Impact Assessment for Building Energy Models Using Observed vs. Third-Party Weather Data Sets
Abstract
:1. Introduction
2. Methodology
2.1. Weather Data Comparison Methodology
2.2. Energy Analysis Methodology
2.3. Indoor Temperature Analysis Methodology
3. Results
3.1. Weather Data Comparison
3.2. Energy Analysis Results
Analysis of the Buildings’ Architecture Influence on the Energy Results
3.3. Indoor Temperature Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ASHRAE | American Society of Heating, Refrigerating and Air-Conditioning Engineers |
BEM | Building energy model |
CV(RMSE) | Coefficient of variance RMSE |
DHI | Diffuse horizontal irradiation |
DNI | Direct normal irradiation |
EU | European Union |
FEMP | Federal Energy Management Program |
HVAC | Heating, ventilation, and air-conditioning |
IPMVP | International Performance Measurement and Verification Protocol |
LTCP | Lavrion Technological and Cultural Park |
MAE | Mean absolute error |
MADP | Mean absolute deviation percentage |
Coefficient of determination | |
RH | Relative humidity |
Centered root-mean-squared difference | |
RMSE | Root-mean-squared error |
Temp | Temperature |
TPW | Third-party weather data |
WD | Wind direction |
WS | Wind speed |
Appendix A
References
- United Nations. The Sustainable Development Goals Report 2019; United Nations: New York, NY, USA, 2019; Available online: https://unstats.un.org/sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019.pdf (accessed on 20 April 2020).
- UNFCCC Secretariat. Paris Agreement. Report of the Conference of the Parties on Its Twenty-First Session, Held in Paris from 30 November to 13 December 2015; United Nations Framework Convention on Climate Change. 2015. Available online: https://en.wikipedia.org/wiki/Paris_Agreement (accessed on 20 April 2020).
- IEA. Global Status Report for Buildings and Construction, towards a Zero-Emission Efficient and Resilient Buildings and Construction Sector; IEA: Paris, France, 2019. [Google Scholar]
- IBPSA-USA—International Building Performance Simulation Association. Building Energy Software Tools (BEST Directory). Available online: https://www.buildingenergysoftwaretools.com/software-listing (accessed on 23 April 2020).
- Nguyen, A.T.; Reiter, S.; Rigo, P. A review on simulation-based optimization methods applied to building performance analysis. Appl. Energy 2014, 113, 1043–1058. [Google Scholar] [CrossRef]
- Bhandari, M.; Shrestha, S.; New, J. Evaluation of weather datasets for building energy simulation. Energy Build. 2012, 49, 109–118. [Google Scholar] [CrossRef]
- Marion, W.; Urban, K. Users manual for TMY2s: Derived from the 1961–1990 National Solar Radiation Data Base; Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 1995.
- Wilcox, S.; Marion, W. Users Manual for TMY3 Data Sets; National Renewable Energy Laboratory: Golden, CO, USA, 2008.
- Thevenard, D.J.; Brunger, A.P. The development of typical weather years for international locations: Part I, algorithms. Ashrae Trans. 2002, 108, 376–383. [Google Scholar]
- Thevenard, D.J.; Brunger, A.P. The development of typical weather years for international locations: Part II, production/Discussion. Ashrae Trans. 2002, 108, 480. [Google Scholar]
- Joe, Y.; Fenxian, H.; Seo, D.; Krarti, M. Development of 3012 IWEC2 Weather Files for International Locations (RP-1477). Ashrae Trans. 2014, 120, 340–355. [Google Scholar]
- Henze, G.P.; Pfafferott, J.; Herkel, S.; Felsmann, C. Impact of adaptive comfort criteria and heat waves on optimal building thermal mass control. Energy Build. 2007, 39, 221–235. [Google Scholar] [CrossRef]
- Sandels, C.; Widén, J.; Nordström, L.; Andersson, E. Day-ahead predictions of electricity consumption in a Swedish office building from weather, occupancy, and temporal data. Energy Build. 2015, 108, 279–290. [Google Scholar] [CrossRef]
- Ramos Ruiz, G.; Lucas Segarra, E.; Fernández Bandera, C. Model predictive control optimization via genetic algorithm using a detailed building energy model. Energies 2019, 12, 34. [Google Scholar] [CrossRef] [Green Version]
- Fernández Bandera, C.; Pachano, J.; Salom, J.; Peppas, A.; Ramos Ruiz, G. Photovoltaic Plant Optimization to Leverage Electric Self Consumption by Harnessing Building Thermal Mass. Sustainability 2020, 12, 553. [Google Scholar] [CrossRef] [Green Version]
- Lazos, D.; Sproul, A.B.; Kay, M. Optimisation of energy management in commercial buildings with weather forecasting inputs: A review. Renew. Sustain. Energy Rev. 2014, 39, 587–603. [Google Scholar] [CrossRef]
- Crawley, D.B.; Huang, Y.J. Does it matter which weather data you use in energy simulations. User News 1997, 18, 2–12. [Google Scholar]
- Crawley, D.B. Which weather data should you use for energy simulations of commercial buildings? Trans. Am. Soc. Heat. Refrig. Air Cond. Eng. 1998, 104, 498–515. [Google Scholar]
- Erba, S.; Causone, F.; Armani, R. The effect of weather datasets on building energy simulation outputs. Energy Procedia 2017, 134, 545–554. [Google Scholar] [CrossRef]
- Voisin, J.; Darnon, M.; Jaouad, A.; Volatier, M.; Aimez, V.; Trovão, J.P. Climate impact analysis on the optimal sizing of a stand-alone hybrid building. Energy Build. 2020, 210, 109676. [Google Scholar] [CrossRef]
- González, V.G.; Ruiz, G.R.; Segarra, E.L.; Gordillo, G.C.; Bandera, C.F. Characterization of building foundation in building energy models. In Proceedings of the Building Simulation 2019: 16th Conference of IBPSA, Rome, Italy, 2–4 September 2019. [Google Scholar]
- Jentsch, M.F.; James, P.A.; Bourikas, L.; Bahaj, A.S. Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renew. Energy 2013, 55, 514–524. [Google Scholar] [CrossRef]
- Jentsch, M.F.; Bahaj, A.S.; James, P.A. Climate change future proofing of buildings—Generation and assessment of building simulation weather files. Energy Build. 2008, 40, 2148–2168. [Google Scholar] [CrossRef]
- Dickinson, R.; Brannon, B. Generating future weather files for resilience. In Proceedings of the International Conference on Passive and Low Energy Architecture, Los Angeles, CA, USA, 11–13 July 2016; pp. 11–13. [Google Scholar]
- Chow, T.T.; Chan, A.L.; Fong, K.; Lin, Z. Some perceptions on typical weather year—From the observations of Hong Kong and Macau. Sol. Energy 2006, 80, 459–467. [Google Scholar] [CrossRef]
- Wang, L.; Mathew, P.; Pang, X. Uncertainties in energy consumption introduced by building operations and weather for a medium-size office building. Energy Build. 2012, 53, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Haberl, J.S. Analysis of the impact of using synthetic data correlated with measured data on the calibrated as-built simulation of a commercial building. Energy Build. 2013, 67, 97–107. [Google Scholar] [CrossRef]
- Silvero, F.; Lops, C.; Montelpare, S.; Rodrigues, F. Generation and assessment of local climatic data from numerical meteorological codes for calibration of building energy models. Energy Build. 2019, 188, 25–45. [Google Scholar] [CrossRef]
- Ciobanu, D.; Eftimie, E.; Jaliu, C. The influence of measured/simulated weather data on evaluating the energy need in buildings. Energy Procedia 2014, 48, 796–805. [Google Scholar] [CrossRef] [Green Version]
- Cuerda, E.; Guerra-Santin, O.; Sendra, J.J.; Neila, F.J. Understanding the performance gap in energy retrofitting: Measured input data for adjusting building simulation models. Energy Build. 2020, 209, 109688. [Google Scholar] [CrossRef]
- Du, H.; Barclay, M.; Jones, P.J. Generating high resolution near-future weather forecasts for urban scale building performance modelling. In Proceedings of the 15th IBPSA Conference, San Francisco, CA, USA, 7–9 August 2017. [Google Scholar]
- Du, H.; Jones, P.; Segarra, E.L.; Bandera, C.F. Development of a REST API for obtaining site-specific historical and near-future weather data in EPW format. Presented at Building Simulation and Optimization, Cambridge, UK, 11–12 September 2018. [Google Scholar]
- Du, H.; Bandera, C.F.; Chen, L. Nowcasting methods for optimising building performance. In Proceedings of the 16th IBPSA Conference, Rome, Italy, 2–4 September 2019. [Google Scholar]
- Henze, G.P.; Kalz, D.E.; Felsmann, C.; Knabe, G. Impact of forecasting accuracy on predictive optimal control of active and passive building thermal storage inventory. HVAC&R Res. 2004, 10, 153–178. [Google Scholar]
- Agüera-Pérez, A.; Palomares-Salas, J.C.; de la Rosa, J.J.G.; Florencias-Oliveros, O. Weather forecasts for microgrid energy management: Review, discussion and recommendations. Appl. Energy 2018, 228, 265–278. [Google Scholar] [CrossRef]
- Yan, X.; Abbes, D.; Francois, B. Uncertainty analysis for day ahead power reserve quantification in an urban microgrid including PV generators. Renew. Energy 2017, 106, 288–297. [Google Scholar] [CrossRef]
- Powell, K.M.; Sriprasad, A.; Cole, W.J.; Edgar, T.F. Heating, cooling, and electrical load forecasting for a large-scale district energy system. Energy 2014, 74, 877–885. [Google Scholar] [CrossRef]
- Petersen, S.; Bundgaard, K.W. The effect of weather forecast uncertainty on a predictive control concept for building systems operation. Appl. Energy 2014, 116, 311–321. [Google Scholar] [CrossRef]
- Zhao, J.; Duan, Y.; Liu, X. Uncertainty analysis of weather forecast data for cooling load forecasting based on the Monte Carlo method. Energies 2018, 11, 1900. [Google Scholar] [CrossRef] [Green Version]
- Haben, S.; Giasemidis, G.; Ziel, F.; Arora, S. Short term load forecasting and the effect of temperature at the low voltage level. Int. J. Forecast. 2019, 35, 1469–1484. [Google Scholar] [CrossRef] [Green Version]
- Seo, D.; Huang, Y.J.; Krarti, M. Impact of typical weather year selection approaches on energy analysis of buildings. ASHRAE Trans. 2010, 116, 416–427. [Google Scholar]
- Radhi, H. A comparison of the accuracy of building energy analysis in Bahrain using data from different weather periods. Renew. Energy 2009, 34, 869–875. [Google Scholar] [CrossRef]
- SABINA SmArt BI-Directional Multi eNergy gAteway. Available online: https://sabina-project.eu/ (accessed on 20 April 2020).
- Guideline, A. Guideline 14-2002, Measurement of Energy and Demand Savings; American Society of Heating, Ventilating, and Air Conditioning Engineers: Atlanta, GA, USA, 2002. [Google Scholar]
- Taylor, K.E. Taylor Diagram Primer. 2005. Available online: http://wwwpcmdi.llnl.gov/about/staff/Taylor/CV/Taylor_diagram_primer.pdf (accessed on 20 April 2020).
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Dong, T.Y.; Dong, W.J.; Guo, Y.; Chou, J.M.; Yang, S.L.; Tian, D.; Yan, D.D. Future temperature changes over the critical Belt and Road region based on CMIP5 models. Adv. Clim. Chang. Res. 2018, 9, 57–65. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, X.; Chen, P.; Yu, H.; Wan, R. Performance of tropical cyclone forecast in Western North Pacific in 2016. Trop. Cyclone Res. Rev. 2017, 6, 13–25. [Google Scholar]
- Yan, G.; Wen-Jie, D.; Fu-Min, R.; Zong-Ci, Z.; Jian-Bin, H. Surface air temperature simulations over China with CMIP5 and CMIP3. Adv. Clim. Chang. Res. 2013, 4, 145–152. [Google Scholar] [CrossRef]
- Nabeel, A.; Athar, H. Stochastic projection of precipitation and wet and dry spells over Pakistan using IPCC AR5 based AOGCMs. Atmos. Res. 2020, 234, 104742. [Google Scholar] [CrossRef]
- De Assis Tavares, L.F.; Shadman, M.; de Freitas Assad, L.P.; Silva, C.; Landau, L.; Estefen, S.F. Assessment of the offshore wind technical potential for the Brazilian Southeast and South regions. Energy 2020, 196, 117097. [Google Scholar] [CrossRef]
- Crawley, D.B.; Lawrie, L.K.; Winkelmann, F.C.; Buhl, W.F.; Huang, Y.J.; Pedersen, C.O.; Strand, R.K.; Liesen, R.J.; Fisher, D.E.; Witte, M.J.; et al. EnergyPlus: Creating a new-generation building energy simulation program. Energy Build. 2001, 33, 319–331. [Google Scholar] [CrossRef]
- Crawley, D.B.; Lawrie, L.K.; Pedersen, C.O.; Winkelmann, F.C.; Witte, M.J.; Strand, R.K.; Liesen, R.J.; Buhl, W.F.; Huang, Y.J.; Henninger, R.H.; et al. EnergyPlus: An update. In Proceedings of the SimBuild, Boulder, CO, USA, 4–6 August 2004; Volume 1. [Google Scholar]
- EnergyPlus. Auxiliary Programs: EnergyPlusTM version 8.9.0 Documentation; U.S. Department of Energy: Washington, DC, USA, 2018.
- Kolassa, S.; Schütz, W. Advantages of the MAD/MEAN ratio over the MAPE. Foresight Int. J. Appl. Forecast. 2007, 6, 40–43. [Google Scholar]
- Petojević, Z.; Gospavić, R.; Todorović, G. Estimation of thermal impulse response of a multi-layer building wall through in-situ experimental measurements in a dynamic regime with applications. Appl. Energy 2018, 228, 468–486. [Google Scholar] [CrossRef]
- Lucas Segarra, E.; Du, H.; Ramos Ruiz, G.; Fernández Bandera, C. Methodology for the quantification of the impact of weather forecasts in predictive simulation models. Energies 2019, 12, 1309. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Energy. M&V Guidelines: Measurement and Verification for Federal Energy Projects Version 3.0; U.S. Department of Energy: Washington, DC, USA, 2008.
- IPMVP Committee. International Performance Measurement and Verification Protocol: Concepts and Options for Determining Energy and Water Savings, Volume I; Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2001.
- González, V.G.; Colmenares, L.Á.; Fidalgo, J.F.L.; Ruiz, G.R.; Bandera, C.F. Uncertainy’s Indices Assessment for Calibrated Energy Models. Energies 2019, 12, 2096. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Liu, X. A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis. Energy Build. 2018, 174, 293–308. [Google Scholar] [CrossRef]
- Perez, R.; Cebecauer, T.; Šúri, M. Semi-empirical satellite models. In Solar Energy Forecasting and Resource Assessment; Academic Press: Boston, MA, USA, 2013; pp. 21–48. [Google Scholar]
- Kato, T. Prediction of photovoltaic power generation output and network operation. In Integration of Distributed Energy Resources in Power Systems; Elsevier: Amsterdam, The Netherlands, 2016; pp. 77–108. [Google Scholar]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Meteoblue. Available online: https://meteoblue.com/ (accessed on 20 April 2020).
- Meteoblue Weather Simulation Data. Available online: https://content.meteoblue.com/en/specifications/data-sources/weather-simulation-data/ (accessed on 6 July 2020).
- Guglielmetti, R.; Macumber, D.; Long, N. OpenStudio: An Open Source Integrated Analysis Platform; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2011.
- EnergyPlus. EnergyPlus Input Output Reference; U.S. Department of Energy: Washington, DC, USA, 2018.
- Ruiz, G.R.; Bandera, C.F.; Temes, T.G.A.; Gutierrez, A.S.O. Genetic algorithm for building envelope calibration. Appl. Energy 2016, 168, 691–705. [Google Scholar] [CrossRef]
- Ruiz, G.R.; Bandera, C.F. Analysis of uncertainty indices used for building envelope calibration. Appl. Energy 2017, 185, 82–94. [Google Scholar] [CrossRef]
- Fernández Bandera, C.; Ramos Ruiz, G. Towards a new generation of building envelope calibration. Energies 2017, 10, 2102. [Google Scholar] [CrossRef] [Green Version]
Sensor | Pamplona (Spain) | Gedved (Denmark) | Lavrion (Greece) | ||||||
---|---|---|---|---|---|---|---|---|---|
Range | Resolution | Accuracy | Range | Resolution | Accuracy | Range | Resolution | Accuracy | |
Temperature (°C) | −50 to +60 | 0.1 | ±0.2 | −40 to +60 | 0.1 | ±0.3 | −40 to +65 | 0.1 | ±0.5 |
Relative Humidity (%) | 0 to 100 | 0.1 | ±2 | 0 to 100 | 1 | ±2.5 | 0 to 100 | 1 | ±3 (0–90%) ±4 (90–100%) |
Atmospheric Pressure (mbar) | 300 to 1200 | 0.1 | ±0.5 | 150 to 1150 | 0.1 | ±1.5 | 880 to 1080 | ±0.1 | ±1 |
Precipitation (mm) | 0.3 to 5.0 | 0.01 | - | - | 0.2 | ±2% | - | 0.2 | ±4%/0.25 (<50 mm/h) ±5%/0.25 (>50 mm/h) |
Wind Direction (°) | 0 to 359.9 | 0.1 | <3 | 1 to 360 | 1 | 1% | 1 to 360 | 1 | ±4% |
Wind Speed (m/s) | 0 to 75 | 0.1 | ±3% (0–35) ±5% (>35) | 1 to 96 | 1 | 0.1 (5–25) | 1 to 67 | 0.44 | ±1/±5% |
Global Solar Radiation (W/m) | 0 to ±1300 | 1 | <±10% | 0 to ±1300 | 1 | <±10% | 0 to1500 | 1 | <10 |
Diffuse Solar Radiation (W/m) | 0 to ±1300 | 1 | <±10% | 0 to ±1300 | 1 | <±10% | 0 to 1500 | 1 | <20 |
Office Building | Public School | H2SusBuild | Administration Building | |
---|---|---|---|---|
Pamplona (Spain) | Gedved (Denmark) | Lavrion (Greece) | Lavrion (Greece) | |
Lighting (W/m) | 10 | 10 | 8.5 | 8.5 |
Equipment (W/m) | 8 | 15 | 8 | 8 |
Occupation schedule | Wd 9–21 h/Sat 9–14 h | Wd 8–16 h/Sat 8–13 h | Wd 9–20 h/Sat 9–14 h | Wd 9–20 h/Sat 9–14 h |
Heating setpoint (°C) | 20 | Day 21/Night 15.6 | 21 | 21 |
Cooling setpoint (°C) | 26 | No cooling | 24 | 24 |
Office Building, Pamplona (Spain) | School, Gedved (Denmark) | ||||||||||||||
Statistic Index | Time | TPW | DHI | DNI | RH | Temp | WD | WS | TPW | DHI | DNI | RH | Temp | WD | WS |
MADP (%) | Year | 1.42 | 0.79 | 4.33 | 0.50 | 4.07 | 0.03 | 7.95 | 43.82 | 0.82 | 6.24 | 1.16 | 0.68 | 0.01 | 46.91 |
Season | 9.61 | 3.93 | 9.01 | 3.17 | 4.07 | 0.03 | 11.74 | 43.82 | 0.82 | 6.24 | 1.16 | 1.71 | 0.01 | 46.91 | |
Month | 18.14 | 4.65 | 10.29 | 2.97 | 12.07 | 0.03 | 13.60 | 43.82 | 0.82 | 6.24 | 1.16 | 3.59 | 0.01 | 46.91 | |
Week | 17.88 | 5.24 | 11.17 | 3.40 | 14.39 | 0.04 | 13.99 | 43.82 | 0.90 | 6.24 | 1.19 | 5.16 | 0.02 | 46.91 | |
Day | 26.03 | 6.25 | 11.80 | 4.02 | 22.53 | 0.05 | 14.08 | 44.41 | 0.98 | 6.25 | 1.37 | 8.78 | 0.02 | 46.91 | |
Hour | 29.96 | 6.64 | 12.27 | 4.71 | 25.58 | 0.08 | 14.31 | 45.17 | 1.03 | 6.27 | 1.50 | 10.10 | 0.02 | 46.91 | |
CV(RMSE) (%) | Year | 1.42 | 0.79 | 4.33 | 0.50 | 4.07 | 0.03 | 7.95 | 43.82 | 0.82 | 6.24 | 1.16 | 0.68 | 0.01 | 46.91 |
Season | 10.78 | 4.72 | 10.11 | 4.00 | 4.54 | 0.03 | 15.48 | 58.42 | 0.95 | 7.61 | 1.49 | 2.25 | 0.02 | 60.25 | |
Month | 26.12 | 5.55 | 13.15 | 4.02 | 14.61 | 0.04 | 17.96 | 52.44 | 0.99 | 7.05 | 1.41 | 4.39 | 0.02 | 54.62 | |
Week | 26.72 | 7.12 | 15.04 | 5.17 | 19.68 | 0.06 | 20.01 | 54.15 | 1.19 | 7.10 | 1.45 | 7.55 | 0.02 | 55.29 | |
Day | 42.90 | 9.29 | 18.18 | 7.60 | 34.96 | 0.08 | 22.07 | 60.39 | 1.44 | 7.74 | 1.86 | 13.11 | 0.03 | 59.33 | |
Hour | 61.42 | 13.14 | 22.37 | 12.56 | 50.71 | 0.20 | 30.55 | 91.79 | 2.75 | 14.04 | 3.54 | 24.99 | 0.05 | 88.81 | |
(%) | Hour | 90.86 | 99.48 | 98.64 | 99.53 | 92.54 | 100.00 | 98.43 | 95.18 | 99.99 | 99.82 | 99.98 | 98.55 | 100.00 | 96.84 |
H2SusBuild, Lavrion (Greece) | Administration Building, Lavrion (Greece) | ||||||||||||||
TPW | DHI | DNI | RH | Temp | WD | WS | TPW | DHI | DNI | RH | Temp | WD | WS | ||
MADP (%) | Year | 32.86 | 5.95 | 5.22 | 1.97 | 5.21 | 1.05 | 39.40 | 1.29 | 11.40 | 7.27 | 3.45 | 9.62 | 1.93 | 12.19 |
Season | 44.58 | 8.14 | 9.49 | 3.21 | 7.25 | 2.16 | 39.40 | 27.75 | 13.83 | 13.40 | 4.20 | 9.62 | 2.73 | 21.63 | |
Month | 45.83 | 10.32 | 11.20 | 3.95 | 11.82 | 2.94 | 41.66 | 38.70 | 15.56 | 15.80 | 4.41 | 14.73 | 2.99 | 29.97 | |
Week | 47.80 | 10.50 | 11.15 | 4.05 | 13.02 | 2.93 | 42.14 | 38.70 | 15.69 | 15.80 | 4.52 | 14.78 | 2.99 | 29.97 | |
Day | 49.46 | 10.75 | 11.40 | 4.46 | 17.17 | 2.94 | 42.49 | 38.91 | 15.72 | 15.80 | 4.91 | 16.60 | 3.00 | 29.97 | |
Hour | 51.58 | 10.93 | 11.85 | 5.12 | 19.97 | 2.95 | 43.95 | 39.45 | 15.79 | 15.83 | 5.49 | 17.88 | 3.01 | 30.22 | |
CV(RMSE) (%) | Year | 32.86 | 5.95 | 5.22 | 1.97 | 5.21 | 1.05 | 39.40 | 1.29 | 11.40 | 7.27 | 3.45 | 9.62 | 1.93 | 12.19 |
Season | 61.65 | 9.69 | 10.71 | 3.91 | 12.40 | 2.58 | 63.61 | 36.21 | 15.57 | 14.26 | 4.78 | 15.61 | 2.93 | 34.39 | |
Month | 65.24 | 13.41 | 13.37 | 5.04 | 15.66 | 3.44 | 65.89 | 43.53 | 20.89 | 18.63 | 6.20 | 20.23 | 3.83 | 38.06 | |
Week | 72.40 | 14.11 | 13.97 | 5.46 | 19.34 | 3.52 | 73.29 | 46.18 | 21.35 | 19.09 | 6.62 | 21.59 | 3.85 | 40.61 | |
Day | 82.65 | 14.77 | 14.74 | 6.37 | 24.90 | 3.68 | 81.45 | 49.81 | 21.93 | 19.63 | 7.76 | 24.17 | 3.97 | 43.01 | |
Hour | 90.37 | 18.35 | 17.92 | 8.83 | 34.68 | 4.85 | 85.67 | 90.81 | 37.52 | 33.69 | 15.03 | 47.91 | 6.67 | 72.69 | |
(%) | Hour | 85.58 | 98.41 | 98.43 | 99.61 | 93.76 | 99.88 | 92.43 | 81.85 | 97.30 | 97.80 | 99.51 | 94.91 | 99.92 | 91.18 |
Statistic Index | Office Building—Pamplona | School—Gedved | H2SusBuild—Lavrion | Administration Building—Lavrion |
---|---|---|---|---|
(°C)—Min/All/Max | 1.03/0.55/0.62 | 2.00/1.72/1.38 | 1.32/1.52/1.36 | 1.07/1.21/1.53 |
(°C)—Min/All/Max | 0.76/0.73/0.81 | 2.23/1.92/1.50 | 1.65/1.93/1.70 | 1.38/1.50/2.00 |
(%)—Min/All/Max | 91.86/92.20/89.53 | 85.41/89.39/95.51 | 90.21/86.89/85.58 | 95.90/94.74/86.81 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segarra, E.L.; Ruiz, G.R.; González, V.G.; Peppas, A.; Bandera, C.F. Impact Assessment for Building Energy Models Using Observed vs. Third-Party Weather Data Sets. Sustainability 2020, 12, 6788. https://doi.org/10.3390/su12176788
Segarra EL, Ruiz GR, González VG, Peppas A, Bandera CF. Impact Assessment for Building Energy Models Using Observed vs. Third-Party Weather Data Sets. Sustainability. 2020; 12(17):6788. https://doi.org/10.3390/su12176788
Chicago/Turabian StyleSegarra, Eva Lucas, Germán Ramos Ruiz, Vicente Gutiérrez González, Antonis Peppas, and Carlos Fernández Bandera. 2020. "Impact Assessment for Building Energy Models Using Observed vs. Third-Party Weather Data Sets" Sustainability 12, no. 17: 6788. https://doi.org/10.3390/su12176788
APA StyleSegarra, E. L., Ruiz, G. R., González, V. G., Peppas, A., & Bandera, C. F. (2020). Impact Assessment for Building Energy Models Using Observed vs. Third-Party Weather Data Sets. Sustainability, 12(17), 6788. https://doi.org/10.3390/su12176788