014, 29, 26–43. [Google Scholar] [CrossRef]
- Koto, P.S.; Yiridoe, E. Expected willingness to pay for wind energy in Atlantic Canada. Energy Policy 2019, 129, 80–88. [Google Scholar] [CrossRef]
- Derkzen, M.; Van Teeffelen, A.J.A.; Verburg, P.H. Green infrastructure for urban climate adaptation: How do residents’ views on climate impacts and green infrastructure shape adaptation preferences? Landsc. Urban Plan. 2017, 157, 106–130. [Google Scholar] [CrossRef]
- Kim, D.-H.; Ahn, B.-I.; Kim, E.-G. Metropolitan Residents’ Preferences and Willingness to Pay for a Life Zone Forest for Mitigating Heat Island Effects during Summer Season in Korea. Sustainability 2016, 8, 1155. [Google Scholar] [CrossRef] [Green Version]
- Chui, T.F.M.; Ngai, W.Y. Willingness to pay for sustainable drainage systems in a highly urbanised city: A contingent valuation study in Hong Kong. Water Environ. J. 2016, 30, 62–69. [Google Scholar] [CrossRef]
- Park, M.; Hagishima, A.; Tanimoto, J.; Chun, C. Willingness to pay for improvements in environmental performance of residential buildings. Build. Environ. 2013, 60, 225–233. [Google Scholar] [CrossRef]
- Banfi, S.; Farsi, M.; Filippini, M.; Jakob, M. Willingness to pay for energy-saving measures in residential buildings. Energy Econ. 2008, 30, 503–516. [Google Scholar] [CrossRef] [Green Version]
- Chau, C.K.; Tse, M.; Chung, K. A choice experiment to estimate the effect of green experience on preferences and willingness-to-pay for green building attributes. Build. Environ. 2010, 45, 2553–2561. [Google Scholar] [CrossRef]
- Hu, H.; Geertman, S.; Hooimeijer, P. The willingness to pay for green apartments: The case of Nanjing, China. Urban Stud. 2014, 51, 3459–3478. [Google Scholar] [CrossRef]
- Robinson, S.; Simons, R.; Lee, E.; Kern, A. Demand for Green Buildings: Office Tenants’ Stated Willingness-to-Pay for Green Features. J. Real Estate Res. 2006, 38, 423–452. [Google Scholar]
- Wiencke, A. Willingness to Pay for Green Buildings-Empirical Evidence from Switzerland. SSRN Electron. J. 2013, 5, 111–133. [Google Scholar] [CrossRef]
- Zalejska-Jonsson, A. Stated WTP and rational WTP: Willingness to pay for green apartments in Sweden. Sustain. Cities Soc. 2014, 13, 46–56. [Google Scholar] [CrossRef]
- Vanstockem, J.; Vranken, L.; Bleys, B.; Somers, B.; Hermy, M. Do Looks Matter? A Case Study on Extensive Green Roofs Using Discrete Choice Experiments. Sustainability 2018, 10, 309. [Google Scholar] [CrossRef] [Green Version]
- Tam, V.W.; Wang, C.; Le, K.N. Thermal insulation and cost effectiveness of green-roof systems: An empirical study in Hong Kong. Build. Environ. 2016, 110, 46–54. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Gaffin, S.; Parshall, L. Green Roofs in the New York Metropolitan Region: Research Report; NASA Goddard Institute for Space Studies: New York, NY, USA, 2006.
- Bianchini, F.; Hewage, K. Probabilistic social cost-benefit analysis for green roofs: A lifecycle approach. Build. Environ. 2012, 58, 152–162. [Google Scholar] [CrossRef]
- Nurmi, V.; Votsis, A.; Perrels, A.; Lehvävirta, S. Green Roof Cost-Benefit Analysis: Special Emphasis on Scenic Benefits. J. Benefit-Cost Anal. 2016, 7, 488–522. [Google Scholar] [CrossRef]
- Niu, H.; Clark, C.; Zhou, J.; Adriaens, P. Scaling of Economic Benefits from Green Roof Implementation in Washington, DC. Environ. Sci. Technol. 2010, 44, 4302–4308. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.M.; Serro, J.; Ferreira, P.; Teotónio, I. The socioeconomic feasibility of greening rail stations: A case study in lisbon. Eng. Econ. 2019, 64, 167–190. [Google Scholar] [CrossRef]
- Sproul, J.; Wan, M.P.; Mandel, B.; Rosenfeld, A.H. Economic comparison of white, green, and black flat roofs in the United States. Energy Build. 2014, 71, 20–27. [Google Scholar] [CrossRef]
- Teotónio, I.; Silva, C.M.; Cruz, C.O. Eco-solutions for urban environments regeneration: The economic value of green roofs. J. Clean. Prod. 2018, 199, 121–135. [Google Scholar] [CrossRef]
- Cruz, C.O.; Silva, C.M.; Dias, P.V.; Teotónio, I. Economic impact of changing thermal regulation—An application to the city of Lisbon. Energy Build. 2017, 149, 354–367. [Google Scholar] [CrossRef]
- Breidert, C.; Hahsler, M.; Reutterer, T. A review on methods for measuring willingness-to-pay. Innov. Mark. 2006, 2, 8–32. [Google Scholar]
- Etikan, I.; Musa, S.A.; Alkassim, R.S. Comparison of Convenience Sampling and Purposive Sampling. Am. J. Theor. Appl. Stat. 2016, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Fielding, N.; Lee, R.; Blank, G. The SAGE Handbook of Online Research Methods; SAGE Publications, Ltd.: Thousand Oaks, CA, USA, 2008. [Google Scholar] [CrossRef]
- PORTDATA. Base de Dados Portugal Contemporâneo (Portugal Contemporary Database) [WWW Document]. 2017. Available online: http://www.pordata.pt/ (accessed on 29 March 2017).
Variable | Frequency of Responses |
---|---|
Sociodemographic characteristics | |
Gender | |
Female | 317 (56%) |
Male | 245 (44%) |
Age | |
Under 18 | 0 (0%) |
18–35 years old | 281 (50%) |
36–55 years old | 178 (32%) |
Over 55 years old | 103 (18%) |
Education | |
Lower secondary (second cycle) | 3 (1%) |
Lower secondary (third cycle) | 6 (1%) |
Higher secondary | 76 (13%) |
Postsecondary | 44 (8%) |
Highly qualified | 433 (77%) |
Household size | |
1 person | 52 (9%) |
2 persons | 119 (21%) |
3 persons | 165 (29%) |
4 persons | 161 (29%) |
Over 4 persons | 65 (12%) |
Income | |
No income | 88 (16%) |
0–500 € | 32 (6%) |
501–1000 € | 149 (27%) |
1001–1500 € | 138 (25%) |
1501–2000 € | 71 (13%) |
2001–2500 € | 36 (6%) |
Over 2500 € | 48 (9%) |
House contract | |
Owner-occupied | 434 (77%) |
Rented | 128 (23%) |
Housing expenditures (responsibility) | |
Yes | 342 (61%) |
No | 220 (39%) |
Housing type | |
T0 | 1 (0%) |
T1 | 37 (7%) |
T2 | 106 (19%) |
T3 | 208 (37%) |
T4 | 137 (24%) |
T5 | 40 (7%) |
> T5 | 33 (6%) |
User’s current satisfaction | |
Thermal comfort | |
Strongly disagree | 107 (19%) |
Disagree | 167 (30%) |
Neutral | 10 (2%) |
Agree | 186 (33%) |
Strongly agree | 92 (16%) |
Sound insulation | |
Strongly disagree | 106 (19%) |
Disagree | 170 (30%) |
Neutral | 19 (3%) |
Agree | 196 (35%) |
Strongly agree | 71 (13%) |
Surrounding green spaces | |
Strongly disagree | 83 (15%) |
Disagree | 120 (21%) |
Neutral | 24 (4%) |
Agree | 205 (36%) |
Strongly agree | 130 (23%) |
Response Variables | WTP for Green Roofs | WTP for Green Walls | |||
---|---|---|---|---|---|
Explanatory Variables | Qui-Square | Cramer’s V | Qui-Square | Cramer’s V | |
Sociodemographic characteristics | |||||
Gender | 0.610 | 0.056 | 0.181 | 0.082 | |
Age | 0.161 | 0.080 | 0.020 * | 0.097 | |
Education | 0.007 * | 0.093 | 0.017 * | 0.089 | |
Household size | 0.118 | 0.078 | 0.190 | 0.075 | |
Income | 0.000 * | 0.106 | 0.000 * | 0.112 | |
House contract | 0.408 | 0.067 | 0.530 | 0.061 | |
Housing expenditures (responsibility) | 0.015 * | 0.112 | 0.066 | 0.096 | |
Housing type | 0.309 | 0.077 | 0.540 | 0.071 | |
Residence area | 0.000 * | 0.159 | 0.066 | 0.096 | |
User’s current satisfaction | |||||
Thermal comfort | 0.210 | 0.074 | 0.488 | 0.066 | |
Sound insulation | 0.105 | 0.079 | 0.091 | 0.080 | |
Surrounding green spaces | 0.009 * | 0.092 | 0.293 | 0.071 | |
Awareness | 0.000 * | 0.162 | 0.000 * | 0.125 | |
Greened solution | |||||
Accessibility/system | 0.000 * | 0.364 | 0.027 * | 0.106 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teotónio, I.; Oliveira Cruz, C.; Matos Silva, C.; Morais, J. Investing in Sustainable Built Environments: The Willingness to Pay for Green Roofs and Green Walls. Sustainability 2020, 12, 3210. https://doi.org/10.3390/su12083210
Teotónio I, Oliveira Cruz C, Matos Silva C, Morais J. Investing in Sustainable Built Environments: The Willingness to Pay for Green Roofs and Green Walls. Sustainability. 2020; 12(8):3210. https://doi.org/10.3390/su12083210
Chicago/Turabian StyleTeotónio, Inês, Carlos Oliveira Cruz, Cristina Matos Silva, and José Morais. 2020. "Investing in Sustainable Built Environments: The Willingness to Pay for Green Roofs and Green Walls" Sustainability 12, no. 8: 3210. https://doi.org/10.3390/su12083210