Associations of Spatial Aggregation between Neighborhood Facilities and the Population of Age Groups Based on Points-of-Interest Data
Abstract
:1. Introduction
2. Methodology
2.1. Case Selection: Wuhan Metropolitan Area
2.2. The Selection of Neighborhood Facilities
2.3. Association Analysis of Neighborhood Facilities and Population
2.3.1. Geodetector
2.3.2. Regression Analysis
3. Results
3.1. Associations Identified by Geodetector
3.2. Results of Regression Analysis
4. Discussion
4.1. Associations of Facilities and Age Groups and Policy Implications
4.2. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
JHS | PRS | CH/CL | SAN | VM/FRS | GYM | BO | RTRS | BS | KIN | PHA | CS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
JHS | 0.076 | |||||||||||
PRS | 0.186 | 0.095 | ||||||||||
CH/CL | 0.377 | 0.398 | 0.157 | |||||||||
SAN | 0.135 | 0.242 | 0.487 | 0.049 | ||||||||
VM/FRS | 0.403 | 0.387 | 0.810 | 0.545 | 0.250 | |||||||
GYM | 0.274 | 0.270 | 0.628 | 0.331 | 0.655 | 0.113 | ||||||
BO | 0.323 | 0.362 | 0.698 | 0.427 | 0.745 | 0.490 | 0.132 | |||||
RTRS | 0.228 | 0.315 | 0.547 | 0.256 | 0.545 | 0.349 | 0.500 | 0.041 | ||||
BS | 0.616 | 0.609 | 0.797 | 0.583 | 0.746 | 0.713 | 0.764 | 0.615 | 0.498 | |||
KIN | 0.546 | 0.505 | 0.746 | 0.605 | 0.676 | 0.697 | 0.721 | 0.595 | 0.734 | 0.449 | ||
PHA | 0.501 | 0.495 | 0.739 | 0.603 | 0.661 | 0.689 | 0.726 | 0.627 | 0.718 | 0.630 | 0.383 | |
CS | 0.614 | 0.557 | 0.858 | 0.702 | 0.808 | 0.733 | 0.833 | 0.704 | 0.788 | 0.761 | 0.726 | 0.430 |
JHS | PRS | CH/CL | SAN | VM/FRS | GYM | BO | RTRS | BS | KIN | PHA | CS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
JHS | 0.097 | |||||||||||
PRS | 0.202 | 0.115 | ||||||||||
CH/CL | 0.339 | 0.376 | 0.171 | |||||||||
SAN | 0.157 | 0.230 | 0.432 | 0.072 | ||||||||
VM/FRS | 0.473 | 0.426 | 0.824 | 0.553 | 0.299 | |||||||
GYM | 0.298 | 0.317 | 0.641 | 0.353 | 0.691 | 0.163 | ||||||
BO | 0.324 | 0.374 | 0.651 | 0.419 | 0.778 | 0.529 | 0.171 | |||||
RTRS | 0.202 | 0.274 | 0.473 | 0.230 | 0.556 | 0.381 | 0.441 | 0.052 | ||||
BS | 0.525 | 0.531 | 0.724 | 0.510 | 0.685 | 0.687 | 0.712 | 0.554 | 0.413 | |||
KIN | 0.469 | 0.428 | 0.647 | 0.479 | 0.627 | 0.622 | 0.670 | 0.485 | 0.610 | 0.377 | ||
PHA | 0.465 | 0.454 | 0.712 | 0.518 | 0.647 | 0.684 | 0.683 | 0.528 | 0.657 | 0.540 | 0.372 | |
CS | 0.636 | 0.556 | 0.879 | 0.733 | 0.822 | 0.769 | 0.842 | 0.671 | 0.765 | 0.668 | 0.693 | 0.425 |
JHS | PRS | CH/CL | SAN | VM/FRS | GYM | BO | RTRS | BS | KIN | PHA | CS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
JHS | 0.243 | |||||||||||
PRS | 0.398 | 0.250 | ||||||||||
CH/CL | 0.517 | 0.598 | 0.327 | |||||||||
SAN | 0.336 | 0.418 | 0.627 | 0.200 | ||||||||
VM/FRS | 0.516 | 0.543 | 0.815 | 0.595 | 0.351 | |||||||
GYM | 0.416 | 0.460 | 0.711 | 0.461 | 0.684 | 0.187 | ||||||
BO | 0.466 | 0.539 | 0.783 | 0.565 | 0.776 | 0.625 | 0.278 | |||||
RTRS | 0.383 | 0.454 | 0.650 | 0.401 | 0.622 | 0.442 | 0.570 | 0.134 | ||||
BS | 0.649 | 0.639 | 0.819 | 0.639 | 0.724 | 0.701 | 0.784 | 0.624 | 0.429 | |||
KIN | 0.544 | 0.509 | 0.729 | 0.547 | 0.633 | 0.628 | 0.688 | 0.539 | 0.630 | 0.364 | ||
PHA | 0.595 | 0.610 | 0.804 | 0.641 | 0.718 | 0.719 | 0.771 | 0.670 | 0.721 | 0.607 | 0.503 | |
CS | 0.699 | 0.685 | 0.914 | 0.773 | 0.836 | 0.828 | 0.904 | 0.783 | 0.834 | 0.752 | 0.789 | 0.548 |
Appendix B
Children Population | OLS | 10% | 25% | 50% | 75% | 90% | |
---|---|---|---|---|---|---|---|
KIN | (Intercept) | 1.367 *** | -0.101 *** | -0.056 *** | 0.457 *** | 1.848 *** | 3.634 *** |
B | 0.003 *** | 0.001 *** | 0.003 *** | 0.005 *** | 0.006 *** | 0.006 *** | |
R2 | 0.346 | 0.015 | 0.123 | 0.203 | 0.228 | 0.237 | |
PHA | (Intercept) | 3.203 *** | -0.192 *** | -0.096 *** | 0.632 *** | 3.830 *** | 8.518 *** |
B | 0.007 *** | 0.002 *** | 0.006 *** | 0.010 *** | 0.014 *** | 0.014 *** | |
R2 | 0.277 | 0.021 | 0.110 | 0.199 | 0.192 | 0.187 | |
BS | (Intercept) | 5.289 *** | -0.040 *** | 1.634 *** | 4.245 *** | 7.324 *** | 10.355 *** |
B | 0.008 *** | 0.005 *** | 0.008 *** | 0.010 *** | 0.012 *** | 0.014 *** | |
R2 | 0.332 | 0.078 | 0.123 | 0.153 | 0.180 | 0.231 |
Adult Population | OLS | 10% | 25% | 50% | 75% | 90% | |
---|---|---|---|---|---|---|---|
CS | (Intercept) | 12.810 *** | -0.359 *** | -0.047 ** | 4.245 *** | 13.848 *** | 28.096 *** |
B | 0.004 *** | 0.002 *** | 0.004 *** | 0.006 *** | 0.008 *** | 0.008 *** | |
R2 | 0.298 | 0.065 | 0.152 | 0.225 | 0.234 | 0.214 | |
KIN | (Intercept) | 1.330 *** | -0.062 *** | -0.056 *** | 0.330 *** | 1.671 *** | 3.003 *** |
B | 0.000 *** | 0.000 *** | 0.000 *** | 0.001 *** | 0.001 *** | 0.001 *** | |
R2 | 0.322 | 0.014 | 0.111 | 0.208 | 0.237 | 0.248 | |
PHA | (Intercept) | 3.008 *** | -0.125 *** | -0.111 *** | 0.309 | 3.140 *** | 7.313 *** |
B | 0.001 *** | 0.000 *** | 0.001 *** | 0.002 *** | 0.002 *** | 0.002 *** | |
R2 | 0.294 | 0.020 | 0.107 | 0.224 | 0.234 | 0.233 | |
BS | (Intercept) | 5.181 *** | -0.041 *** | 1.466 *** | 3.969 *** | 6.990 *** | 10.210 *** |
B | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | 0.002 *** | 0.002 *** | |
R2 | 0.314 | 0.089 | 0.131 | 0.150 | 0.165 | 0.216 |
Elderly Population | OLS | 10% | 25% | 50% | 75% | 90% | |
---|---|---|---|---|---|---|---|
CH/CL | (Intercept) | 17.426 *** | -0.038 | 0.785 *** | 7.000 *** | 21.430 *** | 40.376 *** |
B | 0.031 *** | 0.013 *** | 0.031 *** | 0.049 *** | 0.060 *** | 0.061 *** | |
R2 | 0.248 | 0.071 | 0.130 | 0.202 | 0.196 | 0.173 | |
CS | (Intercept) | 11.250 *** | -0.759 *** | -0.060 * | 4.367 *** | 14.227 *** | 24.413 *** |
B | 0.035 *** | 0.019 *** | 0.030 *** | 0.045 *** | 0.057 *** | 0.072 *** | |
R2 | 0.409 | 0.093 | 0.203 | 0.266 | 0.280 | 0.289 | |
KIN | (Intercept) | 1.318 *** | -0.120 *** | -0.043 *** | 0.416 *** | 1.898 *** | 3.899 *** |
B | 0.004 *** | 0.001 *** | 0.003 *** | 0.005 *** | 0.005 *** | 0.005 *** | |
R2 | 0.306 | 0.023 | 0.126 | 0.197 | 0.189 | 0.166 | |
PHA | (Intercept) | 2.594 *** | -0.291 *** | -0.144 *** | 0.429 ** | 3.300 *** | 7.441 *** |
B | 0.009 *** | 0.004 *** | 0.008 *** | 0.012 *** | 0.015 *** | 0.016 *** | |
R2 | 0.403 | 0.040 | 0.160 | 0.269 | 0.266 | 0.267 | |
BS | (Intercept) | 5.096 *** | -0.059 *** | 1.377 *** | 4.049 *** | 7.557 *** | 10.755 *** |
B | 0.009 *** | 0.007 *** | 0.008 *** | 0.009 *** | 0.010 *** | 0.013 *** | |
R2 | 0.314 | 0.125 | 0.158 | 0.147 | 0.137 | 0.152 | |
VM/FRS | (Intercept) | 8.100 *** | -0.400 *** | -0.015 | 4.029 *** | 11.308 *** | 19.468 *** |
B | 0.015 *** | 0.009 *** | 0.015 *** | 0.021 *** | 0.024 *** | 0.026 *** | |
R2 | 0.264 | 0.066 | 0.160 | 0.187 | 0.175 | 0.161 |
References
- Hall, P. Cities of Tomorrow: An Intellectual History of Urban Planning and Design since 1880; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Jarvis, H. Saving Space, Sharing Time: Integrated Infrastructures of Daily Life in Cohousing. Environ. Plan. A Econ. Space 2011, 43, 560–577. [Google Scholar] [CrossRef] [Green Version]
- Van Diepen, A.M.L.; Musterd, S. Lifestyles and the City: Connecting Daily Life to Urbanity. Neth. J. Hous. Environ. Res. 2009, 24, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Chai, Y.; Zhang, Y. Overseas Life Circle Planning and Practice. Planners 2014, 30, 89–95. [Google Scholar]
- Normile, D. China Rethinks Cities. Science 2016, 352, 916–918. [Google Scholar] [CrossRef]
- Chai, Y.; Li, C. Urban Life Cycle Planning: From Research to Practice. City Plan. Rev. 2019, 43, 9–16. [Google Scholar]
- Creutzig, F.; Agoston, P.; Minx, J.C.; Canadell, J.; Andrew, R.M.; Le Quéré, C.; Peters, G.P.; Sharifi, A.; Yamagata, Y.; Dhakal, S. Urban Infrastructure Choices Structure Climate Solutions. Nat. Clim. Chang. 2016, 6, 1054–1056. [Google Scholar] [CrossRef]
- Frank, L.D.; Mayaud, J.; Hong, A.; Fisher, P.; Kershaw, S. Unmet Demand for Walkable Transit-Oriented Neighborhoods in a Midsized Canadian Community: Market and Planning Implications. J. Plan. Educ. Res. 2019. [Google Scholar] [CrossRef]
- Kim, J.; Larsen, K. Can New Urbanism Infill Development Contribute to Social Sustainability? The Case of Orlando, Florida. Urban Stud. 2016, 54, 3843–3862. [Google Scholar] [CrossRef]
- Mehaffy, M.W.; Porta, S.; Romice, O. The “neighborhood unit” on Trial: A Case Study in the Impacts of Urban Morphology. J. Urban. Int. Res. Placemaking Urban Sustain. 2014, 8, 199–217. [Google Scholar] [CrossRef]
- Reece, J. In Pursuit of a Twenty-First Century Just City. J. Plan. Lit. 2018, 33, 299–309. [Google Scholar] [CrossRef]
- Sharifi, A. From Garden City to Eco-Urbanism: The Quest for Sustainable Neighborhood Development. Sustain. Cities Soc. 2016, 20, 1–16. [Google Scholar] [CrossRef]
- Skalicky, V.; Čerpes, I. Comprehensive Assessment Methodology for Liveable Residential Environment. Cities 2019, 94, 44–54. [Google Scholar] [CrossRef]
- Trudeau, D. Integrating Social Equity in Sustainable Development Practice: Institutional Commitments and Patient Capital. Sustain. Cities Soc. 2018, 41, 601–610. [Google Scholar] [CrossRef]
- Weng, M.; Ding, N.; Li, J.; Jin, X.; Xiao, H.; He, Z.; Su, S. The 15-Minute Walkable Neighborhoods: Measurement, Social Inequalities and Implications for Building Healthy Communities in Urban China. J. Transp. Heal. 2019, 13, 259–273. [Google Scholar] [CrossRef]
- Yang, Z.; Hao, P.; Wu, D. Children’s Education or parents’ Employment: How Do People Choose Their Place of Residence in Beijing. Cities 2019, 93, 197–205. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Rostami, F.; Alizadeh, B. Is Inequality in the Distribution of Urban Facilities Inequitable? Exploring a Method for Identifying Spatial Inequity in an Iranian City. Cities 2016, 52, 159–172. [Google Scholar] [CrossRef]
- Graham, B. Population Characteristics and Geographic Coverage of Primary Care Facilities. BMC Heal. Serv. Res. 2018, 18, 398. [Google Scholar] [CrossRef] [Green Version]
- Dastjerdi, H.R.; Matthews, S.A.; Ardalan, A. Measuring Spatial Accessibility to Urban Facilities and Services in Tehran. Spat. Demogr. 2016, 6, 17–34. [Google Scholar] [CrossRef]
- Boisjoly, G.; Wasfi, R.; El-Geneidy, A. How Much Is Enough? Assessing the Influence of Neighborhood Walkability on Undertaking 10-Minutes Walks. J. Transp. Land Use 2018, 11, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; LaFrombois, M.E.H. Planning for Growth in Depopulating Cities: An Analysis of Population Projections and Population Change in Depopulating and Populating US Cities. Cities 2019, 90, 237–248. [Google Scholar] [CrossRef]
- Tsunekawa, K.; Saito, K. Developments in Urban Planning by Public Facilities Management Based on Regional Characteristics. In Towards the Implementation of the New Urban Agenda; Springer Science and Business Media LLC: Berlin, Germany, 2017; pp. 247–258. [Google Scholar]
- Lang, W.; Chen, T.; Chan, E.H.; Yung, E.; Lee, T.C. Understanding Livable Dense Urban Form for Shaping the Landscape of Community Facilities in Hong Kong Using Fine-Scale Measurements. Cities 2019, 84, 34–45. [Google Scholar] [CrossRef]
- Xu, J. From Walking Buffers to Active Places: An Activity-Based Approach to Measure Human-Scale Urban Form. Landsc. Urban Plan. 2019, 191, 103452. [Google Scholar] [CrossRef]
- Liang, H. Homo Urbanicus. City Plan. Rev. 2012, 36, 87–96. [Google Scholar]
- Fainstein, S.S. Planning Theory and the City. J. Plan. Educ. Res. 2005, 25, 121–130. [Google Scholar] [CrossRef]
- Fainstein, S.S. The Just City. Int. J. Urban Sci. 2013, 18, 1–18. [Google Scholar]
- Zhan, D.; Zhang, W.; Chen, L.; Yu, X.; Dang, Y. Research Progress and Its Enlightenment of Urban Public Service Facilities Allocation. Prog. Geogr. 2019, 38, 506–519. [Google Scholar]
- Bond, S.; Thompson-Fawcett, M. Public Participation and New Urbanism: A Conflicting Agenda? Plan. Theory Pr. 2007, 8, 449–472. [Google Scholar] [CrossRef] [Green Version]
- Eizenberg, E.; Jabareen, Y. Social Sustainability: A New Conceptual Framework. Sustainability 2017, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Stafford, L.; Baldwin, C. Planning Walkable Neighborhoods: Are We Overlooking Diversity in Abilities and ages? J. Plan. Lit. 2018, 33, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Buffel, T.; Phillipson, C. Can Global Cities Be ‘age-Friendly cities’? Urban Development and Ageing Populations. Cities 2016, 55, 94–100. [Google Scholar] [CrossRef]
- Vine, D.; Buys, L.; Aird, R. The Use of Amenities in High Density Neighbourhoods by Older Urban Australian Residents. Landsc. Urban Plan. 2012, 107, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Koh, P.; Leow, B.; Wong, Y.D. Mobility of the Elderly in Densely Populated Neighbourhoods in Singapore. Sustain. Cities Soc. 2015, 14, 126–132. [Google Scholar] [CrossRef]
- Michael, Y.L.; Green, M.K.; Farquhar, S.A. Neighborhood Design and Active Aging. Heal. Place 2005, 12, 734–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegmann, J. Is There Room for Children in Booming Western Cities? Empirical Evidence from Austin, Denver, and Portland. Cities 2020, 96, 102403. [Google Scholar] [CrossRef]
- Özdemir, A. An Approach on children’s Experiences of Participatory Planning. Cities 2019, 93, 206–214. [Google Scholar] [CrossRef]
- Hu, H.; Xu, J.; Zhang, X. The Role of Housing Wealth, Financial Wealth, and Social Welfare in Elderly households’ Consumption Behaviors in China. Cities 2020, 96, 102437. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, J.; Zhang, X.; Skitmore, M. Urban Growth Dilemmas and Solutions in China: Looking Forward to 2030. Habitat Int. 2016, 56, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Wang, Z.; Li, Z.; Tang, Z. An Assessment of Urban Park Access in Shanghai – Implications for the Social Equity in Urban China. Landsc. Urban Plan. 2017, 157, 383–393. [Google Scholar] [CrossRef]
- Shekhar, H.; Schmidt, A.J.; Wehling, H.-W. Exploring Wellbeing in Human Settlements - A Spatial Planning Perspective. Habitat Int. 2019, 87, 66–74. [Google Scholar] [CrossRef]
- Jiao, L.; Li, Z.; Xu, G.; Zhang, B.; Dong, T.; Gu, Y. The Characteristics and Patterns of Spatially Aggregated Elements in Urban Areas of Wuhan. Acta Geogr. Sin. 2017, 72, 1432–1443. [Google Scholar]
- Sun, H.; Feng, Z.; Lobsang, T.; Li, Z. Spatial Characteristics of Urban Life Resilience from the Perspective of Supply and Demand: A Case Study of Nanjing, China. Habitat Int. 2019, 88, 101983. [Google Scholar] [CrossRef]
- Dong, J.; Ma, C.; Cheng, W.; Xin, L. Notice of Violation of IEEE Publication Principles: Data Augmented Design: Urban Planning and Design in the New Data Environment. In 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA); Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017; pp. 508–512. [Google Scholar]
- Goodchild, M.F.; Janelle, D.G. The City Around the Clock: Space—Time Patterns of Urban Ecological Structure. Environ. Plan. A Econ. Space 1984, 16, 807–820. [Google Scholar] [CrossRef]
- Hao, J.; Zhu, J.; Zhong, R. The Rise of Big Data on Urban Studies and Planning Practices in China: Review and Open Research Issues. J. Urban Manag. 2015, 4, 92–124. [Google Scholar] [CrossRef] [Green Version]
- Hashem, I.A.T.; Chang, V.; Anuar, N.B.; Adewole, K.; Yaqoob, I.; Gani, A.; Ahmed, E.; Chiroma, H. The Role of Big Data in Smart City. Int. J. Inf. Manag. 2016, 36, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xu, C. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Zeng, C.; Song, Y.; He, Q.; Shen, F. Spatially Explicit Assessment on Urban Vitality: Case Studies in Chicago and Wuhan. Sustain. Cities Soc. 2018, 40, 296–306. [Google Scholar] [CrossRef]
- Chen, T.; Hui, E.C.; Wu, J.; Lang, W.; Li, X. Identifying Urban Spatial Structure and Urban Vibrancy in Highly Dense Cities Using Georeferenced Social Media Data. Habitat Int. 2019, 89, 102005. [Google Scholar] [CrossRef]
- Long, Y.; Zhai, W.; Shen, Y.; Ye, X. Understanding Uneven Urban Expansion With Natural Cities Using Open Data. Landsc. Urban Plan. 2018, 177, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Liu, L.; Tong, D.; Gong, Y.; Liu, Y. Evaluating the Spatial Accessibility and Distribution Balance of Multi-Level Medical Service Facilities. Int. J. Environ. Res. Public Heal. 2019, 16, 1150. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zheng, J.; Zhang, Y.; Zeqin, L.; Jie, Z.; Yukun, Z. Study on the Layout of 15-Minute Community-Life Circle in Third-Tier Cities Based on POI: Baoding City of Hebei Province. Engineering 2019, 11, 592–603. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Xu, G.; Li, Y. Evaluating Urban Public Facilities of Shenzhen by Application of Open Source Data. Geo-spatial Inf. Sci. 2016, 19, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Lan, F.; Wu, Q.; Zhou, T.; Da, H. Spatial Effects of Public Service Facilities Accessibility on Housing Prices: A Case Study of Xi’an, China. Sustainability 2018, 10, 4503. [Google Scholar] [CrossRef] [Green Version]
- Koenker, R.; Hallock, K.F. Quantile Regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Xia, B.; Skitmore, M.; Zuo, J.; Buys, L.; Skitmore, R. Review of Community Facilities in Australian Retirement Villages: A Content Analysis. Australas. J. Ageing 2014, 34, 144–148. [Google Scholar] [CrossRef]
- Zhang, F.; Li, D.; Ahrentzen, S.; Zhang, J. Assessing Spatial Disparities of Accessibility to Community-Based Service Resources for Chinese Older Adults Based on Travel Behavior: A City-Wide Study of Nanjing, China. Habitat Int. 2019, 88, 101984. [Google Scholar] [CrossRef]
Category | Facility Name | Neighborhood Range | Service Radius |
---|---|---|---|
Public management and public services | Junior high school (JHS) | 15-min pedestrian-scale/10-min pedestrian-scale | Not more than 1000 m |
Primary school (PRS) | 10-min pedestrian-scale | Not more than 500 m | |
Community hospital or clinic (CH/CL) | 10-min pedestrian-scale | Not more than 1000 m | |
Sanatorium (SAN) | 15-min pedestrian-scale | Not more than 1000 m | |
Commercial service facilities | Vegetable market or fresh supermarket (VM/FRS) | 10-min pedestrian-scale | Not more than 500 m |
Gymnasium (GYM) | 15-min pedestrian-scale/10-min pedestrian-scale | Not more than 1000 m | |
Bank outlet (BO) | 15-min pedestrian-scale/10-min pedestrian-scale | Not more than 1000 m | |
Transport stations | Rail transit station (RTRS) | 15-min pedestrian-scale/10-min pedestrian-scale | Not more than 800 m |
Bus station (BS) | 15-min pedestrian-scale/10-min pedestrian-scale | Not more than 500 m | |
5-min neighborhood | Kindergarten (KIN) | 5-min pedestrian-scale | Not more than 300 m |
Pharmacy (PHA) | 5-min pedestrian-scale | Not more than 300 m | |
Convenience store (CS) | Neighborhood block | Not more than 300 m |
JHS | PRS | CH/CL | SAN | VM/FRS | GYM | BO | RTRS | BS | KIN | PHA | CS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
JHS | 0.115 | |||||||||||
PRS | 0.233 | 0.135 | ||||||||||
CH/CL | 0.372 | 0.418 | 0.195 | |||||||||
SAN | 0.179 | 0.264 | 0.471 | 0.085 | ||||||||
VM/FRS | 0.485 | 0.450 | 0.828 | 0.574 | 0.322 | |||||||
GYM | 0.320 | 0.340 | 0.653 | 0.369 | 0.696 | 0.171 | ||||||
BO | 0.351 | 0.405 | 0.679 | 0.447 | 0.781 | 0.542 | 0.186 | |||||
RTRS | 0.231 | 0.313 | 0.514 | 0.257 | 0.584 | 0.394 | 0.474 | 0.061 | ||||
BUS | 0.572 | 0.580 | 0.759 | 0.558 | 0.718 | 0.715 | 0.744 | 0.595 | 0.458 | |||
KIN | 0.513 | 0.471 | 0.686 | 0.527 | 0.658 | 0.656 | 0.698 | 0.533 | 0.653 | 0.417 | ||
PHA | 0.507 | 0.499 | 0.737 | 0.562 | 0.675 | 0.712 | 0.715 | 0.582 | 0.696 | 0.584 | 0.421 | |
CS | 0.660 | 0.592 | 0.889 | 0.752 | 0.829 | 0.784 | 0.858 | 0.709 | 0.791 | 0.708 | 0.724 | 0.466 |
Total Population | Children Population | Adult Population | Elderly Population | JHS | PRS | CH/CL | SAN | VM/FRS | GYM | BO | RTRS | BS | KIN | PHA | CS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total population | 1 | |||||||||||||||
Children population | 0.830 ** | 1 | ||||||||||||||
Adult population | 0.992 ** | 0.770 ** | 1 | |||||||||||||
Elderly population | 0.780 ** | 0.720 ** | 0.714 ** | 1 | ||||||||||||
JHS | 0.314 ** | 0.237 ** | 0.286 ** | 0.474 ** | 1 | |||||||||||
PRS | 0.354 ** | 0.287 ** | 0.326 ** | 0.490 ** | 0.718 ** | 1 | ||||||||||
CH/CL | 0.363 ** | 0.291 ** | 0.334 ** | 0.505 ** | 0.781 ** | 0.706 ** | 1 | |||||||||
SAN | 0.224 ** | 0.136 ** | 0.203 ** | 0.384 ** | 0.697 ** | 0.600 ** | 0.810 ** | 1 | ||||||||
VM/FRS | 0.510 ** | 0.428 ** | 0.490 ** | 0.521 ** | 0.644 ** | 0.589 ** | 0.789 ** | 0.639 ** | 1 | |||||||
GYM | 0.281 ** | 0.200 ** | 0.268 ** | 0.342 ** | 0.623 ** | 0.469 ** | 0.731 ** | 0.641 ** | 0.660 ** | 1 | ||||||
BO | 0.310 ** | 0.220 ** | 0.288 ** | 0.437 ** | 0.777 ** | 0.652 ** | 0.852 ** | 0.720 ** | 0.697 ** | 0.885 ** | 1 | |||||
RTRS | 0.187 ** | 0.130 ** | 0.167 ** | 0.321 ** | 0.597 ** | 0.492 ** | 0.647 ** | 0.572 ** | 0.484 ** | 0.621 ** | 0.703 ** | 1 | ||||
BS | 0.592 ** | 0.578 ** | 0.563 ** | 0.563 ** | 0.397 ** | 0.417 ** | 0.486 ** | 0.304 ** | 0.589 ** | 0.366 ** | 0.413 ** | 0.330 ** | 1 | |||
KIN | 0.603 ** | 0.593 ** | 0.574 ** | 0.560 ** | 0.438 ** | 0.504 ** | 0.581 ** | 0.400 ** | 0.672 ** | 0.409 ** | 0.471 ** | 0.298 ** | 0.598 ** | 1 | ||
PHA | 0.583 ** | 0.533 ** | 0.549 ** | 0.640 ** | 0.624 ** | 0.614 ** | 0.747 ** | 0.587 ** | 0.813 ** | 0.633 ** | 0.669 ** | 0.460 ** | 0.604 ** | 0.738 ** | 1 | |
CS | 0.580 ** | 0.475 ** | 0.552 ** | 0.644 ** | 0.693 ** | 0.672 ** | 0.800 ** | 0.708 ** | 0.823 ** | 0.642 ** | 0.721 ** | 0.525 ** | 0.608 ** | 0.713 ** | 0.872 ** | 1 |
Total Population | OLS | 10% | 25% | 50% | 75% | 90% | |
---|---|---|---|---|---|---|---|
CS | (Intercept) | 12.101 *** | -0.477 *** | -0.072 ** | 3.976 *** | 13.272 *** | 26.813 *** |
B | 0.003 *** | 0.001 *** | 0.003 *** | 0.005 *** | 0.006 *** | 0.007 *** | |
R2 | 0.329 | 0.074 | 0.169 | 0.241 | 0.248 | 0.225 | |
KIN | (Intercept) | 1.241 *** | -0.097 *** | -0.063 *** | 0.268 *** | 1.566 *** | 2.944 *** |
B | 0.000 *** | 0.000 *** | 0.000 *** | 0.001 *** | 0.001 *** | 0.001 *** | |
R2 | 0.356 | 0.018 | 0.128 | 0.225 | 0.250 | 0.257 | |
PHA | (Intercept) | 2.793 *** | -0.154 *** | -0.131 *** | 0.108 | 2.952 *** | 7.060 *** |
B | 0.001 *** | 0.000 *** | 0.001 *** | 0.001 *** | 0.002 *** | 0.002 *** | |
R2 | 0.333 | 0.025 | 0.126 | 0.246 | 0.252 | 0.247 | |
BS | (Intercept) | 4.961 *** | -0.050 *** | 1.308 *** | 3.889 *** | 6.877 *** | 10.088 *** |
B | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | 0.002 *** | |
R2 | 0.349 | 0.104 | 0.151 | 0.166 | 0.178 | 0.223 | |
VM/FRS | (Intercept) | 8.158 *** | -0.404 *** | -0.032 ** | 3.779 *** | 10.192 *** | 18.707 *** |
B | 0.001 *** | 0.001 *** | 0.001 *** | 0.002 *** | 0.003 *** | 0.003 *** | |
R2 | 0.253 | 0.079 | 0.157 | 0.180 | 0.174 | 0.168 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Zheng, Z.; Zhang, Q.; Li, M.; Liu, X. Associations of Spatial Aggregation between Neighborhood Facilities and the Population of Age Groups Based on Points-of-Interest Data. Sustainability 2020, 12, 1692. https://doi.org/10.3390/su12041692
Jia Y, Zheng Z, Zhang Q, Li M, Liu X. Associations of Spatial Aggregation between Neighborhood Facilities and the Population of Age Groups Based on Points-of-Interest Data. Sustainability. 2020; 12(4):1692. https://doi.org/10.3390/su12041692
Chicago/Turabian StyleJia, Yuqiu, Zhenhua Zheng, Qi Zhang, Min Li, and Xiaofang Liu. 2020. "Associations of Spatial Aggregation between Neighborhood Facilities and the Population of Age Groups Based on Points-of-Interest Data" Sustainability 12, no. 4: 1692. https://doi.org/10.3390/su12041692