Noise as a Factor of Green Areas Soundscape Creation
Abstract
:1. Introduction
1.1. Background
- Objective methods: obtaining information about the soundscape from the analysis of physical parameters or spectrograms;
- Subjective methods: information about the soundscape is obtained based on questionnaires or interviews, as well as through on-site observation and assessment;
1.2. Environmental Noise Policy
1.3. Noise Perception
1.4. Soundscape Management
2. Materials and Methods
2.1. Materials
- The Kazimierz Wielki Park (area: 2.24 ha);
- The Jan Kochanowski Park (area 3.15 ha);
- The Wincenty Witos Folks Park (area 6.42 ha) (Figure 1).
- Several vertices;
- Several arches, edges, and loops;
- Line density—thickness of connections between vertices;
- The average value of connections (Figure 5).
- Temperatures from –10 to 40 °C;
- Humidity from 25% to 98%;
- Average wind speed of up to 5 m/s;
- Atmospheric pressure from 940 to 1060 hPa [42].
2.2. Methods
2.2.1. Surveys: Sounding
- The type of sound sources felt—the respondents chose from the following types of noise: cars, trams, buses, adults, children, fountain, leaf noise, and other (mention which ones);
- The level of felt noise—low, medium, high, and very high.
2.2.2. Surveys: Fuzzy Analysis
3. Results
4. Discussion
- Elements of the environment are diverse and complex—perception takes time;
- The size of the environment—a larger system means a more complex system;
- The environment as a surrounding—perception from the inside;
- The visitors should have navigational skills in the perception of the environment;
- Environmental audience and visual responses can generally be classified as:
- Cognitive (related to knowledge and understanding);
- Emotional (related to feelings, attitudes, and emotions);
- Behavioral (associated with changes in a viewer’s behavior);
- Landform;
- Vegetation;
- Proximity to the sound source.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Radicchi, A.; Vida, J. Soundscape evaluation of urban social spaces. A comparative study: Berlin-Granada. J. Acoust. Soc. Am. 2018, 144, 1660. [Google Scholar] [CrossRef]
- Mrówczyńska, M.; Sztubecka, M.; Skiba, M.; Bazan-Krzywoszańska, A.; Bejga, P. The Use of Artificial Intelligence as a Tool Supporting Sustainable Development Local Policy. Sustainability 2019, 17, 4199. [Google Scholar] [CrossRef] [Green Version]
- Engel, Z. Environmental Protection against Vibration and Noise; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2001. [Google Scholar]
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef] [Green Version]
- Lercher, P.; Evans, G.W.; Meis, M. Ambient noise and cognitive processes among primary schoolchildren. Environ. Behav. 2003, 35, 725–735. [Google Scholar] [CrossRef]
- Sygna, K.; Aasvang, G.M.; Aamodt, G.; Oftedal, B.; Krog, N.H. Road traffic noise, sleep and mental health. Environ. Res. 2014, 131, 17–24. [Google Scholar] [CrossRef]
- Bernat, S. Sound in landscape: the main research problems. Diss. Cult. Landsc. Comm. 2014, 23, 89–108. [Google Scholar]
- Pijanowski, B.C.; Villanueva-Rivera, J.; Dumyahn, S.L.; Farina, A.; Krause, B.L.; Napoletano, B.; Gage, S.H.; Pieretti, N. Soundscape Ecology: The science of sound in the landscape. BioScience 2011, 61, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Aletta, F.; Gjestland, T.T.; Brown, L.A.; Botteldooren, D.; Schulte-Fortkamp, B.; Lercher, P.; Kamp, I.; Genuit, K.; Fiebig, A.; et al. Ten questions on the soundscapes of the built environment. Build. Environ. 2016, 108, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Chetoni, M.; Fredianelli, L.; Minichilli, F.; Cori, L.; Licitra, G.; Bianco, F. Correlation between perceived and measured noise, within the Gioconda project. In Proceedings of the 23rd International Congress on Sound and Vibration: From Ancient to Modern Acoustics, Athens, Greece, 10–14 July 2016. [Google Scholar]
- Vienneau, D.; Schindler, C.; Perez, L.; Probst-Hensch, N.; Röösli, M. The relationship between transportation noise exposure and ischemic heart disease: a meta-analysis. Environ. Res. 2015, 138, 372–380. [Google Scholar] [CrossRef]
- Roswall, N.; Raaschou-Nielsen, O.; Ketzel, M.; Gammelmark, A.; Overvad, K.; Olsen, A.; Sørensen, M. Long-term residential road traffic noise and NO2 exposure in relation to risk of incident myocardial infarction–A Danish cohort study. Environ. Res. 2017, 156, 80–86. [Google Scholar] [CrossRef]
- Roswall, N.; Raaschou-Nielsen, O.; Jensen, S.S.; Tjønneland, A.; Sørensen, M. Long-term exposure to residential railway and road traffic noise and risk for diabetes in a Danish cohort. Environ. Res. 2018, 160, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Licitra, G.; Fredianelli, L.; Petri, D.; Vigotti, M.A. Annoyance evaluation due to overall railway noise and vibration in Pisa urban areas. Sci. Total Environ. 2016, 568, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Kephalopoulos, S.; Paviotti, M.; Anfosso Ledee, F.; van Maercke, D.; Shilton, S.; Jones, N. Advances in the development of common noise assessment methods in Europe: The CNOSSOS-EU framework for strategic environmental noise mapping. Sci. Total Environ. 2014, 482, 400–410. [Google Scholar] [CrossRef]
- The Publications Office of the European Union. Evaluation of directive 2002/49/EC relating to the assessment and management of environmental noise—EU Law and Publications 2016; The Publications Office of the European Union: Brussels, Belgium, 2016. [Google Scholar]
- Morel, J.; Marquis-Favre, C.; Gille, L.-A. Noise annoyance assessment of various urban road vehicle pass-by noises in isolation and combined with industrial noise: A laboratory study. Appl. Acoust. 2016, 101, 47–57. [Google Scholar] [CrossRef]
- Bunn, F.; Trombetta Zannin, P.H. Assessment of railway noise in an urban setting. Appl. Acoust. 2016, 104, 16–23. [Google Scholar] [CrossRef]
- Flores, R.; Gagliardi, P.; Asensio, C.; Licitra, G. A case study of the influence of urban morphology on aircraft noise. Acoust. Aust. 2017, 45, 389–401. [Google Scholar] [CrossRef]
- Fredianelli, L.; Gallo, P.; Licitra, G.; Carpita, S. Analytical assessment of wind turbine noise impact at receiver by means of residual noise determination without the wind farm shutdown. Noise Control Eng. J. 2017, 65, 417–433. [Google Scholar] [CrossRef]
- Przysucha, B.; Szeląg, A.; Pawlik, P. Probability distributions of one-day noise indicators in the process of the type A uncertainty evaluation of long-term noise indicators. Appl. Acoust. 2020, 161, 1–9. [Google Scholar] [CrossRef]
- Gozalo, G.; Barrigón Morillas, J.; González, D.; Moraga, P. Relationships among satisfaction, noise perception, and use of urban green spaces. Sci. Total Environ. 2018, 624, 438–450. [Google Scholar] [CrossRef]
- Rice, W.; Newman, P.; Miller, Z.; Taff, D. Protected areas and noise abatement: A spatial approach. Landsc. Urban Plan. 2020, 194, 1–9. [Google Scholar] [CrossRef]
- Kogan, P.; Arenas, J.; Bermejo, F.; Hinalaf, M.; Turra, B. A Green Soundscape Index (GSI): The potential of assessing the perceived balance between natural sound and traffic noise. Sci. Total Environ. 2018, 642, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Sztubecka, M.; Skiba, M. Noise level arrangement in determined zones of homogenous development of green areas on the example of the spa park in Inowrocław. Open Eng. 2016, 6, 2391–5439. [Google Scholar] [CrossRef]
- Cassina, L.; Fredianelli, L.; Menichini, I.; Chiari, C.; Licitra, G. Audio-Visual Preferences and Tranquillity Ratings in Urban Areas. Environments 2018, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Szubecka, M.; Bujarkiewicz, A.; Sztubecki, J. Optimization of measurement points choice in preparation of green areas acoustic map. Civ. Environ. Eng. Rep. 2016, 4, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Kaymaz, I.C. Landscape Perception. In Landscape Planning; Murat Ozyavuz, M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 1–28. Available online: http://www.intechopen.com/books/landscape-planning/landscapeperception (accessed on 9 December 2019).
- Tse, M.S.; Chau, C.K.; Choy, Y.S.; Tsui, W.K.; Chan, C.N.; Tang, S.K. Perception of urban park soundscape. J. Acoust. Soc. Am. 2012, 131, 2762–2771. [Google Scholar] [CrossRef] [Green Version]
- Aletta, F.; Kang, J.; Axelsson, Ö. Soundscape descriptors and a conceptual framework for developing predictive soundscape models. Landsc. Urban Plan. 2016, 149, 65–74. [Google Scholar] [CrossRef]
- Yang, W.; Moon, H. Effects of recorded water sounds on intrusive traffic noise perception under three indoor temperatures. Appl. Acoust. 2019, 145, 234–244. [Google Scholar] [CrossRef]
- Meng, Q.; Hu, X.; Kang, J.; Wu, Y. On the effectiveness of facial expression recognition for evaluation of urban sound perception. Sci. Total Environ. 2019, 135484. [Google Scholar] [CrossRef]
- Jastriebow, A.; Gad, S.; Słoń, G. Fuzzy cognitive maps in technical objects decisional monitoring (in Polish). Biuletyn Wojskowej Akademii Technicznej 2010, 59, 210–219. [Google Scholar] [CrossRef]
- Papageorgiou, K.; Singh, P.K.; Papageorgiou, E.; Chudasama, H.; Bochtis, D.; Stamoulis, G. Fuzzy Cognitive Map-Based Sustainable Socio-Economic Development Planning for Rural Communities. Sustainability 2020, 12, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, J.; He, Z.; Lu, C.; Jia, B.; Qin, H.; Feng, K.; He, Q.; Liu, G. Causal Inference of Optimal Control Water Level and Inflow in Reservoir Optimal Operation Using Fuzzy Cognitive Map. Water 2019, 11, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziolo, M.; Filipiak, B.Z.; Bąk, I.; Cheba, K. How to Design More Sustainable Financial Systems: The Roles of Environmental, Social, and Governance Factors in the Decision-Making Process. Sustainability 2019, 11, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Behrooz, F.; Yusof, R.; Mariun, N.; Khairuddin, U.; Hilmi Ismail, Z. Designing Intelligent MIMO Nonlinear Controller Based on Fuzzy Cognitive Map Method for Energy Reduction of the Buildings. Energies 2019, 12, 2713. [Google Scholar] [CrossRef] [Green Version]
- Pluchinotta, I.; Esposito, D.; Camarda, D. Fuzzy cognitive mapping to support multi-agent decisions in development of urban policymaking. Sustain. Cities Soc. 2019, 46, 1–12. [Google Scholar] [CrossRef]
- Doğan, U.; Güngör, M.K.; Bostancı, B.; Bakır, N.Y. GIS Based Urban Renewal Area Awareness and Expectation Analysis Using Fuzzy Modeling. Sustain. Cities Soc. 2020, 54, 1–14. [Google Scholar] [CrossRef]
- Open Street Map. Available online: https://www.openstreetmap.org/#map=16/53.1272/18.0114 (accessed on 10 December 2019).
- Gray, S.A.; Gray, S.; Cox, L.J.; Henly-Shepard, S. Mental Modeler: A Fuzzy-Logic Cognitive Mapping Modeling Tool for Adaptive Environmental Management. In Proceedings of the 46th Hawaii International Conference on System Sciences, Wailea, HI, USA, 7–10 January 2013; pp. 965–973. [Google Scholar]
- Minister of Environment. Regulation of the Minister of Environment of 30.10.2014 on the requirements for measuring emissions and measuring the amount of water consumed. Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20190002286/O/D20192286.pdf (accessed on 1 September 2019).
- Pérez-Martínez, G.; Torija, A.P.; Ruiz, D. Soundscape assessment of a monumental place: A methodology based on the perception of dominant sounds. Landsc. Urban Plan. 2018, 169, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.; Jo, H. Effects of audio-visual interactions on soundscape and landscape perception and their influence on satisfaction with the urban environment. Build. Environ. 2020, 169, 1–12. [Google Scholar] [CrossRef]
- Özesmi, U.; Özesmi, S. Ecological models based on people’s knowledge: a multi-step fuzzy cognitive mapping approach. Ecol. Model. 2004, 176, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Vasslides, J.; Jensen, O. Fuzzy cognitive mapping in support of integrated ecosystem assessments: Developing a shared conceptual model among stakeholders. J. Environ. Manag. 2016, 166, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Misthos, L.-M.; Messaris, G.; Damigos, D.; Menegaki, M. Exploring the perceived intrusion of mining into the landscape using the fuzzy cognitive mapping approach. Ecol. Eng. 2017, 101, 60–74. [Google Scholar] [CrossRef]
- Solana-Gutiérrez, J.; Rincón, G.; Alonso, C.; García-de-Jalón, D. Using fuzzy cognitive maps for predicting river management responses: A case study of the Esla River basin, Spain. Ecol. Model. 2017, 360, 260–269. [Google Scholar] [CrossRef]
- Özesmi, U.; Özesmi, S.L. A participatory approach to ecosystem conservation: fuzzy cognitive maps and stakeholder group analysis in Uluabat Lake, Turkey. Environ. Manag. 2004, 31, 518–531. [Google Scholar] [CrossRef]
- Leśniak, A.; Kubek, D.; Plebankiewicz, E.; Zima, K.; Belniak, S. Fuzzy AHP application for supporting contractors’ bidding decision. Symmetry 2018, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Skiba, M. The use of fuzzy cognitive maps (FCM) as an instrument facilitating the process of decision-making in spatial planning. Urbanity Archit. Files 2018, XLVI, 557–564. [Google Scholar]
- Kaplan, S.; Kaplan, R. Anthropogenic/anthropogenerous: Creating environments that help people create better environments. Landsc. Urban Plan. 2011, 100, 350–352. [Google Scholar] [CrossRef]
- Kothencz, G.; Blaschke, T. Urban parks: Visitors’ perceptions versus spatial indicators. Land Use Policy 2017, 64, 233–244. [Google Scholar] [CrossRef]
- Yu, L.; Kang, J. Factors influencing the sound preference in urban open spaces. Appl. Acoust. 2010, 71, 622–633. [Google Scholar] [CrossRef] [Green Version]
- Dimitrijević, S.M.; García-Chocano, V.M.; Cervera, F.; Roth, E.; Sánchez-Dehesa, J. Sound Insulation and Reflection Properties of Sonic Crystal Barrier Based on Micro-Perforated Cylinders. Materials 2019, 12, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Kazak, J.; van Hoof, J. Decision support systems for a sustainable management of the indoor and built environment. Indoor and Built Environ. 2018, 27, 1303–1306. [Google Scholar] [CrossRef] [Green Version]
- Watts, G. Tranquillity in the city—building resilience through identifying, designing, promoting and linking restorative outdoor environments. Proc. Meet. Acoust. 2017, 30, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Skrzypczak, I.; Kokoszka, W.; Kogut, J.; Oleniacz, G. Methods of Measuring and Mapping of Landslide Areas. OP Conf. Ser.: Earth Environ. 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Kang, J.; Behm, H.; Luo, T. Effects of landscape on soundscape perception: Soundwalks in city parks. Landsc. Urban Plan. 2014, 123, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.Y.; Lam, B.; Ong, Z.T.; Ooi, K.; Gan, W.S.; Kang, J.; Yeong, S.; Lee, I.; Tan, S.T. The effects of spatial separations between water sound and traffic noise sources on soundscape assessment. Build. Environ. 2020, 167, 1–10. [Google Scholar] [CrossRef]
- Hong, J.Y.; Ong, Z.T.; Lam, B.; Ooi, K.; Gan, W.S.; Kang, J.; Feng, J.; Tan, S.T. Effects of adding natural sounds to urban noises on the perceived loudness of noise and soundscape quality. Sci. Total. Environ. 2019, 134571. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Vanhecke, K.; Filipan, K.; Sun, K.; De Pessemier, T.; De Coensel, B.; Joseph, W.; Botteldooren, D. Interactive soundscape augmentation by natural sounds in a noise polluted urban park. Landsc. Urban Plan. 2020, 194, 1–13. [Google Scholar] [CrossRef]
- Nowogońska, B. The Life Cycle of a Building as a Technical Object. Period. Polytech. Civ. Eng. 2016, 60, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Tsaligopoulos, A.; Karapostoli, A.; Radicchi, A.; Economou, C.; Kyvelou, S.; Matsinos, Y.G. Ecological Connectivity of Urban Quiet Areas: The Case of Mytilene, Greece. Cities & Health J. 2019, 1–13. [Google Scholar] [CrossRef]
- Cerwén, G.; Kreutzfeldt, J.; Wingren, C. Soundscape actions: A tool for noise treatment based on three workshops in landscape architecture. Front. Archit. Res. 2017, 6, 504–518. [Google Scholar] [CrossRef]
- Radicchi, A. Are privately owned public spaces effective design and planning tools that can favor the creation of healthy, open spaces in contemporary cities? Notes from an empirical study in New York. In Proceedings of the La città contemporanea: un gigante dai piedi di argilla/The contemporary city: a giant with feet of clay, Turin, Italy, 15 November 2019. [Google Scholar]
- Kang, J. Noise Management: Soundscape Approach. Encycl. of Environ. Health 2019. [Google Scholar] [CrossRef]
- Rey Gozalo, G.; Trujillo Carmona, J.; Barrigón Morillas, J.M.; Vílchez-Gómez, R.; Gómez Escobar, V. Relationship between objective acoustic indices and subjective assessments for the quality of soundscapes. Appl. Acoust. 2015, 97, 1–10. [Google Scholar] [CrossRef]
- Ozcevik, A.; Can, Z.Y. A field study on the subjective evaluation of soundscape. Proc. Acoust. 2012, 23–27. Available online: https://hal.archives-ouvertes.fr/hal-00810898 (accessed on 1 September 2019).
- De la Prida, D.; Pedrero, A.; Ángeles Navacerrada, M.; Díaz, C. Relationship between the geometric profile of the city and the subjective perception of urban soundscapes. Appl. Acoust. 2019, 149, 74–84. [Google Scholar] [CrossRef]
Sound Sources | Kazimierz Wielki Park [%] | Jan Kochanowski Park [%] | Wincenty Witos Folks Park [%] | Mean Value [%] |
---|---|---|---|---|
Traffic | 47 | 53 | 56 | 52 |
Human factor | 33 | 24 | 24 | 27 |
Nature | 8 | 5 | 6 | 6 |
Other | 12 | 18 | 14 | 15 |
Noise | Bus | Tram | Car | Greenery | Water | Children | Adults | Neighborhood | Pavement | |
---|---|---|---|---|---|---|---|---|---|---|
Noise | –0.64 | –0.53 | –0.55 | |||||||
Bus | 0.79 | 0.44 | –0.24 | |||||||
Tram | 0.73 | 0.53 | –0.44 | |||||||
Car | 0.97 | 0.23 | 0.52 | –0.42 | –0.42 | –0.55 | ||||
Greenery | 0.39 | –0.56 | –0.62 | –0.29 | 0.50 | |||||
Water | 0.47 | –0.39 | 0.59 | |||||||
Children | 0.70 | |||||||||
Adults | 0.33 | |||||||||
Neighborhood | 0.35 | –0.46 | –0.26 | |||||||
Pavement | –0.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sztubecka, M.; Skiba, M.; Mrówczyńska, M.; Mathias, M. Noise as a Factor of Green Areas Soundscape Creation. Sustainability 2020, 12, 999. https://doi.org/10.3390/su12030999
Sztubecka M, Skiba M, Mrówczyńska M, Mathias M. Noise as a Factor of Green Areas Soundscape Creation. Sustainability. 2020; 12(3):999. https://doi.org/10.3390/su12030999
Chicago/Turabian StyleSztubecka, Małgorzata, Marta Skiba, Maria Mrówczyńska, and Michael Mathias. 2020. "Noise as a Factor of Green Areas Soundscape Creation" Sustainability 12, no. 3: 999. https://doi.org/10.3390/su12030999
APA StyleSztubecka, M., Skiba, M., Mrówczyńska, M., & Mathias, M. (2020). Noise as a Factor of Green Areas Soundscape Creation. Sustainability, 12(3), 999. https://doi.org/10.3390/su12030999