# Pricing and Subsidy Models for Transshipment Sustainability in the Three Gorges Dam Region of China

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

- What is the economic benefit from carriers’ choice of a lockage or transshipment mode when the ship lock approaching channel is congested?
- Given the 3-year subsidies on the transshipment cost provided by the local government, what is the impact on the environmental emissions measured by CO
_{2}? - What are the carriers’ pricing strategies based on profit under different modes with or without the government subsidies and lockage congestion?

## 2. Literature Review

## 3. Model Construction

#### 3.1. Notations

#### 3.2. Formulation of the Basic Model

#### 3.3. Formulation of Mathematical Components

**Corollary**

**1.**

**Proof.**

#### 3.4. Optimization Model Under the Transshipment Mode

**Corollary**

**2.**

**Proof.**

## 4. Results and Analyses

_{,}$\alpha =1$, $\rho =0.035$, ${x}_{1}=0.1$, ${x}_{2}=0.1$, Figure 4 shows that the ${p}_{t}^{*}$ of the transshipment mode goes down sharply when $\beta $ is smaller than 0.2, and descends gradually at a certain level when $\beta $ increases from 0.2 to 1. The curve of ${p}_{l}^{*}$ shows a different trend with minor changes when $\beta $ increases. In Figure 4b,c, two curves are near the coincidence state when $\beta =1$. For the scenario under subsidies and congestion, the freight price ${p}_{t}^{*}$ of the transshipment mode intersects with the freight price ${p}_{l}^{*}$ of the lockage mode when $\beta =0.4$ because the subsidies from the government play an important role in reducing the transshipment cost.

## 5. Conclusions

## 6. Policy Implications

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

## Appendix B

## Appendix C

## References

- UNITEX. The Volume of Goods Passing along the Yangtze River Trunk Line Reached 2.93 Billion Tons, up 8.9 Percent Year on Year. Available online: http://www.unitexlogistics.com/content/?699.html (accessed on 25 August 2020).
- Yuan, Y.; Ji, B.; Yuan, X.; Huang, Y. Lockage scheduling of Three Gorges-Gezhouba dams by hybrid of chaotic particle swarm optimization and heuristic-adjusted strategies. Appl. Math. Comput.
**2015**, 270, 74–89. [Google Scholar] [CrossRef] - Ji, B.; Yuan, X.; Yuan, Y. A binary borg-based heuristic method for solving a multi-objective lock and transshipment co-scheduling problem. IEEE Trans. Intell. Transp. Syst.
**2018**, 20, 947–958. [Google Scholar] [CrossRef] - Yuan, X.; Ji, B.; Yuan, Y.; Wu, X.; Zhang, X. Co-scheduling of lock and water–land transshipment for ships passing the dam. Appl. Soft Comput.
**2016**, 45, 150–162. [Google Scholar] [CrossRef] - Yang, L.; Zhang, Y.; Chiong, R.; Dhakal, S.; Qi, Q. Using evolutionary game theory to study behavioral strategies of the government and carriers under different transshipment modes. IEEE Access.
**2020**, 8, 18514–18521. [Google Scholar] [CrossRef] - Fu, B.J.; Wu, B.F.; Lü, Y.H.; Xu, Z.H.; Cao, J.H.; Niu, D.; Yang, G.S.; Zhou, Y.M. Three Gorges Project: Efforts and challenges for the environment. Prog. Phys. Geogr.
**2010**, 34, 741–754. [Google Scholar] [CrossRef] - Nauss, R.M. Optimal sequencing in the presence of setup times for tow/barge traffic through a river lock. Eur. J. Oper. Res.
**2008**, 187, 1268–1281. [Google Scholar] [CrossRef] - Zhang, X.; Fu, X.; Yuan, X. Co-evolutionary strategy algorithm to the lockage scheduling of the three gorges project. In Proceedings of the 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, China, 19–20 December 2008; Volume 2, pp. 583–587. [Google Scholar]
- Smith, L.D.; Nauss, R.M.; Mattfeld, D.C.; Li, J.; Ehmke, J.F.; Reindl, M. Scheduling operations at system choke points with sequence-dependent delays and processing times. Transp. Res. Part E
**2011**, 47, 669–680. [Google Scholar] [CrossRef] - Wang, X.; Qi, H.; Xiao, H.; Zhang, X.; Hu, Y.; Feng, X. Series queuing network scheduling approach to co-scheduling model of three Gorges-Gezhou dam. J. Syst. Sci. Complex.
**2010**, 23, 715–726. [Google Scholar] [CrossRef] - Wang, X.; Zhao, Y.; Sun, P.; Wang, X. An analysis on convergence of data-driven approach to ship lock scheduling. Math. Comput. Simulat.
**2013**, 88, 31–38. [Google Scholar] [CrossRef] - Reynaerts, J. Estimating lock congestion. Int. J. Shipp. Transp. Logist.
**2014**, 6, 133–151. [Google Scholar] [CrossRef][Green Version] - Bugarski, V.; BačKalić, T.; Kuzmanov, U. Fuzzy decision support system for ship lock control. Expert Syst. Appl.
**2013**, 40, 3953–3960. [Google Scholar] [CrossRef] - Kanović, Ž.; Bugarski, V.; Bačkalić, T. Ship lock control system optimization using GA, PSO and ABC: A comparative review. Promet-Traffic Transp.
**2014**, 26, 23–31. [Google Scholar] [CrossRef] - Verstichel, J. The Lock Scheduling Problem. Ph.D. Dissertation, Faculty of Engineering Science, KU Leuven, Heverlee, Belgium, 2013. Available online: https://lirias.kuleuven.be/1675876?limo=0 (accessed on 25 August 2020).
- Verstichel, J.; De Causmaecker, P.; Spieksma, F.C.; Berghe, G.V. Exact and heuristic methods for placing ships in locks. Eur. J. Oper. Res.
**2014**, 235, 387–398. [Google Scholar] [CrossRef] - Verstichel, J.; De Causmaecker, P.; Spieksma, F.; Berghe, G.V. The generalized lock scheduling problem: An exact approach. Transp. Res. Part E
**2014**, 65, 16–34. [Google Scholar] [CrossRef] - Verstichel, J.; Kinable, J.; De Causmaecker, P.; Berghe, G.V. A Combinatorial Benders’ decomposition for the lock scheduling problem. Comput. Oper. Res.
**2015**, 54, 117–128. [Google Scholar] [CrossRef][Green Version] - Zhang, Y.Y.; Chang, M.S.; Fuller, S.W. Statistical analysis of vessel waiting time and lockage time on the Upper Mississippi River. Marit. Econ. Logist.
**2015**, 17, 416–439. [Google Scholar] [CrossRef] - Prandtstetter, M.; Ritzinger, U.; Schmidt, P.; Ruthmair, M. A variable neighborhood search approach for the interdependent lock scheduling problem. In Proceedings of the European Conference on Evolutionary Computation in Combinatorial Optimization, Copenhagen, Denmark, 8–10 April 2015; Springer: New York, NY, USA, 2015. [Google Scholar]
- Passchyn, W.; Coene, S.; Briskorn, D.; Hurink, J.L.; Spieksma, F.C.; Berghe, G.V. The lockmaster’s problem. Eur. J. Oper. Res.
**2016**, 251, 432–441. [Google Scholar] [CrossRef] - Ji, B.; Yuan, X.; Yuan, Y. Orthogonal design-based NSGA-III for the optimal lockage co-scheduling problem. IEEE Trans. Intell. Transp. Syst.
**2016**, 18, 2085–2095. [Google Scholar] [CrossRef] - Passchyn, W.; Briskorn, D.; Spieksma, F.C. No-wait scheduling for locks. Inf. J. Comput.
**2019**, 31, 413–428. [Google Scholar] [CrossRef] - Wilson, W.W.; Dahl, B.L.; Taylor, R.D. Impacts of lock capacity expansion on delay costs for grain shipped on the Mississippi River. J. Transp. Econ. Policy
**2011**, 45, 129–154. [Google Scholar] - Liao, P. Improved analytical model for estimating the capacity of a waterway lock. J. Waterw. Port Coast. Ocean Eng.
**2018**, 144, 04018021. [Google Scholar] [CrossRef] - Ji, B.; Yuan, X.; Yuan, Y.; Lei, X.; Fernando, T.; Iu, H.H. Exact and heuristic methods for optimizing lock-quay system in inland waterway. Eur. J. Oper. Res.
**2019**, 277, 740–755. [Google Scholar] [CrossRef] - Tawfik, C.; Limbourg, S. Pricing Problems in Intermodal Freight Transport: Research Overview and Prospects. Sustainability
**2018**, 10, 3341. [Google Scholar] [CrossRef][Green Version] - Chen, J.; Wu, D.; Li, P. Research on the Pricing Model of the Dual-Channel Reverse Supply Chain Considering Logistics Costs and Consumers’ Awareness of Sustainability Based on Regional Differences. Sustainability
**2018**, 10, 2229. [Google Scholar] [CrossRef][Green Version] - Xie, C.; Wang, X.; Fukuda, D. On the Pricing of Urban Rail Transit with Track Sharing Freight Service. Sustainability
**2020**, 12, 2758. [Google Scholar] [CrossRef][Green Version] - Baghestani, A.; Tayarani, M.; Allahviranloo, M.; Gao, H.O. Evaluating the Traffic and Emissions Impacts of Congestion Pricing in New York City. Sustainability
**2020**, 12, 3655. [Google Scholar] [CrossRef] - Wang, S.; Meng, Q. Liner ship fleet deployment with container transshipment operations. Transp. Res. Part E
**2012**, 48, 470–484. [Google Scholar] [CrossRef] - Lee, L.H.; Chew, E.P.; Tan, K.C.; Wang, Y. Vehicle dispatching algorithms for container transshipment hubs. OR Spectrum
**2010**, 32, 663–685. [Google Scholar] [CrossRef] - Zhen, L.; Shen, T.; Wang, S.; Yu, S. Models on ship scheduling in transshipment hubs with considering bunker cost. Int. J. Prod. Econ.
**2016**, 173, 111–121. [Google Scholar] [CrossRef] - Dubovik, A.; Janssen, M.C. Oligopolistic competition in price and quality. Games Econ. Behav.
**2012**, 75, 120–138. [Google Scholar] [CrossRef][Green Version] - Álvarez-SanJaime, Ó.; Cantos-Sánchez, P.; Moner-Colonques, R.; Sempere-Monerris, J.J. Competition and horizontal integration in maritime freight transport. Transp. Res. Part E
**2013**, 51, 67–81. [Google Scholar] [CrossRef][Green Version] - Xu, L.; Govindan, K.; Bu, X.; Yin, Y. Pricing and balancing of the sea–cargo service chain with empty equipment repositioning. Comput. Oper. Res.
**2015**, 54, 286–294. [Google Scholar] [CrossRef] - Qu, C.; Wang, G.W.; Zeng, Q. Modelling port subsidy policies considering pricing decisions of feeder carriers. Transp. Res. Part E
**2017**, 99, 115–133. [Google Scholar] [CrossRef] - Sinayi, M.; Rasti-Barzoki, M. A game theoretic approach for pricing, greening, and social welfare policies in a supply chain with government intervention. J. Clean. Prod.
**2018**, 196, 1443–1458. [Google Scholar] [CrossRef]

**Figure 9.**Changes in optimal prices (${p}_{{}_{t}}^{*}$) and optimal profits (${\pi}_{{}_{t}}^{*}$) with respect to subsidy ${\eta}_{i}$.

Parameters | Descriptions |
---|---|

$\alpha $ | Market potential, $\alpha >0$ |

$\beta $ | Customer’s price sensitivity $\beta \in [0,1]$ |

$\rho $ | The degree of carriers’ loyalty to the lockage mode, $\rho \in [0,1]$ |

${\eta}_{i}$ | Unit subsidy offered by the government |

${e}_{i}$ | Unit environmental cost (CO2) |

${p}_{i}$ | Freight rate |

${q}_{i}$ | Demand functions |

${c}_{i}^{l}$ | Unit cost of lockage mode |

${c}_{i}^{t}$ | Unit cost of transshipment mode |

${\pi}_{i}^{l}$ | Profit function of lockage mode |

${\pi}_{i}^{t}$ | Profit function of transshipment mode |

$CS$ | Consumer’ surplus |

$S{W}_{i}^{l}$ | Social welfare function of lockage mode |

$S{W}_{i}^{t}$ | Social welfare function of transshipment mode |

${E}_{i}^{l}$ | Unit environment cost of lockage mode |

${E}_{i}^{t}$ | Unit environment cost of transshipment mode |

Unit Freight Volume (100 cars/unit) | 1 | 5 | 8 | |||||||||

Unit Subsidy (100 RMB/car) | 0 | 1 | 1.5 | 2 | 0 | 1 | 1.5 | 2 | 0 | 1 | 1.5 | 2 |

Unit Pricing (100 RMB/car) | 1.019 | 0.545 | 0.308 | 0.071 | 2.254 | 1.780 | 1.543 | 1.307 | 3.180 | 2.707 | 2.470 | 2.233 |

Unit Profit (10 RMB/car) | −0.287 | −0.373 | −0.273 | −0.078 | 1.738 | 0.654 | 0.256 | −0.047 | 4.963 | 3.132 | 2.359 | 1.682 |

Unit Social Welfare (10 RMB/car) * | 0.098 | 0.581 | 0.974 | 1.468 | 0.737 | 0.167 | 0.034 | 0.016 | 3.017 | 1.658 | 1.130 | 0.703 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yang, L.; Li, E.Y.; Zhang, Y.
Pricing and Subsidy Models for Transshipment Sustainability in the Three Gorges Dam Region of China. *Sustainability* **2020**, *12*, 7026.
https://doi.org/10.3390/su12177026

**AMA Style**

Yang L, Li EY, Zhang Y.
Pricing and Subsidy Models for Transshipment Sustainability in the Three Gorges Dam Region of China. *Sustainability*. 2020; 12(17):7026.
https://doi.org/10.3390/su12177026

**Chicago/Turabian Style**

Yang, Lijuan, Eldon Y. Li, and Yu Zhang.
2020. "Pricing and Subsidy Models for Transshipment Sustainability in the Three Gorges Dam Region of China" *Sustainability* 12, no. 17: 7026.
https://doi.org/10.3390/su12177026