Effects of the Policy and Human Intervention on the Infrastructure-Environment Nexus in China
Abstract
1. Introduction
2. Methods
2.1. China’s Situations
2.1.1. Gross Capital Formation in China
2.1.2. Future Investment of China
2.1.3. National Policies for Water in China
2.2. Environmental Extended Multi-Regional Input-Output (EEMRIO) Modelling
2.3. Structural Decomposition Analysis (SDA)
2.4. Wedge Approach
3. Results
3.1. Territorial Blue Water Withdrawal of Global Infrastructure Investment
3.2. Key Drivers for the Infrastructure-Related Blue Water Withdrawal in China
3.3. Policy and Human Intervention on the Infrastructure-Environmental Nexus
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Miller, T.R.; Berrill, P.; Wolfram, P.; Wang, R.; Kim, Y.; Zheng, X.; Hertwich, E. Method for endogenizing capital in the United States Environmentally-Extended Input-Output model. J. Ind. Ecol. 2019, 23, 1410–1424. [Google Scholar] [CrossRef]
- Hub, G.I. Global Infrastructure Outlook: Infrastructure Investment Needs 50 Countries, 7 Sectors to 2040; Oxford Economics: Sydney, Australia, 2017. [Google Scholar]
- Södersten, C.-J.; Wood, R.; Hertwich, E. Environmental Impacts of Capital Formation. J. Ind. Ecol. 2017, 22, 55–67. [Google Scholar] [CrossRef]
- Södersten, C.-J.H.; Wood, R.; Hertwich, E. Endogenizing Capital in MRIO Models: The Implications for Consumption-Based Accounting. Environ. Sci. Technol. 2018, 52, 13250–13259. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, R.; Wood, R.; Wang, C.; Hertwich, E. High sensitivity of metal footprint to national GDP in part explained by capital formation. Nat. Geosci. 2018, 11, 269–273. [Google Scholar] [CrossRef]
- The World Bank. World Development Indicators; The World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Chatterjee, S. Poverty Reduction Strategies—Lessons from the Asian and Pacific Region on Inclusive Development. Asian Dev. Rev. 2005, 22, 12–44. [Google Scholar]
- Straub, S.; Vellutini, C.; Warlters, M. Infrastructure and Economic Growth in East Asia; World Bank Policy Research Working Paper no 4589; The World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Shilling, J.D.; Chomitz, K.; Flanagan, A.E. The Nexus between Infrastructure and Environment (English); Evaluation Cooperation Group, Ed.; World Bank: Washington, DC, USA, 2007; Volume 1. [Google Scholar]
- Davis, S.; Caldeira, K.; Matthews, H.D. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure. Science 2010, 329, 1330–1333. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-M.; Ohshita, S.; Lenzen, M.; Wiedmann, T.; Jiborn, M.; Chen, B.; Lester, L.; Guan, D.; Meng, J.; Xu, S.; et al. Consumption-based greenhouse gas emissions accounting with capital stock change highlights dynamics of fast-developing countries. Nat. Commun. 2018, 9, 3581. [Google Scholar] [CrossRef]
- Zhang, D.; Zhan, Q.; Chen, Y.; Li, S. Joint optimization of logistics infrastructure investments and subsidies in a regional logistics network with CO2 emission reduction targets. Transp. Res. Part D 2018, 60, 174–190. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Ye, Q.; Zhang, W.; Meng, F.; Zhang, S. Multi-objective optimization integrated with life cycle assessment for rainwater harvesting systems. J. Hydrol. 2018, 558, 659–666. [Google Scholar] [CrossRef]
- Munro, F.R. Renewable energy and transition-periphery dynamics in Scotland. Environ. Innov. Soc. Transit. 2019, 31, 273–281. [Google Scholar] [CrossRef]
- Rogers, B.C.; Brown, R.; De Haan, F.J.; Deletic, A.; Ferguson, B.C. Analysis of institutional work on innovation trajectories in water infrastructure systems of Melbourne, Australia. Environ. Innov. Soc. Transit. 2015, 15, 42–64. [Google Scholar] [CrossRef]
- Reed, M. Stakeholder participation for environmental management: A literature review. Biol. Conserv. 2008, 141, 2417–2431. [Google Scholar] [CrossRef]
- Úbeda, J.A.P.; Jiménez, J.D.B.; Ureña, L.J.B. Grupos de interés, gestión ambiental y resultado empresarial: Una propuesta integradora. Cuadernos de Economía y Dirección de la Empresa 2011, 14, 151–161. [Google Scholar] [CrossRef]
- Zhou, F.; Bo, Y.; Ciais, P.; Dumas, P.; Tang, Q.; Wang, X.; Liu, J.; Zheng, C.; Polcher, J.; Yin, Z.; et al. Deceleration of China’s human water use and its key drivers. Proc. Natl. Acad. Sci. USA 2020, 117, 7702–7711. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, J.; Liu, Q.; Tillotson, M.R.; Guan, D.; Hubacek, K. Physical and virtual water transfers for regional water stress alleviation in China. Proc. Natl. Acad. Sci. USA 2015, 112, 1031–1035. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, T.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. USA 2013, 112, 6271–6276. [Google Scholar] [CrossRef]
- Davis, S.; Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 5687–5692. [Google Scholar] [CrossRef] [PubMed]
- NBSC. Statistic Yearbook of the People’s Republic of China (2016); National Bureau of Statistics of the People’s Republic of China: Beijing, China, 2017.
- Stadler, K.; Wood, R.; Bulavskaya, T.; Södersten, C.-J.; Simas, M.; Schmidt, S.; Usubiaga-Liaño, A.; Acosta-Fernández, J.; Kuenen, J.; Bruckner, M.; et al. EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output Tables. J. Ind. Ecol. 2018, 22, 502–515. [Google Scholar] [CrossRef]
- Thacker, S.; Adshead, D.; Fay, M.; Hallegatte, S.; Harvey, M.; Meller, H.; O’Regan, N.; Rozenberg, J.; Watkins, G.; Hall, J.W. Infrastructure for sustainable development. Nat. Sustain. 2019, 2, 324–331. [Google Scholar] [CrossRef]
- Ascensão, F.; Fahrig, L.; Clevenger, A.P.; Corlett, R.T.; Jaeger, J.A.G.; Laurance, W.F.; Pereira, H.M. Environmental challenges for the Belt and Road Initiative. Nat. Sustain. 2018, 1, 206–209. [Google Scholar] [CrossRef]
- National Development and Reform Commission of the People’s Republic of China. China Water Conservation Technology Policy Outline. Vol. Announcement No.17; NDRC: Beijing, China, 2012. [Google Scholar]
- Ma, T.; Sun, S.; Fu, G.; Hall, J.W.; Ni, Y.; He, L.; Yi, J.; Zhao, N.; Du, Y.; Pei, T.; et al. Pollution exacerbates China’s water scarcity and its regional inequality. Nat. Commun. 2020, 11, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Leontief, W.W. Quantitative Input and Output Relations in the Economic Systems of the United States. Rev. Econ. Stat. 1936, 18, 105. [Google Scholar] [CrossRef]
- Wiedmann, T.; Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 2018, 11, 314–321. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Chiu, S.-H. Sustainable Performance of Low-Carbon Energy Infrastructure Investment on Regional Development: Evidence from China. Sustainablity 2018, 10, 4657. [Google Scholar] [CrossRef]
- Wu, Z.; Ye, Q. Water pollution loads and shifting within China’s inter-province trade. J. Clean. Prod. 2020, 259, 120879. [Google Scholar] [CrossRef]
- Dong, H.; Geng, Y.; Fujita, T.; Fujii, M.; Hao, N.; Yu, X. Uncovering regional disparity of China’s water footprint and inter-provincial virtual water flows. Sci. Total. Environ. 2014, 500, 120–130. [Google Scholar] [CrossRef]
- Dietzenbacher, E.; Los, B. Structural Decomposition Techniques: Sense and Sensitivity. Econ. Syst. Res. 1998, 10, 307–324. [Google Scholar] [CrossRef]
- Dietzenbacher, E.; Los, B. Structural Decomposition Analyses with Dependent Determinants. Econ. Syst. Res. 2000, 12, 497–514. [Google Scholar] [CrossRef]
- Wada, Y.; Gleeson, T.; Esnault, L. Wedge approach to water stress. Nat. Geosci. 2014, 7, 615–617. [Google Scholar] [CrossRef]
- O’Neill, B.; Carter, T.; Ebi, K.; Edmonds, J.; Hallegatte, S.; Kemp-Benedict, E.; Kriegler, E.; Mearns, L.; Moss, R.; Riahi, K. Meeting Report of the Workshop on the Nature and Use of New Socioeconomic Pathways for Climate Change Research. In Workshop Report; National Center for Atmospheric Research: Boulder, CO, USA, 2012. [Google Scholar]
- Miller, R.E.; Blair, P.D. Input–Output Analysis: Foundations and Extensions; Prentice-Hall: Englewood Cliffs, NJ, USA, 1985. [Google Scholar]
- Guan, D.; Hubacek, K.; Weber, C.L.; Peters, G.P.; Reiner, D.M. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob. Environ. Chang. 2008, 18, 626–634. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Yuan, J. Transition of China’s power sector consistent with Paris Agreement into 2050: Pathways and challenges. Renew. Sustain. Energy Rev. 2020, 132, 132. [Google Scholar] [CrossRef]
- Tamea, S.; Carr, J.; Laio, F.; Ridolfi, L. Drivers of the virtual water trade. Water Resour. Res. 2014, 50, 17–28. [Google Scholar] [CrossRef]
- Jaegermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W. Water savings potentials of irrigation systems: Global simulation of processes and linkages. Hydrol. Earth Syst. Sci. 2015, 19, 3073–3091. [Google Scholar] [CrossRef]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Green and blue water footprint reduction in irrigated agriculture: Effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 2015, 19, 4877–4891. [Google Scholar] [CrossRef]
- Department of Economic and Social Affairs Population Division. The 2019 Revision of World Population Prospects; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Zhang, D.; Xu, J.; Zhang, Y.; Wang, J.; He, S.; Zhou, X.; Dan, Z.; Jiapeng, X.; Yizhu, Z.; Jing, W.; et al. Study on sustainable urbanization literature based on Web of Science, scopus, and China national knowledge infrastructure: A scientometric analysis in CiteSpace. J. Clean. Prod. 2020, 264, 121537. [Google Scholar] [CrossRef]
- Hertwich, E.; Ali, S.; Ciacci, L.; Fishman, T.; Heeren, N.; Masanet, E.; Asghari, F.N.; Olivetti, E.; Pauliuk, S.; Tu, Q.; et al. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—A review. Environ. Res. Lett. 2019, 14, 043004. [Google Scholar] [CrossRef]
- Tong, D.; Zhang, Q.; Zheng, Y.; Caldeira, K.; Shearer, C.; Hong, C.; Qin, Y.; Davis, S.J. Committed emissions from existing energy infrastructure jeopardize 1.5 degrees C climate target. Nature 2019, 572, 373–377. [Google Scholar] [CrossRef]
- Bringezu, S.; Potočnik, J.; Schandl, H.; Lu, Y.; Ramaswami, A.; Swilling, M.; Suh, S. Multi-Scale Governance of Sustainable Natural Resource Use—Challenges and Opportunities for Monitoring and Institutional Development at the National and Global Level. Sustainiablity. 2016, 8, 778. [Google Scholar] [CrossRef]
- Afionis, S.; Sakai, M.; Scott, K.; Barrett, J.; Gouldson, A. Consumption-based carbon accounting: Does it have a future? Wiley Interdiscip. Rev. Clim. Chang. 2016, 8, e438. [Google Scholar] [CrossRef]
- Dalin, C.; Hanasaki, N.; Qiu, H.; Mauzerall, D.L.; Rodriguez-Iturbe, I. Water resources transfers through Chinese interprovincial and foreign food trade. Proc. Natl. Acad. Sci. USA 2014, 111, 9774–9779. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Norris, C.B.; Lenzen, M.; Norris, G.; Murray, J. How Social Footprints of Nations Can Assist in Achieving the Sustainable Development Goals. Ecol. Econ. 2017, 135, 55–65. [Google Scholar] [CrossRef]
Policy/Planning | Targets | 2015 | 2020 | 2030 |
---|---|---|---|---|
Water | ||||
“Three Red Lines” | Water Withdrawal | 635 BCM | 670 BCM | 700 BCM |
Irrigation efficiency | 53% | 55% | 60% | |
Water intensity of 1300 Euros (10,000 CNY) of industrial value added | 30% below 2010 figures | 65 m3 | 40 m3 | |
Water function zones achieving water quality standard more than | 60% | 80% | 95% | |
National Water Resources Planning | Water withdrawal for agriculture | 420 BCM | ||
Irrigation | 370 BCM | |||
Livestock | 28 BCM | |||
Water withdrawal for industry | 172 BCM | |||
Water withdrawal for domestic | 102 BCM | |||
Urban | 54 BCM | |||
Nonconventional water resources | 16.6 BCM | |||
Water intensity of 1300 Euros (10,000 CNY) of value added | 120 m3 | 70 m3 | ||
GDP | 7.2 trillion Euros (56 trillion CNY) | 8 trillion Euros (62. trillion CNY) | ||
Population | 1.44 billion | 1.5 billion | ||
Urban | 0.8 billion | 0.94 billion | ||
General | ||||
China’s 13th Five-Year Plan | Water intensity of 1300 Euros (10,000 CNY) of industrial value added | −23% * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Ye, Q.; Tian, Z. Effects of the Policy and Human Intervention on the Infrastructure-Environment Nexus in China. Sustainability 2020, 12, 7279. https://doi.org/10.3390/su12187279
Wu Z, Ye Q, Tian Z. Effects of the Policy and Human Intervention on the Infrastructure-Environment Nexus in China. Sustainability. 2020; 12(18):7279. https://doi.org/10.3390/su12187279
Chicago/Turabian StyleWu, Zhaodan, Quanliang Ye, and Ze Tian. 2020. "Effects of the Policy and Human Intervention on the Infrastructure-Environment Nexus in China" Sustainability 12, no. 18: 7279. https://doi.org/10.3390/su12187279
APA StyleWu, Z., Ye, Q., & Tian, Z. (2020). Effects of the Policy and Human Intervention on the Infrastructure-Environment Nexus in China. Sustainability, 12(18), 7279. https://doi.org/10.3390/su12187279