Improvement and Application of Key Pasture Theory for the Evaluation of Forage–Livestock Balance in the Seasonal Grazing Regions of China’s Alpine Desert Grasslands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Profile of Wulan County
2.2. Analysis of the Natural Relationship between Forage Production and Livestock Demand
2.3. Methods
2.3.1. Traditional Theory (TT)
2.3.2. Key Pasture Theory (KPT)
2.3.3. Dynamic Key Pasture Theory (DKPT)
3. Results
3.1. TCCs of Seasonal Pastoral Regions under Different Precipitation Scenarios
3.2. Evaluation of the Forage–Livestock Balance in Representative Year Based on the DKPT Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ebrahimi, M.; Khosravi, H.; Rigi, M. Short-term grazing exclusion from heavy livestock rangelands affects vegetation cover and soil properties in natural ecosystems of southeastern Iran. Ecol. Eng. 2016, 95, 10–18. [Google Scholar] [CrossRef]
- Harrison, P.A.; Vandewalle, M.; Sykes, M.T.; Berry, P.M.; Bugter, R.; de Bello, F.; Feld, C.K.; Grandin, U.; Harrington, R.; Haslett, J.R.; et al. Identifying and prioritising services in European terrestrial and freshwater ecosystems. Biodivers. Conserv. 2010, 19, 2791–2821. [Google Scholar] [CrossRef] [Green Version]
- Smith, P. Do grasslands act as a perpetual sink for carbon? Glob. Chang. Biol. 2014, 20, 2708–2711. [Google Scholar] [CrossRef] [PubMed]
- Ryals, R.; Hartman, M.D.; Parton, W.J.; DeLonge, M.S.; Silver, W.L. Long-term climate change mitigation potential with organic matter management on grasslands. Ecol. Appl. 2015, 25, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Li, H.; Gao, Z.; Wang, D.; Wang, J. Water and land resources allocation model of pastoral area based on grassland ecological conservation. Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 2016, 32, 123–130. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, X.; Tang, Y.; Gu, S.; Zhou, L. Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Grassl. Sci. 2005, 51, 191–203. [Google Scholar] [CrossRef]
- Ramankutty, N.; Evan, A.T.; Monfreda, C.; Foley, J.A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Yang, F.; Shao, Q.; Guo, X.; Tang, Y.; Li, Y.; Wang, D.; Wang, Y.; Fan, J. Effect of large wild herbivore populations on the forage-livestock balance in the source region of the Yellow River. Sustainability 2018, 10, 340. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Wu, J.; Zhang, X.; Niu, B.; Li, M.; Zhang, Y.; Wang, X.; Wang, Z. Dynamic forage-livestock balance analysis in alpine grasslands on the Northern Tibetan Plateau. J. Environ. Manag. 2019, 238, 352–359. [Google Scholar] [CrossRef]
- Bai, Y.; Pan, Q.; Xing, Q. Fundamental theories and technologies for optimizing the production functions and ecological functions in grassland ecosystems. Kexue Tongbao Chin. Sci. Bull. 2016, 61, 201–212. [Google Scholar] [CrossRef]
- Shang, Z.H.; Gibb, M.J.; Leiber, F.; Ismail, M.; Ding, L.M.; Guo, X.S.; Long, R.J. The sustainable development of grassland-livestock systems on the Tibetan plateau: Problems, strategies and prospects. Rangel. J. 2014, 36, 267–296. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y. On the concepts and practices concerning grassland-livestock balance. Acta Agrestia Sin. 2005, 13, 265–268. [Google Scholar] [CrossRef]
- Li, M.; Li, Z.; Bao, Y.; Zhang, J.; Liu, L.; Li, Z. The study on grassland carrying capacity and regulatory approaches of livestock-feeds balance in Hulunbuir grassland. Chin. J. Grassl. 2016, 38, 72–78. [Google Scholar] [CrossRef]
- Ma, Q.; Chai, L.; Hou, F.; Chang, S.; Ma, Y.; Tsunekawa, A.; Cheng, Y. Quantifying grazing intensity using remote sensing in alpine meadows on Qinghai-Tibetan Plateau. Sustainability 2019, 11, 417. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhang, L.; Xie, D.; Yin, X.; Liu, C.; Liu, G. Application of synthetic NDVI time series blended from landsat and MODIS data for grassland biomass estimation. Remote Sens. 2016, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Hong, J.; Ma, X.; Wang, X. Global patterns in above-ground net primary production and precipitation-use efficiency in grasslands. J. Mt. Sci. 2018, 15, 1682–1692. [Google Scholar] [CrossRef]
- Jia, W.; Liu, M.; Yang, Y.; He, H.; Zhu, X.; Yang, F.; Yin, C.; Xiang, W. Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches. Ecol. Indic. 2016, 60, 1031–1040. [Google Scholar] [CrossRef]
- Ministry of Agriculture of the People’s Republic of China. Calculation of Rangeland Carrying Capacity, NY/T 635-2015; Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2015.
- Li, Q. Series studies of animal demanding-feed availability balance control (2)—Evaluation on current method of animal carrying capacity calculation. Pratacult. Sci. 2011, 28, 2042–2045. [Google Scholar]
- Xu, M. A review of grassland carrying capacity: Perspective and dilemma for research in China on “forage-livestock balance”. Acta Pratacult. Sin. 2014, 23, 321–329. [Google Scholar] [CrossRef]
- Chen, Q. Key pasture, seasonal grazing and sustainable development of grassland animal husbandry production in China. Acta Pratacult. Sin. 2005, 29–34. [Google Scholar] [CrossRef]
- Local Chronicles of Wulan County, Qinghai Province, China; San Qin Press: Xi’an, China, 2003.
- Li, X.Q.; Li, X.M. Trend of degenerated grassland in Haixi Prefecture Qinghai Province. Qinghai Pratacult. 2018, 27, 37–41. [Google Scholar] [CrossRef]
- Yang, F. Study of Feed Balance in Qilian Mountain Pastoral Areas and Precision Management of Sheep. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 2012. [Google Scholar]
- Fei, Y.X.; Chao, Y.F. Dynamic analysis of natural grassland resources during the years of Haixi Prefecture. Qinghai Pratacult. 2018, 27, 41–44, 48. [Google Scholar] [CrossRef]
- Xu, B.; Yang, X.C.; Jin, Y.X.; Wang, D.L.; Yang, Z.; Li, J.Y.; Liu, H.Q.; Yu, H.D.; Ma, H.L. Monitoring and evaluation of grassland-livestock balance in pastoral and semi-pastoral counties of China. Geogr. Res. 2012, 31, 1998–2006. [Google Scholar]
- Qin, L.; Song, X.; Feng, X. Forage-livestock dynamic balance of pasturing area based on rotational grazing theory in northern slope of Qilian Mountains. Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 2019, 35, 256–264. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, L.; Liu, W.; Zhou, H.K. Using Remote Sensing and GIS Technologies to Estimate Grass Yield and Livestock Carrying Capacity of Alpine Grasslands in Golog Prefecture, China. Pedosphere 2010, 20, 342–351. [Google Scholar] [CrossRef]
- Yu, M.; Ellis, J.E.; Epstein, H.E. Regional Analysis of Climate, Primary Production, and Livestock Density in Inner Mongolia. J. Environ. Qual. 2004, 33, 1675–1681. [Google Scholar] [CrossRef]
- Sun, J.; Jiao, T.; Li, Y.; Wang, F.; Wang, P.; Yu, X. A Study on the Optimal Allocation of the Alpine Pasture Grassland-Livestock-A Case of a Herder in Maqin County, Qinghai Province. Acta Agrestia Sin. 2019, 27, 728–735. [Google Scholar] [CrossRef]
- Hao, L.; Han, X.; Niu, J.; Zhang, X.; Xiang, Y.; Wang, X.; Chai, S.; Long, R.; Liu, S. Study on Nutrient Balance of Grassland in Henan County, Sanjiang. Acta Agrestia Sin. 2018, 26, 520–524. [Google Scholar] [CrossRef]
- Petrie, M.D.; Peters, D.P.C.; Yao, J.; Blair, J.M.; Burruss, N.D.; Collins, S.L.; Derner, J.D.; Gherardi, L.A.; Hendrickson, J.R.; Sala, O.E.; et al. Regional grassland productivity responses to precipitation during multiyear above- and below-average rainfall periods. Glob. Chang. Biol. 2018, 24, 1935–1951. [Google Scholar] [CrossRef]
- Power, S.A.; Barnett, K.L.; Ochoa-Hueso, R.; Facey, S.L.; Gibson-Forty, E.V.J.; Hartley, S.E.; Nielsen, U.N.; Tissue, D.T.; Johnson, S.N. DRI-Grass: A new experimental platform for addressing grassland ecosystem responses to future precipitation scenarios in South-East Australia. Front. Plant Sci. 2016, 7, 1373. [Google Scholar] [CrossRef] [Green Version]
- Brookshire, E.N.J.; Weaver, T. Long-term decline in grassland productivity driven by increasing dryness. Nat. Commun. 2015, 6, 7148. [Google Scholar] [CrossRef] [PubMed]
District | Warm-Season Pasture | Cool-Season Pasture | Artificial Grassland |
---|---|---|---|
Xisai Basin | 20,321 | 29,508 | 1218 |
Chaka Basin | 4018 | 5879 | 438 |
District | Midyear | Year’s End |
---|---|---|
Xisai Basin | 47.38 | 38.70 |
Chaka Basin | 18.77 | 14.17 |
Level | Range of Index |
---|---|
Extreme overload | |
Serious overload | |
Overload | |
Marginal overload | |
Balance | |
Underload |
Subprocess | Stocking Number | Pasture Type | Grazing Days |
---|---|---|---|
① | Cool-season | 61 | |
② | Warm-season | 123 | |
③ | Warm-season | 21 | |
④ | Cool-season | 160 |
Method | Item | Wet Year (2016) | Normal Year | Dry Year | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Xisai Basin | Chaka Basin | Xisai Basin | Chaka Basin | Xisai Basin | Chaka Basin | |||||
Traditional theory (TT) | Carrying capacity | Warm-season | 78.40 | 15.50 | 69.38 | 13.72 | 60.36 | 11.93 | ||
Cool-season | 77.24 | 15.88 | 68.71 | 14.18 | 60.17 | 12.48 | ||||
TCC | Warm-season | 78.40 | 15.50 | 69.38 | 13.72 | 60.36 | 11.93 | |||
Cool-season | 77.24 | 15.88 | 68.71 | 14.18 | 60.17 | 12.48 | ||||
Year-round | 77.70 | 15.73 | 68.97 | 14.00 | 60.25 | 12.26 | ||||
Key pasture theory (KPT) | Carrying capacity | Warm-season | 78.40 | 15.50 | 69.38 | 13.72 | 60.36 | 11.93 | ||
Cool-season | 77.24 | 15.88 | 68.71 | 14.18 | 60.17 | 12.48 | ||||
TCC | Warm-season | 77.24 | 15.50 | 68.71 | 13.72 | 60.17 | 11.93 | |||
Cool-season | 77.24 | 15.50 | 68.71 | 13.72 | 60.17 | 11.93 | ||||
Year-round | 77.24 | 15.50 | 68.71 | 13.72 | 60.17 | 11.93 | ||||
Dynamic key pasture theory (DKPT) | Carrying capacity | 83.97 | 16.60 | 74.31 | 14.69 | 64.65 | 12.78 | |||
115.22 | 23.69 | 102.49 | 21.15 | 89.76 | 18.62 | |||||
TCC | Warm-season | 83.97 | 16.60 | 74.31 | 14.69 | 64.65 | 12.78 | |||
Cool-season | 45.74 | 9.04 | 40.48 | 8.00 | 35.22 | 6.96 | ||||
Year-round | 65.01 | 12.86 | 57.54 | 11.38 | 50.06 | 9.90 | ||||
Deviation of TCCs (%) | DKPT vs. TT | Warm-season | 7.10 | 7.10 | 7.11 | 7.07 | 7.11 | 7.12 | ||
Cool-season | −40.78 | −43.07 | −41.09 | −43.58 | −41.47 | −44.23 | ||||
Year-round | −16.33 | −18.25 | −16.57 | −18.71 | −16.91 | −19.25 | ||||
DKPT vs. KPT | Warm-season | 8.71 | 7.10 | 8.15 | 7.07 | 7.45 | 7.12 | |||
Cool-season | −40.78 | −41.68 | −41.09 | −41.69 | −41.47 | −41.66 | ||||
Year-round | −15.83 | −17.03 | −16.26 | −17.06 | −16.80 | −17.02 |
District | Item | TCC (104 Sheep Units) | ACC (104 Sheep Units) | FLBI (%) | Evaluation Result |
---|---|---|---|---|---|
Xisai Basin | Warm-season | 83.97 | 47.38 | −43.58 | Underloaded |
Cool-season | 45.74 | 38.70 | −15.39 | Balanced | |
Year-round | 65.01 | 42.13 | −35.19 | Underloaded | |
Chaka Basin | Warm-season | 16.60 | 18.77 | 13.07 | Marginally overloaded |
Cool-season | 9.04 | 14.17 | 56.75 | Overloaded | |
Year-round | 12.86 | 15.99 | 24.34 | Overloaded |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Song, X.; Qin, L.; Wen, W.; Liu, X.; Hu, Z.; Liu, Y. Improvement and Application of Key Pasture Theory for the Evaluation of Forage–Livestock Balance in the Seasonal Grazing Regions of China’s Alpine Desert Grasslands. Sustainability 2020, 12, 6794. https://doi.org/10.3390/su12176794
Liu H, Song X, Qin L, Wen W, Liu X, Hu Z, Liu Y. Improvement and Application of Key Pasture Theory for the Evaluation of Forage–Livestock Balance in the Seasonal Grazing Regions of China’s Alpine Desert Grasslands. Sustainability. 2020; 12(17):6794. https://doi.org/10.3390/su12176794
Chicago/Turabian StyleLiu, Hui, Xiaoyu Song, Lin Qin, Wang Wen, Xiaodi Liu, Zhiqiang Hu, and Yu Liu. 2020. "Improvement and Application of Key Pasture Theory for the Evaluation of Forage–Livestock Balance in the Seasonal Grazing Regions of China’s Alpine Desert Grasslands" Sustainability 12, no. 17: 6794. https://doi.org/10.3390/su12176794
APA StyleLiu, H., Song, X., Qin, L., Wen, W., Liu, X., Hu, Z., & Liu, Y. (2020). Improvement and Application of Key Pasture Theory for the Evaluation of Forage–Livestock Balance in the Seasonal Grazing Regions of China’s Alpine Desert Grasslands. Sustainability, 12(17), 6794. https://doi.org/10.3390/su12176794