Emotional Status and Productivity: Evidence from the Special Economic Zone in Laos
Abstract
:1. Introduction
2. Data and Methodology
2.1. Sample Selection, Variable Definitions, and Measurement Issues
2.2. Data
2.3. Method
3. Empirical Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mathis, R.L.; Jackson, J.H. Human Resource Management, 13th ed.; South–Western Cengage Learning: Ohio, OH, USA, 2010. [Google Scholar]
- Ferreira, A.; Du Plessis, T. Effect of online social networking on employee productivity. S. Afr. J. Inf. Manag. 2009, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Baily, M.N.; Farrell, D.; Greenberg, E.; Henrich, J.D.; Jinjo, N.; Jolles, M.; Remes, J. Increasing Global Competition and Labor Productivity: Lessons from the US Automotive Industry; McKinsey Global Institute: San Francisco, CA, USA, 2005. [Google Scholar]
- Hill, C.; Jones, G.; Schilling, M. Strategic Management Theory: An Integrated Approach; Cengage Learning: Boston, MA, USA, 2014. [Google Scholar]
- Sels, L.; De Winne, S.; Delmotte, J.; Maes, J.; Faems, D.; Forrier, A. Linking HRM and small business performance: An examination of the impact of HRM intensity on the productivity and financial performance of small businesses. Small Bus. Econ. 2006, 26, 83–101. [Google Scholar] [CrossRef]
- Oliner, S.D.; Sichel, D.E. The Resurgence of Growth in the Late 1990s: Is Information Technology the Story? J. Econ. Perspect 2000, 14, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Relich, M. The impact of ICT on labor productivity in the EU. Inform. Technol. Dev. 2017, 23, 706–722. [Google Scholar] [CrossRef]
- Sharma, M.S.; Sharma, M.V. Employee engagement to enhance productivity in current scenario. Int. J. Comm. Bus. Manag. 2014, 3, 595–604. [Google Scholar]
- Anik, L.; Aknin, L.B.; Norton, M.I.; Dunn, E.W.; Quoidbach, J. Prosocial bonuses increase employee satisfaction and team performance. PLoS ONE 2013, 8, e75509. [Google Scholar] [CrossRef]
- Cropanzano, R.; Randall, C.A. Using social exchange theory to distinguish procedural from interactional justice. In Proceedings of the 14th Annual Conference of the Society for Industrial and Organizational Psychology, Atlanta, GA, USA, 30 April–2 May 1993. [Google Scholar]
- Luthans, F.; Norman, S.M.; Avolio, B.J.; Avey, J.B. The mediating role of psychological capital in the supportive organizational climate–employee performance relationship. J. Org. Behav. 2008, 29, 219–238. [Google Scholar] [CrossRef] [Green Version]
- Valletta, R.G. Declining job security. J. Labor. Econ. 1999, 17, S170–S197. [Google Scholar] [CrossRef] [Green Version]
- Anwar, S.; Aslam, M.; Tariq, M.R. Temporary job and its impact on employee performance. Glob. J. Manag. Bus. Res. 2011, 11, 23–28. [Google Scholar]
- Holzer, H.J. The determinants of employee productivity and earnings. Ind. Rel. 1990, 29, 403–422. [Google Scholar] [CrossRef]
- Basu, S.; Fernald, J.G.; Shapiro, M.D. Productivity Growth in the 1990s: Technology, Utilization, or Adjustment? NBER Working Paper No. 8359; National Bureau of Economic Research: Cambridge, MA, USA, 2001. [Google Scholar]
- Hempell, T. Computers and Productivity; Physica–Verlag: Heidelberg, Germany, 2006. [Google Scholar]
- Productivity Commission of Australia. ICT Use and Productivity: A Synthesis from Studies of Australian Firms; Productivity Commission Working Paper; Productivity Commission: Canberra, Australia, 2004.
- Gavin, W.T. Productivity and Technology. National Economic Trends; The Federal Reserve Bank of St. Louis: St. Louis, MI, USA, 1997. [Google Scholar]
- Skirbekk, V. Age and Individual Productivity: A Literature Survey. In Vienna Yearbook of Population Research; Feichtinger, G., Ed.; Austrian Academy of Sciences Press: Vienna, Austria, 2003; pp. 133–153. [Google Scholar]
- Dostie, B. Wages, Productivity and Aging. De. Econ. 2011, 159, 139–158. [Google Scholar] [CrossRef]
- Lallemand, T.; Rycx, F. Are older workers harmful for firm productivity? De. Econ. 2009, 157, 273–292. [Google Scholar] [CrossRef]
- Garibaldi, P.; Oliveira Martins, J.; van Ours, J.C. Health, Longevity and Productivity; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Aubert, P.; Crépon, B. Age, Wage and Productivity: Firm–Level Evidence; INSEE: Paris, France, 2006. [Google Scholar]
- Göbel, C.; Zwick, T. Age and Productivity—Evidence from Linked Employer Employee Data; Discuss. Pap. No. 09–020; ent. Eur. Econ. Res. (Zew): Mannheim, Germany, 2009. [Google Scholar]
- Börsch–Supan, A.; Weiss, M. Productivity and Age: Evidence from Work Teams at the Assembly Line. J. Econ. Age 2016, 7, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Calvo–Sotomayor, I.; Laka, J.P.; Aguado, R. Workforce ageing and labour productivity in Europe. Sustainability 2019, 11, 5851. [Google Scholar] [CrossRef] [Green Version]
- Mahlberg, B.; Freund, I.; Cuaresma, J.C.; Prskawetz, A. Aging, productivity and wages in Austria. Labour. Econ. 2013, 22, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Bloom, D.E.; Sousa–Poza, A. Ageing and Productivity; FZID Discussion Paper 63–2012; Universität Hohenheim: Stuttgart, Germany, 2013. [Google Scholar]
- Wu, R.; Cheng, X. Gender equality in the workplace: The effect of gender equality on productivity growth among the Chilean manufacturers. J. Dev. Areas 2016, 50, 257–274. [Google Scholar] [CrossRef]
- Jones, P. Are educated workers really more productive? J. Dev. Econ. 2001, 64, 57–79. [Google Scholar] [CrossRef]
- Belorgey, N.; Lecat, R.; Maury, T.P. Determinants of productivity per employee: An empirical estimation using panel data. Econ. Lett. 2006, 91, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Saxena, A. Workforce diversity: A key to improve productivity. Procedia Econ. Fin. 2014, 11, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Rasool, S.F.; Maqbool, R.; Samma, M.; Zhao, Y.; Anjum, A. Positioning depression as a critical factor in creating a toxic workplace environment for diminishing worker productivity. Sustainability 2019, 11, 2589. [Google Scholar] [CrossRef] [Green Version]
- Boles, M.; Pelletier, B.; Lynch, W. The relationship between health risks and work productivity. J. Occup. Environ. Med. 2004, 46, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Bubonya, M.; Cobb–Clark, D.A.; Wooden, M. Mental health and productivity at work: Does what you do matter? Labour. Econ. 2017, 46, 150–165. [Google Scholar] [CrossRef] [Green Version]
- Holden, L.; Scuffham, P.A.; Hilton, M.F.; Ware, R.S.; Vecchio, N.; Whiteford, H.A. Which health conditions impact on productivity in working Australians. J. Occup. Environ. Med. 2011, 53, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Saarni, C. Development of Emotional Competence; Guilford Press: New York, NY, USA, 1999. [Google Scholar]
- Yuda, E.; Ogasawara, H.; Yoshida, Y.; Hayano, J. Comparison of emotional impacts of interaction with remote controlled plush media and those with video call applications. In Proceedings of the IEEE 6th Global Conference on Consumer Electronics (GCCE 2017), Nagoya, Japan, 24–27 October 2017. [Google Scholar]
- DiMaria, C.H.; Peroni, C.; Sarracino, F. Happiness matters: Productivity gains from subjective well–being. J. Happiness Stud. 2019, 1–22. [Google Scholar] [CrossRef]
- Frey, B.S. Consequences of happiness. In Economics of Happiness; Springer Briefs in Economics; Springer: Cham, Switzerland, 2018; pp. 21–23. [Google Scholar] [CrossRef]
- Tenney, E.R.; Poole, J.M.; Diener, E. Does positivity enhance work performance? Why, when, and what we don’t know. Res. Organ. Behav. 2016, 36, 27–46. [Google Scholar] [CrossRef]
- Neumann, W.P.; Dul, J. Human factors: Spanning the gap between OM and HRM. Int. J. Operat. Prod. Manag. 2010, 30, 923–950. [Google Scholar] [CrossRef]
- Ødegaard, F.; Roos, P. Measuring the contribution of workers’ health and psychosocial work–environment on production efficiency. Prod. Operat. Manag. 2014, 23, 2191–2208. [Google Scholar] [CrossRef]
- Gubler, T.; Larkin, I.; Pierce, L. Doing well by making well: The impact of corporate wellness programs on employee productivity. Manag. Sci. 2018, 64, 4967–4987. [Google Scholar] [CrossRef] [Green Version]
- Ton, Z. The Good Jobs Strategy: How the Smartest Companies Invest. In Employees to Lower Costs and Boost Profits; Houghton Mifflin Harcourt: New York, NY, USA, 2014. [Google Scholar]
- Hayano, J.; Tanabiki, T.; Iwata, S.; Abe, K.; Yuda, E. Estimation of emotions by wearable biometric sensors under daily activities. In Proceedings of the IEEE 7th Global Conference on Consumer Electronics (GCCE), Nara, Japan, 9–12 October 2018. [Google Scholar]
- Davis, J. Two Awesome Hours: Science–Based Strategies to Harness your Best Time and Get your Most Important Work Done; Harper One: New York, NY, USA, 2015. [Google Scholar]
- Yang, J.S.; Hung, H.V. Happy workers value effort, sad workers value reward. Int. J. Hum. Resour. Manag. 2017, 28, 1591–1624. [Google Scholar] [CrossRef]
- Oswald, A.J.; Proto, E.; Sgroi, D. Happiness and productivity. J. Labor Econ. 2015, 33, 789–822. [Google Scholar] [CrossRef] [Green Version]
- Russell, J. A circumplex model of affect. J. Pers. Soc. Psych. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Rubin, D.C.; Talerico, J.M. A comparison of dimensional models of emotion. Memory 2009, 17, 802–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.H.; Junbeom, K.; Sang, K.; Min, J.K.; Yeon, H.R.; Ji–Eun, P. Is heart rate variability (HRV) an adequate tool for evaluating human emotions? A focus on the use of the International Affective Picture System (IAPS). Psychiatry Res. 2017, 251, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Valenza, G.; Antonio, L.; Enzo, P.S. The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Trans. Affect. Comput. 2012, 3, 237–249. [Google Scholar] [CrossRef]
- Lane, R.D.; Kateri, M.; Eric, M.R.; Kewei, C.; Geoffrey, L.A.; Julian, F.T. Neural correlates of heart rate variability during emotion. NeuroImage 2009, 44, 213–222. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Bates, P. Measuring health–related productivity loss. Popul. Health Manag. 2011, 14, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, B.; Boles, M.; Lynch, W. Change in health risks and work productivity over time. J. Occup. Environ. Med. 2004, 46, 746–754. [Google Scholar] [CrossRef]
- Bellet, C.S.; De Neve, J.-E.; Ward, G. Does Employee Happiness Have an Impact on Productivity; CEP Discussion Papers dp1655; Centre for Economic Performance, London School of Economics and Political Science: London, UK, 2019. [Google Scholar]
Variables | Definition |
---|---|
Output | Total finished toys painted in a day, excluding overtime |
Log of output | Log of total finished toys painted in a day, excluding overtime |
Happy emotion | Percentage of working hours in which workers remain in a happy state |
Angry emotion | Percentage of working hours in which workers remain in an angry state |
Relaxed emotion | Percentage of working hours in which workers remain in a relaxed state |
Sad emotion | Percentage of working hours in which workers remain in a sad state |
Neutral emotion | Percentage of working hours in which workers do not show any particular emotion |
Conversation | Percentage of working hours that workers spend in conversation |
Heart rate | Average heart rate per minute during working hours |
Sex | Dummy variable: 1 = female and 0 = male |
Age | Age of workers in years |
Experience | Work experience in painting plastic toys (in months) |
Schooling | Years of education |
Accommodation | Dummy variable: 1 = living at company’s accommodation, 0 otherwise |
Commuting time | Commuting time from home to company (minutes) |
Variable | Observations | Mean (M) | Standard Deviation (SD) | Min | Max | |
---|---|---|---|---|---|---|
Output | Overall | 44 | 1789.55 | 729.73 | 650.00 | 3490.00 |
Day 1 | 15 | 1107.33 | 423.40 | 650.00 | 1960.00 | |
Day 2 | 14 | 2165.71 | 615.24 | 1400.00 | 3490.00 | |
Day 3 | 15 | 2120.67 | 589.21 | 1340.00 | 3220.00 | |
Log of output | Overall | 44 | 7.40 | 0.45 | 6.48 | 8.16 |
Day 1 | 15 | 6.94 | 0.28 | 7.24 | 8.16 | |
Day 2 | 14 | 7.64 | 0.30 | 7.29 | 8.36 | |
Day 3 | 15 | 7.62 | 0.28 | 7.20 | 8.08 | |
Happy | Overall | 45 | 0.09 | 0.10 | 0.00 | 0.54 |
Day 1 | 15 | 0.04 | 0.03 | 0.00 | 0.13 | |
Day 2 | 15 | 0.11 | 0.13 | 0.00 | 0.54 | |
Day 3 | 15 | 0.12 | 0.08 | 0.01 | 0.31 | |
Angry | Overall | 45 | 0.06 | 0.05 | 0.00 | 0.24 |
Day 1 | 15 | 0.03 | 0.02 | 0.00 | 0.07 | |
Day 2 | 15 | 0.07 | 0.06 | 0.01 | 0.24 | |
Day 3 | 15 | 0.07 | 0.06 | 0.00 | 0.17 | |
Relaxed | Overall | 45 | 0.01 | 0.01 | 0.00 | 0.08 |
Day 1 | 15 | 0.00 | 0.00 | 0.00 | 0.01 | |
Day 2 | 15 | 0.01 | 0.01 | 0.00 | 0.04 | |
Day 3 | 15 | 0.01 | 0.02 | 0.00 | 0.08 | |
Sad | Overall | 45 | 0.00 | 0.00 | 0.00 | 0.01 |
Day 1 | 15 | 0.00 | 0.00 | 0.00 | 0.00 | |
Day 2 | 15 | 0.00 | 0.00 | 0.00 | 0.01 | |
Day 3 | 15 | 0.00 | 0.00 | 0.00 | 0.01 | |
Neutral emotion | Overall | 45 | 0.85 | 0.14 | 0.19 | 1.00 |
Day 1 | 15 | 0.93 | 0.05 | 0.81 | 1.00 | |
Day 2 | 15 | 0.81 | 0.19 | 0.19 | 0.99 | |
Day 3 | 15 | 0.80 | 0.12 | 0.57 | 0.99 | |
Conversation | Overall | 45 | 0.14 | 0.09 | 0.00 | 0.31 |
Day 1 | 15 | 0.20 | 0.06 | 0.10 | 0.30 | |
Day 2 | 15 | 0.11 | 0.08 | 0.00 | 0.31 | |
Day 3 | 15 | 0.11 | 0.08 | 0.00 | 0.24 | |
Heart rate | Overall | 45 | 86.63 | 15.55 | 59.69 | 118.29 |
Day 1 | 15 | 91.80 | 12.59 | 70.21 | 112.19 | |
Day 2 | 15 | 83.09 | 17.60 | 59.69 | 116.38 | |
Day 3 | 15 | 85.01 | 15.69 | 66.37 | 118.29 | |
Sex | Overall | 45 | 0.93 | 0.26 | 0 | 1 |
Age | Overall | 45 | 22.67 | 3.11 | 19 | 29 |
Experience | Overall | 45 | 25.67 | 10.40 | 11 | 48 |
Schooling | Overall | 45 | 8.8 | 3.32 | 5 | 16 |
Accommodation | Overall | 45 | 0.07 | 0.26 | 0 | 1 |
Commuting time | Overall | 45 | 28 | 14.17 | 0 | 50 |
Variables | Dependent Variable: Logarithm of Daily Output | |||||||
Model 11 | Model 12 | Model 13 | Model 14 | Model 21 | Model 22 | Model 23 | Model 24 | |
Happy | 2.246 *** | 2.019 ** | 2.312 *** | 2.293 *** | ||||
(0.7690) | (0.8630) | (0.7930) | (0.7850) | |||||
Angry | 2.266 | 2.64 | 2.198 | 2.449 | ||||
(1.4210) | (1.6310) | (1.6500) | (1.5510) | |||||
Conversation | −2.701 *** | −2.701 *** | −2.745 *** | −2.731 *** | −2.836 *** | −2.765 *** | −2.776 *** | −2.793 *** |
(0.6440) | (0.7190) | (0.6770) | (0.6730) | (0.6880) | (0.7500) | (0.7660) | (0.7430) | |
Heart rate | 0.00039 | −0.000124 | 0.000598 | 0.000549 | −0.0012 | −0.00183 | −0.0013 | −0.00123 |
(0.0031) | (0.0034) | (0.0031) | (0.0031) | (0.0034) | (0.0035) | (0.0036) | (0.0035) | |
Female | 0.319 | 0.436 | ||||||
(0.4120) | (0.4230) | |||||||
Age | −0.0173 | −0.0188 | −0.0189 | −0.0126 | −0.0137 | −0.0123 | ||
(0.0325) | (0.0393) | (0.0351) | (0.0334) | (0.0320) | (0.0319) | |||
Experience | −0.000509 | −0.000114 | 0.00226 | 0.000541 | ||||
(0.0101) | (0.0113) | (0.0107) | (0.0096) | |||||
Schooling | 0.0128 | 0.00968 | 0.00978 | 0.0187 | 0.0074 | 0.00655 | ||
(0.0375) | (0.0368) | (0.0325) | (0.0384) | (0.0301) | (0.0293) | |||
Accommodation | 0.361 | 0.644 | ||||||
(0.4980) | (0.4970) | |||||||
Commuting Time | 0.00627 | 0.000223 | 0.000202 | 0.00817 | −0.00177 | −0.00209 | ||
(0.0094) | (0.0082) | (0.0075) | (0.0096) | (0.0069) | (0.0071) | |||
Constant | 7.555 *** | 7.415 *** | 7.875 *** | 7.878 *** | 7.779 *** | 7.188 *** | 8.064 *** | 8.046 *** |
(0.2860) | (0.8670) | (0.8550) | (0.7870) | (0.2940) | (0.9130) | (0.7350) | (0.7250) | |
Observations | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
Number of id | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Sigma | 0.4080 | 0.3770 | 0.4670 | 0.4460 | 0.3750 | 0.3780 | 0.3620 | 0.3820 |
sigma_u | 0.2980 | 0.2550 | 0.3760 | 0.3480 | 0.2480 | 0.2520 | 0.2280 | 0.2590 |
sigma_e | 0.2780 | 0.2780 | 0.2780 | 0.2780 | 0.2810 | 0.2810 | 0.2810 | 0.2810 |
r2within | 0.5820 | 0.5790 | 0.5830 | 0.5830 | 0.5440 | 0.5500 | 0.5430 | 0.5490 |
r2bw | 0.0410 | 0.1560 | 0.0629 | 0.0632 | 0.0000 | 0.1070 | 0.0060 | 0.0027 |
r2overall | 0.3140 | 0.3710 | 0.3300 | 0.3300 | 0.2230 | 0.3180 | 0.2410 | 0.2350 |
chi2 | 37.040 | 31.880 | 37.760 | 37.600 | 25.490 | 26.980 | 22.290 | 24.870 |
p-value | 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0014 | 0.0023 | 0.0004 |
Variables | Dependent Variable: Logarithm of Daily Output | |||||||
Model 31 | Model 32 | Model 33 | Model 34 | Model 41 | Model 42 | Model 43 | Model 44 | |
Relaxed | 6.186 | 5.893 | 6.523 | 6.484 | ||||
(4.0970) | (4.2990) | (4.3760) | (4.2300) | |||||
Sad | 8.562 | 7.775 | 7.655 | 7.686 | ||||
(23.3000) | (24.2300) | (23.9900) | (23.9700) | |||||
Conversation | −2.840 *** | −2.999 *** | −2.928 *** | −2.942 *** | −2.948 *** | −3.083 *** | −3.100 *** | −3.063 *** |
(0.6910) | (0.7350) | (0.7420) | (0.7290) | (0.7190) | (0.7640) | (0.7580) | (0.7540) | |
Heart rate | −0.000509 | −0.000605 | −0.000217 | −0.000178 | −0.000851 | −0.00103 | −0.000569 | −0.000586 |
(0.0034) | (0.0035) | (0.0036) | (0.0035) | (0.0034) | (0.0036) | (0.0035) | (0.0035) | |
Female | 0.333 | 0.372 | ||||||
(0.4630) | (0.4890) | |||||||
Age | −0.0259 | −0.0263 | −0.0269 | −0.0166 | −0.0165 | −0.0197 | ||
(0.0371) | (0.0338) | (0.0320) | (0.0387) | (0.0390) | (0.0350) | |||
Experience | 0.000643 | −0.000628 | −0.00166 | −0.003 | ||||
(0.0115) | (0.0097) | (0.0120) | (0.0112) | |||||
Schooling | 0.0185 | 0.00564 | 0.00638 | 0.0162 | 0.00398 | 0.00745 | ||
(0.0419) | (0.0313) | (0.0295) | (0.0447) | (0.0370) | (0.0329) | |||
Accommodation | 0.615 | 0.631 | ||||||
(0.5430) | (0.5740) | |||||||
Commuting Time | 0.0106 | 0.0011 | 0.00125 | 0.0106 | 0.000913 | 0.00134 | ||
(0.0103) | (0.0070) | (0.0068) | (0.0109) | (0.0082) | (0.0075) | |||
Constant | 7.809 *** | 7.597 *** | 8.325 *** | 8.312 *** | 7.871 *** | 7.492 *** | 8.257 *** | 8.207 *** |
(0.2950) | (0.9690) | (0.7390) | (0.7220) | (0.2990) | (1.0230) | (0.8510) | (0.7860) | |
Observations | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
Number of id | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Sigma | 0.4050 | 0.4500 | 0.4190 | 0.4260 | 0.4260 | 0.4710 | 0.4810 | 0.4610 |
sigma_u | 0.2580 | 0.3240 | 0.2800 | 0.2900 | 0.2840 | 0.3470 | 0.3610 | 0.3340 |
sigma_e | 0.3130 | 0.3130 | 0.3130 | 0.3130 | 0.3180 | 0.3180 | 0.3180 | 0.3180 |
r2within | 0.4650 | 0.4680 | 0.4650 | 0.4650 | 0.4530 | 0.4530 | 0.4540 | 0.4540 |
r2bw | 0.1080 | 0.3050 | 0.1420 | 0.1410 | 0.0599 | 0.2390 | 0.0784 | 0.0754 |
r2overall | 0.3000 | 0.3930 | 0.3280 | 0.3280 | 0.2510 | 0.3440 | 0.2680 | 0.2650 |
chi2 | 24.420 | 26.500 | 23.800 | 24.710 | 21.920 | 23.760 | 22.450 | 22.270 |
p-value | 0.0000 | 0.0017 | 0.0012 | 0.0004 | 0.0001 | 0.0047 | 0.0021 | 0.0011 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadoya, Y.; Khan, M.S.R.; Watanapongvanich, S.; Binnagan, P. Emotional Status and Productivity: Evidence from the Special Economic Zone in Laos. Sustainability 2020, 12, 1544. https://doi.org/10.3390/su12041544
Kadoya Y, Khan MSR, Watanapongvanich S, Binnagan P. Emotional Status and Productivity: Evidence from the Special Economic Zone in Laos. Sustainability. 2020; 12(4):1544. https://doi.org/10.3390/su12041544
Chicago/Turabian StyleKadoya, Yoshihiko, Mostafa Saidur Rahim Khan, Somtip Watanapongvanich, and Punjapol Binnagan. 2020. "Emotional Status and Productivity: Evidence from the Special Economic Zone in Laos" Sustainability 12, no. 4: 1544. https://doi.org/10.3390/su12041544