Next Article in Journal
Persistence in Self-Employment Rates before the Great Lockdown: The Case of the UK
Previous Article in Journal
Measurement of Permeability in Horizontal Direction of Open-Graded Friction Course with Rutting
Open AccessArticle

Relative Importance of Land Use and Climate Change on Hydrology in Agricultural Watershed of Southern China

1
College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
2
Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing 210023, China
3
School of Natural Resources, University of Missouri-Columbia, Columbia, MO 65211, USA
*
Author to whom correspondence should be addressed.
Sustainability 2020, 12(16), 6423; https://doi.org/10.3390/su12166423
Received: 15 July 2020 / Revised: 6 August 2020 / Accepted: 8 August 2020 / Published: 10 August 2020
(This article belongs to the Section Environmental Sustainability and Applications)
Quantitative assessment of the impact of land use and climate change on hydrological processes is of great importance to water resources planning and management. The main objective of this study was to quantitatively assess the response of runoff to land use and climate change in the Zhengshui River Basin of Southern China, a heavily used agricultural basin. The Soil and Water Assessment Tool (SWAT) was used to simulate the river runoff for the Zhengshui River Basin. Specifically, a soil database was constructed based on field work and laboratory experiments as input data for the SWAT model. Following SWAT calibration, simulated results were compared with observed runoff data for the period 2006 to 2013. The Nash-Sutcliffe Efficiency Coefficient (NSE) and the correlation coefficient (R2) for the comparisons were greater than 0.80, indicating close agreement. The calibrated models were applied to simulate monthly runoff in 1990 and 2010 for four scenarios with different land use and climate conditions. Climate change played a dominant role affecting runoff of this basin, with climate change decreasing simulated runoff by −100.22% in 2010 compared to that of 1990, land use change increasing runoff in this basin by 0.20% and the combination of climate change and land use change decreasing runoff by 60.8m3/s. The decrease of forestland area and the corresponding increase of developed land and cultivated land area led to the small increase in runoff associated with land use change. The influence of precipitation on runoff was greater than temperature. The soil database used to model runoff with the SWAT model for the basin was constructed using a combination of field investigation and laboratory experiments, and simulations of runoff based on that new soil database more closely matched observations of runoff than simulations based on the generic Harmonized World Soil Database (HWSD). This study may provide an important reference to guide management decisions for this and similar watersheds. View Full-Text
Keywords: land use change; runoff; climate change; SWAT model land use change; runoff; climate change; SWAT model
Show Figures

Figure 1

MDPI and ACS Style

Luo, L.; Zhou, Q.; He, H.S.; Duan, L.; Zhang, G.; Xie, H. Relative Importance of Land Use and Climate Change on Hydrology in Agricultural Watershed of Southern China. Sustainability 2020, 12, 6423.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop