Soluble Inorganic Arsenic Species in Atmospheric Submicron Particles in Two Polish Urban Background Sites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Sites and Samples Collection
2.2. Sample Preparation and Chemical Analysis
2.3. Quality Control and Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rogula-Kozłowska, W.; Majewski, G.; Czechowski, P.O. The size distribution and origin of elements bound to ambient particles: A case study of a Polish urban area. Environ. Monit. Assess. 2015, 187, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivellini, L.H.; Chiapello, I.; Tison, E.; Fourmentin, M.; Feron, A.; Diallo, A.; N’Diaye, T.; Goloub, P.; Canonaco, F.; Prevot, A.; et al. Chemical characterization and source apportionment of submicron aerosols measured in Senegal during the 2015 SHADOW campaign. Atmos. Chem. Phys. 2017, 17, 10291–10314. [Google Scholar] [CrossRef] [Green Version]
- IARC. Arsenic and Arsenic Compounds. In IARC Monographs on the Evaluation of Carcinogenic Risk to Humans; IARC Press: Lyon, France, 2012; Volume 23, 100C. [Google Scholar]
- Matschullat, J. Arsenic in the geosphere-a review. Sci. Total Environ. 2000, 249, 297–312. [Google Scholar] [CrossRef]
- Chen, B.; Stein, A.F.; Maldonado, P.G.; Sanchez de la Campa, A.M.; Gonzalez-Castanedo, Y.; Castell, N.; de la Rosa, J.D. Size distribution and concentrations of heavy metals in atmospheric aerosols originating from industrial emissions as predicted by the HYSPLIT model. Atmos. Environ. 2013, 71, 234–244. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines for Europe, WHO Regional Publications, 2nd ed.; Regional Office for Europe: Copenhagen, Denmark, 2001. [Google Scholar]
- Pulles, T.; Denier van der Gon, H.; Appelman, W.; Verheul, M. Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmos. Environ. 2012, 61, 641–651. [Google Scholar] [CrossRef]
- Onat, B.; Sahin, U.A.; Akyuz, T. Elemental characterization of PM2.5 and PM1 in dense traffic area in Istanbul, Turkey. Atmos. Pollut. Res. 2013, 4, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Slejkovec, Z.; Salma, I.; van Elteren, J.T.; Zemplén-Papp, E. Speciation of arsenic in coarse and fine urban aerosols using sequential extraction combined with liquid chromatography and atomic fluorescence detection. Fresenius J. Anal. Chem. 2000, 366, 830–834. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Li, W.J.; Chen, J.M.; Wang, T.; Wang, W.X. Concentrations and solubility of trace elements in fine particles at a mountain site, southern China: Regional sources and cloud processing. Atmos. Chem. Phys. 2015, 15, 8987–9002. [Google Scholar] [CrossRef] [Green Version]
- Sarti, E.; Pasti, L.; Rossi, M.; Ascanelli, M.; Pagnoni, A.; Trombini, M.; Remelli, M. The composition of PM1 and PM2.5 samples, metals and their water soluble fractions in the Bologna area (Italy). Atmos. Pollut. Res. 2015, 6, 708–718. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, S.; Dutkiewicz, V.A.; Swami, K.; Yang, K.X.; Husain, L.; Schwab, J.J.; Demerjian, K.L. Elemental composition of PM2.5 aerosols in Queens, New York: Solubility and temporal trends. Atmos. Environ. 2006, 40, 238–251. [Google Scholar] [CrossRef]
- Manousakas, M.; Papaefthymiou, H.; Eleftheriadis, K.; Katsanou, K. Determination of water–soluble and insoluble elements in PM2.5 by ICP–MS. Sci. Total Environ. 2014, 493, 694–700. [Google Scholar] [CrossRef]
- Zajusz-Zubek, E.; Kaczmarek, K.; Mainka, A. Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants. Int. J. Environ. Res. Public Health 2015, 12, 13085–13103. [Google Scholar] [CrossRef] [Green Version]
- Zajusz-Zubek, E.; Radko, T.; Mainka, A. Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants. Environ. Monit. Assess. 2017, 189, 389. [Google Scholar] [CrossRef] [Green Version]
- Galon-Negru, A.G.; Olariu, R.I.; Arsene, C. Size-resolved measurements of PM2.5 water-soluble elements in Iasi, north-eastern Romania: Seasonality, source apportionment and potential implications for human health. Sci. Total Environ. 2018, 695, 133839. [Google Scholar] [CrossRef]
- Du, L.; Wang, Y.; Wu, Z.; Hou, C.; Mao, H.; Li, T.; Nie, X. PM2.5-Bound Toxic Elements in an Urban City in East China: Concentrations, Sources, and Health Risks. Int. J. Environ. Res. Public Health. 2019, 16, 164. [Google Scholar] [CrossRef] [Green Version]
- Niedzielski, P.; Siepak, M.; Siepak, J. Występowanie i zawartości arsenu, antymonu i selenu w wodach i innych elementach środowiska naturalnego. Rocznik Ochrona Srodowiska 2000, 2, 317–340. (In Polish) [Google Scholar]
- Lewis, A. Speciated arsenic in air: Measurement methodology and risk assessment considerations. J. Air Waste Manag. Assoc. 2012, 62, 2–17. [Google Scholar] [CrossRef]
- Nocoń, K.; Rogula-Kozłowska, W.; Widziewicz, K. Research on chromium and arsenic speciation in atmospheric particulate matter: Short review. E3S Web Conf. 2018, 28. [Google Scholar] [CrossRef] [Green Version]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P.; Ośródka, L.; Krajny, E.; Błaszczak, B.; Mathews, B. Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Qual. Atmos. Health 2014, 7, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Majewski, G.; Rogula-Kozłowska, W.; Rozbicka, K.; Rogula-Kopiec, P.; Mathews, B.; Brandyk, A. Concentration, Chemical Composition and Origin of PM1: Results from the First Long-term Measurement Campaign in Warsaw (Poland). Aerosol Air Qual. Res. 2018, 18, 636–654. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W. Size-segregated urban particulate matter: Mass closure, chemical composition, and primary and secondary matter content. Air Qual. Atmos. Health 2016, 9, 533–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EC. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1579695287064&uri=CELEX:32008L0050 (accessed on 22 January 2020).
- Nocoń, K.; Rogula-Kozłowska, W. Speciation of arsenic: A case study of PM1 in Zabrze. SN Appl. Sci. 2019, 1, 450. [Google Scholar] [CrossRef] [Green Version]
- Rogula-Kozłowska, W.; Klejnowski, K. Submicrometer Aerosol in Rural and Urban Backgrounds in Southern Poland: Primary and Secondary Components of PM1. Bull. Environ. Contam. Toxicol. 2013, 90, 103. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozlowska, W.; Błaszczak, B.; Klejnowski, K. Concentrations of PM2.5, PM2.5–10 and PM- related elements at two heights in an urban background area in Zabrze (Poland). Arch. Environ. Prot. 2011, 37, 31–49. [Google Scholar]
- Majewski, G.; Rogula-Kozłowska, W. The elemental composition and origin of fine ambient particles in the largest Polish conurbation: First result from the short-term winter campaign. Theor. Appl. Climatol. 2016, 125, 79. [Google Scholar] [CrossRef] [Green Version]
- Rogula-Kozłowska, W.; Błaszczak, B.; Szopa, S.; Klejnowski, K.; Sówka, I.; Zwoździak, A.; Jabłońska, M.; Mathews, B. PM2.5 in the central part of Upper Silesia, Poland: Concentrations, elemental composition, and mobility of components. Environ. Monit. Assess. 2013, 185, 581–601. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Majewski, G.; Rogula-Kopiec, P.; Mathews, B.A. Mass concentration and chemical composition of submicron particulate matter (PM1) in the Polish urban areas. IOP Conf. Ser. Earth Environ. Sci. 2019, 214, 012092. [Google Scholar] [CrossRef]
- Klejnowski, K.; Pastuszka, J.S.; Rogula-Kozłowska, W.; Talik, E.; Krasa, A. Mass size distribution and chemical composition of the surface layer of summer and winter airborne particles in Zabrze, Poland. Bull. Environ. Contam. Toxicol. 2012, 88, 255–259. [Google Scholar] [CrossRef] [Green Version]
- Heal, M.R.; Hibbs, L.R.; Agius, R.M.; Beverland, I.J. Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK. Atmos. Environ. 2005, 39, 1417–1430. [Google Scholar] [CrossRef] [Green Version]
Zabrze | Warsaw | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Mean | Min. | Max. | SD | n | Mean | Min. | Max. | SD | |
PM1; µg/m3 | 61 | 12.47 * | 6.47 | 20.54 | 3.78 | 60 | 11.07 * | 5.67 | 22.62 | 3.27 |
total As; ng/m3 | 61 | 2.45 * | 0.22 | 8.41 | 1.69 | 60 | 2.59 * | - | 7.29 | 1.28 |
water-soluble As; ng/m3 | 61 | ** 0.73 * | 0.13 | 1.86 | 0.38 | 60 | ** 0.25 * | - | 0.91 | 0.19 |
As(III); ng/m3 | 61 | ** 0.17 | 0.05 | 0.33 | 0.09 | 60 | ** 0.06 | 0.03 | 0.14 | 0.02 |
As(V); ng/m3 | 61 | ** 0.61* | 0.10 | 1.67 | 0.33 | 60 | ** 0.27 * | 0.06 | 0.95 | 0.17 |
PM1; µg/m3 | 56 | ** 49.25 * | 8.30 | 198.50 | 32.07 | 58 | ** 17.61 * | 4.70 | 39.00 | 8.52 |
total As; ng/m3 | 56 | ** 3.36 * | 1.16 | 9.99 | 1.54 | 58 | ** 1.93 * | 0.32 | 3.45 | 0.77 |
water-soluble As; ng/m3 | 56 | ** 2.53 * | 0.26 | 9.99 | 1.58 | 58 | ** 0.70 * | 0.16 | 1.73 | 0.36 |
As(III); ng/m3 | 56 | ** 0.17 | 0.02 | 0.96 | 0.16 | 58 | ** 0.06 | 0.02 | 0.10 | 0.02 |
As(V);ng/m3 | 56 | ** 2.41 * | 0.22 | 10.03 | 1.58 | 58 | ** 0.68 * | 0.17 | 1.66 | 0.34 |
PM1 | Total As | Water-Soluble As | As(III) | As(V) | Temp. | Hum. | Prec. | Wind s. | Pres. | |
---|---|---|---|---|---|---|---|---|---|---|
Zabrze | ||||||||||
PM1 | 1.00 | - | - | - | −0.61 | 0.16 | −0.27 | −0.10 | 0.12 | |
total As | * 0.59 | 1.00 | - | - | - | −0.29 | −0.01 | −0.27 | −0.07 | 0.08 |
water-soluble As | 0.88 | 0.62 | 1.00 | - | - | −0.60 | 0.16 | −0.23 | −0.06 | 0.08 |
As(III) | 0.20 | 0.30 | 0.37 | 1.00 | - | 0.10 | −0.05 | −0.17 | −0.18 | 0.00 |
As(V) | 0.89 | 0.61 | 0.99 | 0.30 | 1.00 | −0.61 | 0.15 | −0.23 | −0.05 | 0.07 |
Warsaw | ||||||||||
PM1 | 1.00 | - | - | - | - | −0.39 | 0.16 | −0.24 | −0.26 | 0.10 |
total As | −0.08 | 1.00 | - | - | - | 0.27 | 0.05 | 0.04 | −0.24 | −0.15 |
water-soluble As | 0.77 | −0.05 | 1.00 | - | - | −0.56 | 0.23 | −0.24 | 0.02 | 0.07 |
As(III) | 0.34 | 0.19 | 0.38 | 1.00 | - | 0.09 | −0.03 | −0.08 | −0.26 | −0.01 |
As(V) | 0.77 | −0.03 | 0.99 | 0.38 | 1.00 | −0.56 | 0.24 | −0.23 | 0.02 | 0.09 |
Zabrze | Warsaw | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean | Min. | Max. | SD | n | Mean | Min. | Max. | SD | ||
Summer season/non-heating | |||||||||||
As(III) % | 61 | 10.98 | 1.39 | 39.93 | 8.98 | 60 | 3.51 | 0.78 | 33.33 | 4.83 | |
As(V) % | 61 | 36.26 | 3.30 | 86.46 | 26.20 | 60 | 14.60 | 1.41 | 89.61 | 17.02 | |
As(III)+As(V) % | 61 | 47.24 | 4.96 | 99.98 | 33.65 | 60 | 18.11 | 2.47 | 100.00 | 20.67 | |
As(V)/As(III) | 61 | 3.77 | 1.33 | 9.33 | 1.76 | 60 | 4.34 | 1.33 | 10.00 | 2.43 | |
Winter season/heating | |||||||||||
As(III) % | 56 | 4.94 | 0.76 | 23.73 | 4.15 | 58 | 3.70 | 1.04 | 10.90 | 2.14 | |
As(V) % | 56 | 70.52 | 7.94 | 97.36 | 24.54 | 58 | 40.12 | 12.43 | 96.40 | 23.90 | |
As(III) + As(V) % | 56 | 75.46 | 8.69 | 100.94 | 25.18 | 58 | 43.82 | 13.47 | 100.01 | 25.47 | |
As(V)/As(III) | 56 | 18.52 | 1.43 | 42.50 | 8.63 | 58 | 11.67 | 4.00 | 26.67 | 5.11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nocoń, K.; Rogula-Kozłowska, W.; Majewski, G.; Rogula-Kopiec, P. Soluble Inorganic Arsenic Species in Atmospheric Submicron Particles in Two Polish Urban Background Sites. Sustainability 2020, 12, 837. https://doi.org/10.3390/su12030837
Nocoń K, Rogula-Kozłowska W, Majewski G, Rogula-Kopiec P. Soluble Inorganic Arsenic Species in Atmospheric Submicron Particles in Two Polish Urban Background Sites. Sustainability. 2020; 12(3):837. https://doi.org/10.3390/su12030837
Chicago/Turabian StyleNocoń, Katarzyna, Wioletta Rogula-Kozłowska, Grzegorz Majewski, and Patrycja Rogula-Kopiec. 2020. "Soluble Inorganic Arsenic Species in Atmospheric Submicron Particles in Two Polish Urban Background Sites" Sustainability 12, no. 3: 837. https://doi.org/10.3390/su12030837
APA StyleNocoń, K., Rogula-Kozłowska, W., Majewski, G., & Rogula-Kopiec, P. (2020). Soluble Inorganic Arsenic Species in Atmospheric Submicron Particles in Two Polish Urban Background Sites. Sustainability, 12(3), 837. https://doi.org/10.3390/su12030837