# The Use of a Simulation Model for High-Runner Strategy Implementation in Warehouse Logistics

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. High-Runner Strategy

#### 2.2. High-Runner Strategy Organization of the Warehouse

## 3. Theory/Calculation

_{m}, m = 1, …, M for all material items that need to be placed. Let x

_{m},

_{r}be the number of material items m placed on the rack r. Mark the distribution matrix of all material items on the shelf positions $x={\left({x}_{m,r}\right)}_{m=1,\dots ,M}^{r=1,\dots ,R}$.

## 4. Results

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Zunic, E.; Hodzic, K.; Hasic, H.; Skrobo, R.; Besirevic, A.; Donko, D. Application of Advanced Analysis and Predictive Algorithm for Warehouse Picking Zone Capacity and Content Prediction. In Proceedings of the XXVI International Conference on Information, Communication and Automation Technologies (ICAT), Sarajevo, Bosnia-Herzegovina, 26–28 October 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Klodawski, M.; Jacyna, M.; Lewczuk, K.; Wasiak, M. The Issues of Selection Warehouse Process Strategies. Procedia Eng.
**2017**, 187, 451–457. [Google Scholar] [CrossRef] - Brynzer, H.; Johansson, M. Storage location assignment: Using the product structure to reduce order picking times. Int. J. Prod. Econ.
**1996**, 46, 595–603. [Google Scholar] [CrossRef] - Chen, M.; Huang, C.; Chen, K.; Wu, H. Aggregation of orders in distribution centers using data mining. Expert Syst. Appl.
**2005**, 28, 453–460. [Google Scholar] [CrossRef] - Baker, P.; Canessa, M. Warehouse Design: A Structured Approach. Eur. J. Oper. Res.
**2009**, 193, 425–436. [Google Scholar] [CrossRef][Green Version] - Ashayeri, J.; Gelders, L. Warehouse Design Optimization. Eur. J. Oper. Res.
**1985**, 21, 285–294. [Google Scholar] [CrossRef] - Jacyna-Golda, I.; Izdebski, M. The Multi-criteria Decision Support in Choosing the Efficient Location of Warehouses in the Logistic Network. Procedia Eng.
**2017**, 187, 635–640. [Google Scholar] [CrossRef] - Povoda, L.; Burget, R.; Masek, J.; Dutta, M. Job Shop Scheduling Problem with Heuristic Genetic Programming Operators. In Proceedings of the 2nd International Conference on Signal Processing and Integrated Networks (SPIN), New Delhi, India, 19–20 February 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 702–707. [Google Scholar]
- Ribino, P.; Cossentino, M.; Lodato, C.; Lopes, S. Agent-based Simulation Study for Improving Logistic Warehouse Performance. J. Simul.
**2018**, 12, 23–41. [Google Scholar] [CrossRef] - Al-Shaebi, A.; Khader, N.; Daoud, H.; Weiss, J.; Yoon, S. The Effect of Forklift Driver Behavior on Energy Consumption and Productivity. In Proceedings of the 27th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2017), Modena, Italy, 27–30 June 2017; Pellicciari, M., Peruzzini, M., Eds.; Elsevier Science BV: Amsterdam, The Netherlands, 2017; Volume 11, pp. 778–786. [Google Scholar]
- Lewczuk, K. The Concept of Genetic Programming in Organizing Internal Transport Processes. Arch. Transp.
**2015**, 34, 61–74. [Google Scholar] [CrossRef] - Bozer, Y.; White, J. Travel-time models for automated storage-retrieval systems. IIE Trans.
**1984**, 16, 329–338. [Google Scholar] [CrossRef] - Clarke, G.; Wright, J. Scheduling of vehicles from central depot to number of delivery points. Oper. Res.
**1964**, 12, 568–643. [Google Scholar] [CrossRef] - Diefenbach, H.; Glock, C. Ergonomic and Economic Optimization of Layout and Item Assignment of a U-shaped Order Picking Zone. Comput. Ind. Eng.
**2019**, 138. [Google Scholar] [CrossRef] - De Koster, R.; Le-Duc, T.; Roodbergen, K.J. Design and control of warehouse order picking: A literature review. Eur. J. Oper. Res.
**2007**, 182, 481–501. [Google Scholar] [CrossRef] - De Koster, R.; Van der Poort, E. Routing orderpickers in a warehouse: a comparison between optimal and heuristic solutions. IIE Trans.
**1998**, 30, 469–480. [Google Scholar] [CrossRef][Green Version] - Georgijevic, M.; Bojic, S.; Brcanov, D. The Location of Public Logistic Centers: an Expanded Capacity-limited Fixed Cost Location-allocation Modeling Approach. Transp. Plan. Technol.
**2013**, 36, 218–229. [Google Scholar] [CrossRef] - Gademann, N.; Van de Velde, S. Order Batching to Minimize Total Travel Time in a Parallel-Aisle Warehouse. IIE Trans.
**2005**, 37, 63–75. [Google Scholar] [CrossRef] - Elsayed, E.A. Algorithms for Optimal Material Handling in Automatic Warehousing Systems. Int. J. Prod. Res.
**1981**, 19, 525–535. [Google Scholar] [CrossRef] - Elsayed, E.A.; Stern, R.G. Computerized Algorithms for Order Processing in Automated Warehousing Systems. Int. J. Prod. Res.
**1983**, 21, 579–586. [Google Scholar] [CrossRef] - Elsayed, E.A.; Lee, M.K. Order Processing in Automated Storage/Retrieval Systems with Due Dates. IIE Trans.
**1996**, 28, 567–577. [Google Scholar] [CrossRef] - Dekker, R.; de Koster, M.; Roodbergen, K.; van Kalleveen, H. Improving order-picking response time at Ankor’s warehouse. Interfaces
**2004**, 34, 303–312. [Google Scholar] [CrossRef] - Hall, R. Distance approximations for routing manual pickers in a warehouse. IIE Trans.
**1993**, 25, 76–87. [Google Scholar] [CrossRef] - Hiassat, A.; Diabat, A.; Rahwan, I. A genetic algorithm approach for location-inventory-routing problem with perishable products. J. Manuf. Syst.
**2017**, 42, 93–103. [Google Scholar] [CrossRef] - Baldwin, G. High–Runner Strategy. 2019. Available online: https://www.omniaretail.com/blog/what-is-a-high-runner-strategy (accessed on 20 November 2020).
- Ardjmand, E.; Ghalehkhondabi, I.; Young, W.A., II; Sadeghi, A.; Weckman, G.R.; Shakeri, H. A hybrid artificial neural network, genetic algorithm and column generation heuristic for minimizing makespan in manual order picking operations. Expert Syst. Appl.
**2020**, 159, 113566. [Google Scholar] [CrossRef] - Karaenke, P.; Bichler, M.; Merting, S.; Minner, S. Non-monetary coordination mechanisms for time slot allocation in warehouse delivery. Eur. J. Oper. Res.
**2020**, 286, 897–907. [Google Scholar] [CrossRef] - Ashgzari, M.S.; Gue, K.R. A puzzle-based material handling system for order picking. Intl. Trans. Oper. Res.
**2020**. [Google Scholar] [CrossRef] - Ding, C.; He, H.; Wang, W.; Yang, W.; Zheng, Y. Optimal strategy for intelligent rail guided vehicle dynamic scheduling. Comput. Electr. Eng.
**2020**, 87, 106750. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fedorko, G.; Molnár, V.; Mikušová, N. The Use of a Simulation Model for High-Runner Strategy Implementation in Warehouse Logistics. *Sustainability* **2020**, *12*, 9818.
https://doi.org/10.3390/su12239818

**AMA Style**

Fedorko G, Molnár V, Mikušová N. The Use of a Simulation Model for High-Runner Strategy Implementation in Warehouse Logistics. *Sustainability*. 2020; 12(23):9818.
https://doi.org/10.3390/su12239818

**Chicago/Turabian Style**

Fedorko, Gabriel, Vieroslav Molnár, and Nikoleta Mikušová. 2020. "The Use of a Simulation Model for High-Runner Strategy Implementation in Warehouse Logistics" *Sustainability* 12, no. 23: 9818.
https://doi.org/10.3390/su12239818