Core Stability and Electromyographic Activity of the Trunk Musculature in Different Woman’s Sports
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Design and Procedures
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Czajkowska, M.; Plinta, R.; Rutkowska, M.; Brzęk, A.; Skrzypulec-Plinta, V.; Drosdzol-Cop, A. Menstrual cycle disorders in professional female rhythmic gymnasts. Int. J. Environ. Res. Public Health 2019, 16, 1470. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Murcia, J.A.; Martínez-Galindo, C.; Alonso-Villodre, N. Actitudes hacia la práctica físico-deportiva según el sexo del practicante. (Gender and attitudes toward the practice of physical activity and sport.). RICYDE Rev. Int. Cienc. Deport. 2006, 2, 20–43. [Google Scholar] [CrossRef]
- Frutuoso, A.S.; Diefenthaeler, F.; Vaz, M.A.; de la Freitas, C.R. Lower Limb Asymmetries in Rhythmic Gymnastics Athletes. Int. J. Sports Phys. Ther. 2016, 11, 34–43. [Google Scholar]
- Nikolaidis, P.T.; Afonso, J.; Buśko, K.; Ingebrigtsen, J.; Chtourou, H.; Martin, J.J. Positional differences of physical traits and physiological characteristics in female volleyball players—The role of age. Kinesiology 2015, 47, 75–81. [Google Scholar]
- Douda, H.; Laparidis, K.; Tokmakidis, S.P. Long-Term training induces specific adaptations on the physique of rhythmic sports and female artistic gymnasts. Eur. J. Sport Sci. 2002, 2, 1–13. [Google Scholar] [CrossRef]
- Granacher, U.; Gollhofer, A.; Hortobágyi, T.; Kressig, R.W.; Muehlbauer, T. The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors: A systematic review. Sports Med. 2013, 43, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef]
- Di Cagno, A.; Baldari, C.; Battaglia, C.; Monteiro, M.D.; Pappalardo, A.; Piazza, M.; Guidetti, L. Factors influencing performance of competitive and amateur rhythmic gymnastics-Gender differences. J. Sci. Med. Sport 2009, 12, 411–416. [Google Scholar] [CrossRef]
- Gonçalves, C.A.; Lopes, T.J.D.; Nunes, C.; Marinho, D.A.; Neiva, H.P. Neuromuscular Jumping Performance and Upper-Body Horizontal Power of Volleyball Players. J. Strength Cond. Res. 2019, 1. [Google Scholar] [CrossRef]
- Mon, D.; Zakynthinaki, M.S.; Calero, S. Connection between performance and body sway/morphology in juvenile Olympic shooters. J. Hum. Sport Exerc. 2019, 14, 75–85. [Google Scholar] [CrossRef]
- Deering, R.E.; Senefeld, J.W.; Pashibin, T.; Neumann, D.A.; Hunter, S.K. Muscle function and fatigability of trunk flexors in males and females. Biol. Sex Differ. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mon, D.; Zakynthinaki, M.; Cordente, C.; Barriopedro, M.; Sampedro, J. Body sway and performance at competition in male pistol and rifle Olympic shooters. Biomed. Hum. Kinet. 2014, 6, 56–62. [Google Scholar] [CrossRef]
- Võsoberg, K.; Tillmann, V.; Tamm, A.L.; Maasalu, K.; Jürimäe, J. Bone mineralization in rhythmic gymnasts entering puberty: Associations with jumping performance and body composition variables. J. Sport. Sci. Med. 2017, 16, 99–104. [Google Scholar]
- Courteix, D.; Rieth, N.; Thomas, T.; Van Praagh, E.; Benhamou, C.L.; Collomp, K.; Lespessailles, E.; Jaffré, C. Preserved bone health in adolescent elite rhythmic gymnasts despite hypoleptinemia. Horm. Res. 2007, 68, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Do Benfica, P.A.; Aguiar, L.T.; de Brito, S.A.F.; Bernardino, L.H.N.; Teixeira-Salmela, L.F.; de Faria, C.D.C.M. Reference values for muscle strength: A systematic review with a descriptive meta-analysis. Braz. J. Phys. Ther. 2018, 22, 355–369. [Google Scholar] [CrossRef]
- Zouita, A.B.M.; Salah, F.Z.B.; Dziri, C.; Beardsley, C. Comparison of isokinetic trunk flexion and extension torques and powers between athletes and nonathletes. J. Exerc. Rehabil. 2018, 14, 72–77. [Google Scholar] [CrossRef]
- Ghezelbash, F.; El Ouaaid, Z.; Shirazi-Adl, A.; Plamondon, A.; Arjmand, N. Trunk musculoskeletal response in maximum voluntary exertions: A combined measurement-modeling investigation. J. Biomech. 2018, 70, 124–133. [Google Scholar] [CrossRef] [PubMed]
- McGill, S.M.; Childs, A.; Liebenson, C. Endurance times for low back stabilization exercises: Clinical targets for testing and training from a normal database. Arch. Phys. Med. Rehabil. 1999, 80, 941–944. [Google Scholar] [CrossRef]
- Barbado, D.; Lopez-Valenciano, A.; Juan-Recio, C.; Montero-Carretero, C.; Van Dieën, J.H.; Vera-Garcia, F.J. Trunk stability, trunk strength and sport performance level in judo. PLoS ONE 2016, 11, 1–12. [Google Scholar] [CrossRef]
- Kibler, W.; Press, J.; Sciascia, A. The role of core stability in athletic function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef]
- Lynn, S.K.; Watkins, C.M.; Wong, M.A.; Balfany, K.; Feeney, D.F. Validity and reliability of surface electromyography measurements from a wearable athlete performance system. J. Sports Sci. Med. 2018, 17, 205–215. [Google Scholar] [PubMed]
- Nesser, T.; Lee, W. The relationship between core estrength and performance in division I female soccer palyers. J. Exerc. Physiol. 2009, 12, 21–28. [Google Scholar]
- Willson, J.D.; Dougherty, C.P.; Ireland, M.L.; Davis, I.M.C. Core stability and its relationship to lower extremity function and injury. J. Am. Acad. Orthop. Surg. 2005, 13, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Silfies, S.P.; Ebaugh, D.; Pontillo, M.; Butowicz, C.M. Critical review of the impact of core stability on upper extremity athletic injury and performance. Braz. J. Phys. Ther. 2015, 19, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Risberg, M.A.; Steffen, K.; Nilstad, A.; Myklebust, G.; Kristianslund, E.; Moltubakk, M.M.; Krosshaug, T. Valores normativos de la fuerza muscular de los cuadriceps y los musculos isquiotibiales para jugadoras de futbol y balonmano femenino, saludable, de élite. J. Strength Cond. Res. 2018, 32, 2314–2323. [Google Scholar] [CrossRef]
- Tinto, A.; Campanella, M.; Fasano, M. Core strengthening and synchronized swimming: TRX® suspension training in young female athletes. J. Sports Med. Phys. Fit. 2017, 57, 744–751. [Google Scholar] [CrossRef]
- Watson, T.; Mcpherson, S.; Edwards, J.; Melcher, I.; Burgess, T. Dance, Balance and Core Muscle Performance Measures Are Improved Following a 9-Week. Int. J. Sports Phys. Ther. 2017, 12, 25–41. [Google Scholar]
- Junker, D.; Stöggl, T. The training effects of foam rolling on core strength endurance, balance, muscle performance and range of motion: A randomized controlled trial. J. Sports Sci. Med. 2019, 18, 229–238. [Google Scholar]
- Donti, O.; Bogdanis, G.C.; Kritikou, M.; Donti, A.; Theodorakou, K. The relative contribution of physical fitness to the technical execution score in youth rhythmic gymnastics. J. Hum. Kinet. 2016, 50, 143–152. [Google Scholar] [CrossRef]
- Carrasco-Poyatos, M.; Ramos-Campo, D.J.; Rubio-Arias, J.A. Pilates versus resistance training on trunk strength and balance adaptations in older women: A randomized controlled trial. PeerJ 2019, 2019, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Waldhelm, A.; Li, L. Endurance tests are the most reliable core stability related measurements. J. Sport Health Sci. 2012, 1, 121–128. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for The Behavioral Science, 2nd ed.; Erlbaum, Ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Santos, D.A.; Dawson, J.A.; Matias, C.N.; Rocha, P.M.; Minderico, C.S.; Allison, D.B.; Sardinha, L.B.; Silva, A.M. Reference values for body composition and anthropometric measurements in athletes. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Purenović-Ivanović, T.; Popović, R.; Bubanj, S.; Stanković, R. Body composition in high-level female rhythmic gymnasts of different age categories. Sci. Sports 2019, 34, 141–148. [Google Scholar] [CrossRef]
- Zapolska, J.; Witczak, K.; Mańczuk, A.; Ostrowska, L. Assessment of nutrition, supplementation and body composition parameters on the example of professional volleyball players. Rocz. Państw. Zakładu Hig. 2014, 65, 235–242. [Google Scholar]
- Valente-dos-Santos, J.; Tavares, Ó.M.; Duarte, J.P.; Sousa-e-Silva, P.M.; Rama, L.M.; Casanova, J.M.; Fontes-Ribeiro, C.A.; Marques, E.A.; Courteix, D.; Ronque, E.R.V.; et al. Total and regional bone mineral and tissue composition in female adolescent athletes: Comparison between volleyball players and swimmers. BMC Pediatr. 2018, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, H.W.; Kavazis, A.N. Body Composition and Perceived Stress through a Calendar Year in NCAA I Female Volleyball Players. Int. J. Exerc. Sci. 2019, 12, 433–443. [Google Scholar]
- Martín-Matillas, M.; Valadés, D.; Hernández-Hernández, E.; Olea-Serrano, F.; Sjöström, M.; Delgado-Fernández, M.; Ortega, F.B. Anthropometric, body composition and somatotype characteristics of elite female volleyball players from the highest Spanish league. J. Sports Sci. 2014, 32, 137–148. [Google Scholar] [CrossRef]
- Ambegaonkar, J.P.; Cortes, N.; Caswell, S.V.; Ambegaonkar, G.P.; Wyon, M. Lower Extremity Hypermobility, But Not Core Muscle Endurance Influences Balance in Female Collegiate Dancers. Int. J. Sports Phys. Ther. 2016, 11, 220–229. [Google Scholar]
- Ambegaonkar, J.P.; Mettinger, L.M.; Caswell, S.V.; Burtt, A.; Cortes, N. Relationships between core endurance, hip strength, and balance in collegiate female athletes. Int. J. Sports Phys. Ther. 2014, 9, 604–616. [Google Scholar] [PubMed]
- Knechtle, B.; Knechtle, P.; Rüst, C.A.; Rosemann, T.; Lepers, R. Age, training, and previous experience predict race performance in long-distance inline skaters, not anthropometry. Percept. Mot. Skills 2012, 114, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Gastin, P.; Fahrner, B.; Meyer, D.; Robinson, D.; Cook, J.L. Influence of physical fitness, age, experience, and weekly training load on match performance in elite Australian football. J. Strength Cond. Res. 2013, 27, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Mon-López, D.; da Silva, F.M.; Morales, S.C.; López-Torres, O.; Calvo, J.L. What do olympic shooters think about physical training factors and their performance? Int. J. Environ. Res. Public Health 2019, 16, 4629. [Google Scholar] [CrossRef]
- Smidt, G.; Herring, T.; Amundsen, L.; Rogers, M.; Russell, A.; Lehmann, T. Assessment of Abdominal and Back Extensor Function. Spine 1983, 8, 211–219. [Google Scholar] [CrossRef]
- Mayer, F.; Horstmann, T.; Rocker, K.; Heitkamp, H.C.; Dickhuth, H.H. Normal values of isokinetic maximum strength, the strength/velocity curve, and the angle at peak torque of all degrees of freedom in the shoulder. Int. J. Sports Med. 1994, 15, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Guilhem, G.; Giroux, C.; Couturier, A.; Maffiuletti, N.A. Validity of trunk extensor and flexor torque measurements using isokinetic dynamometry. J. Electromyogr. Kinesiol. 2014, 24, 986–993. [Google Scholar] [CrossRef]
- Kim, C.; Jeoung, B. Assessment of isokinetic muscle function in Korea male volleyball athletes. J. Exerc. Rehabil. 2016, 12, 429–437. [Google Scholar] [CrossRef][Green Version]
- Chilibeck, P.D.; Calder, A.W.; Sale, D.G.; Webber, C.E. A comparison of strength and muscle mass increases during resistance training in young women. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 77, 170–175. [Google Scholar] [CrossRef]
- Wirth, K.; Hartmann, H.; Mickel, C.; Szilvas, E.; Keiner, M.; Sander, A. Core Stability in Athletes: A Critical Analysis of Current Guidelines. Sports Med. 2017, 47, 401–414. [Google Scholar] [CrossRef]
- Kim, Y.; Park, S. Comparison of whole-body vibration exercise and plyometric exercise to improve isokinetic muscular strength, jumping performance and balance of female volleyball players. J. Phys. Ther. Sci. 2016, 28, 3140–3144. [Google Scholar] [CrossRef] [PubMed]
- Helge, E.W.; Kanstrup, I.L. Bone density in female elite gymnasts: Impact of muscle strength and sex hormones. Med. Sci. Sports Exerc. 2002, 34, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Tournis, S.; Michopoulou, E.; Fatouros, I.G.; Paspati, I.; Michalopoulou, M.; Raptou, P.; Leontsini, D.; Avloniti, A.; Krekoukia, M.; Zouvelou, V.; et al. Effect of rhythmic gymnastics on volumetric bone mineral density and bone geometry in premenarcheal female athletes and controls. J. Clin. Endocrinol. Metab. 2010, 95, 2755–2762. [Google Scholar] [CrossRef] [PubMed][Green Version]
Rhythmic (n = 24) Mean ± SD | Volleyball (n = 16) Mean ± SD | Mean Difference | 95% Confidence Interval | p | d | ||
---|---|---|---|---|---|---|---|
FM (kg) | 9.6 ± 3.6 | 17.4 ± 4.3 | −7.8 | −10.3 | −5.2 | < 0.001 | −2.0 |
LM (Kg) | 31.8 ± 8.6 | 40.7 ± 6.8 | −6.1 | −9.4 | −2.8 | 0.001 | −1.1 |
BM (Kg) | 1.8 ± 0.6 | 2.5 ± 0.3 | −8.9 | −14.0 | −3.7 | <0.001 | −1.2 |
%FT (%) | 22.9 ± 3.8 | 29.1 ± 5.2 | −0.6 | −0.9 | −0.2 | < 0.001 | −1.4 |
TrunkLM (Kg) | 15.2 ± 4.4 | 21.4 ± 5.9 | −6.1 | −9.0 | −3.3 | < 0.001 | −1.2 |
Rhythmic (n = 24) Mean ± SD | Volleyball (n = 16) Mean ± SD | Mean Differences | 95% Confidence Interval | p | d | |||
---|---|---|---|---|---|---|---|---|
Sorensen | EMGrms Front (µV) | 54.1 ± 32.2 | 33.4 ±17.7 | 13.0 | 3.0 | 28.0 | <0.01 | 0.7 |
EMGrms Back (µV) | 272.3 ± 61.2 | 193.0 ± 53.0 | 79.2 | 41.3 | 117.2 | <0.001 | 1.3 | |
Time (s) | 35.5 ± 16.1 | 35.2 ± 23.7 | 0.0 | −12.6 | 12.7 | 0.996 | ||
Right Bridge | EMGrms Front (µV) | 227.6 ± 107.9 | 208.5 ± 94.0 | 19.1 | −47.9 | 86.2 | 0.619 | |
EMGrms Back (µV) | 77.9 ± 25.8 | 88.1 ± 25.5 | −10.1 | −26.9 | 6.6 | 0.228 | ||
Time (s) | 19.6 ± 12.0 | 17.0 ± 12.9 | 2.5 | −5.5 | 10.6 | 0.523 | ||
Prone Bridge | EMGrms Front (µV) | 285.2 ± 130.5 | 273.8 ± 98.0 | 11.3 | −66.1 | 88.9 | 0.768 | |
EMGrms Back (µV) | 20.8 ± 18.0 | 21.0 ± 4.9 | −3 | −6 | 0.0 | <0.05 | 0.0 | |
Time (s) | 29.5 ± 15.0 | 29.9 ± 23.8 | −0.3 | −12.7 | 11.9 | 0.949 | ||
Left Bridge | EMGrms Front (µV) | 197.5 ± 77.5 | 197.0 ± 87.7 | 0.52 | −52.8 | 53.9 | 0.984 | |
EMGrms Back (µV) | 94.0 ± 38.8 | 102.9 ± 42.5 | −8.9 | −35.2 | 17.4 | 0.497 | ||
Time (s) | 27.8 ± 18.0 | 21.1 ± 16.4 | 6.7 | −4.5 | 18.1 | 0.236 | ||
Trunk Flexor | EMGrms Front (µV) | 228.2 ± 147.1 | 163.5 ± 92.1 | 64.6 | −19.1 | 148.5 | 0.125 | |
EMGrms Back (µV) | 25.0 ± 10.9 | 22.8 ± 6.6 | 2.2 | −4.0 | 8.4 | 0.414 | ||
Time (s) | 37.1 ± 27.4 | 31.4 ± 24.5 | 5.7 | −11.4 | 22.8 | 0.506 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteban-García, P.; Rubio-Arias, J.Á.; Abián-Vicen, J.; Sánchez-Infante, J.; Jiménez-Díaz, J.F. Core Stability and Electromyographic Activity of the Trunk Musculature in Different Woman’s Sports. Sustainability 2020, 12, 9880. https://doi.org/10.3390/su12239880
Esteban-García P, Rubio-Arias JÁ, Abián-Vicen J, Sánchez-Infante J, Jiménez-Díaz JF. Core Stability and Electromyographic Activity of the Trunk Musculature in Different Woman’s Sports. Sustainability. 2020; 12(23):9880. https://doi.org/10.3390/su12239880
Chicago/Turabian StyleEsteban-García, Paula, Jacobo Á. Rubio-Arias, Javier Abián-Vicen, Jorge Sánchez-Infante, and José Fernando Jiménez-Díaz. 2020. "Core Stability and Electromyographic Activity of the Trunk Musculature in Different Woman’s Sports" Sustainability 12, no. 23: 9880. https://doi.org/10.3390/su12239880
APA StyleEsteban-García, P., Rubio-Arias, J. Á., Abián-Vicen, J., Sánchez-Infante, J., & Jiménez-Díaz, J. F. (2020). Core Stability and Electromyographic Activity of the Trunk Musculature in Different Woman’s Sports. Sustainability, 12(23), 9880. https://doi.org/10.3390/su12239880