Consumer Willingness To Pay for Proenvironmental Attributes of Biogas Digestate-Based Potting Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Discrete Choice Experiments (DCE) in Consumer Research
2.2. Using DCE to Estimate WTP
2.3. Experimental Design
2.4. Data Collection and Analysis
2.5. Selection of Accompanying Variables
2.6. Theory and Hypotheses Development
3. Results
3.1. Willingness to Pay for Proenvironmental Attributes by Latent Class
3.2. Willingness to Pay and Strength of Proenvironmental Attitudes
3.3. Willingness to Pay for Products from a Biogas Plant
3.4. The Influence of Sales Channels
4. Discussions and Conclusions
4.1. Implications for Marketing Digestate-Based Products
4.1.1. Segmented Marketing Approaches
4.1.2. Product Strategy
4.1.3. Communication Strategies
4.1.4. Distribution Strategies
4.2. Contextualization with Previous Studies and Avenues for Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- European Biogas Association. Statistical Report 2017. Abridged Version; EBA: Brussels, Belgium, 2017; Available online: https://european-biogas.eu/wp-content/uploads/2017/12/Statistical-report-of-the-European-Biogas-Association_excerpt-web.pdf (accessed on 5 May 2020).
- International Renewable Energy Agency. Renewable Capacity Statistics 2018; IRENA: Abu Dhabi, UAE, 2018; Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Mar/IRENA_RE_Capacity_Statistics_2018.pdf (accessed on 4 May 2020).
- Koszel, M.; Lorencowicz, E. Agricultural Use of Biogas Digestate as a Replacement Fertilizers. Agricult. Agricult. Sci. Proc. 2015, 7, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.-B.; Luo, X.-P.; Song, C.-F.; Zhang, M.-X.; Shan, S.-D. Concentrated biogas slurry enhanced soil fertility and tomato quality. Acta Agricult. Scand. Sect. B Soil Plant Sci. 2010, 60, 262–268. [Google Scholar] [CrossRef]
- Bolzonella, D.; Fatone, F.; Gottardo, M.; Frison, N. Nutrients recovery from anaerobic digestate of agro-waste: Techno-economic assessment of full scale applications. J. Environ. Manag. 2018, 216, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Petravić-Tominac, V.; Nastav, N.; Buljubašić, M.; Šantek, B. Current state of biogas production in Croatia. Energy Sustain. Soc. 2020, 10, 8. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Möller, K. Charakterisierung und Eignung von organischen Charakterisierung und Eignung von organischen Handelsdüngemitteln für den Einsatz im ökologischen Landbau. In Ideal und Wirklichkeit—Perspektiven Ökologischer Landbewirtschaftung: Beiträge zur 12. Wissenschaftstagung Ökologischer Landbau, Bonn, 5–8 März 2013; Neuhoff, D., Stumm, C., Ziegler, S., Rahmann, G., Hamm, U., Koepke, U., Eds.; Verlag Dr. Köster: Berlin, Germany, 2013; pp. 224–227. [Google Scholar]
- Herbes, C.; Roth, U.; Wulf, S.; Dahlin, J. Economic assessment of different biogas digestate processing technologies: A scenario-based analysis. J. Clean. Prod. 2020, 255, 120282. [Google Scholar] [CrossRef]
- Sogn, T.A.; Dragicevic, I.; Linjordet, R.; Krogstad, T.; Eijsink, V.G.H.; Eich-Greatorex, S. Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. Int. J. Recycl. Org. Waste Agricul. 2018, 7, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Dahlin, J.; Herbes, C.; Nelles, M. Biogas digestate marketing: Qualitative insights into the supply side. Resour. Conserv. Recycl. 2015, 104, 152–161. [Google Scholar] [CrossRef]
- Wendland, M. Neue Düngeverordnung in Bayern—Einfluss auf Landwirtschaft und Wasserwirtschaft. In Von Milchseeen zur Butterknappheit. Was Kommt als Nächstes? HBLFA Raumberg-Gumpenstein: Irdning-Donnersbachtal, Austria, 2018; pp. 35–37. ISBN 978-3-902849-55-7. [Google Scholar]
- Uhlenhaut, T. Gülleflut in Niedersachsen Stoppen! Verbände Fordern Masterplan für Sauberes Grundwasser, Flüsse und die Nordsee. Available online: https://www.greenpeace.de/sites/www.greenpeace.de/files/publications/180328-pm-naehrstoffbericht_gp-nabu-bund.pdf (accessed on 3 February 2020).
- Kiefer, J.; Ball, T. Beurteilung der Erzeugung von Biomasse zur energetischen Nutzung aus Sicht des Gewässerschutzes. Energie Wasser Praxis 2008, 6, 36–43. [Google Scholar]
- Turetsky, M.R.; Benscoter, B.; Page, S.; Rein, G.; van der Werf, G.R.; Watts, A. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosc. 2014, 8, 11. [Google Scholar] [CrossRef]
- Waddington, J.M.; Price, J.S. Effect of peatland drainage, harvesting, and restoration on atmospheric water and carbon exchange. Phys. Geogr. 2000, 21, 433–451. [Google Scholar] [CrossRef]
- PR Newswire. Peat Market—Europe Industry Analysis, Size, Share, Growth, Trends, and Forecast 2016–2024; Y, 2017. PR Newswire US. Available online: http://www.redi-bw.de/db/ebsco.php/search.ebscohost.com/login.aspx%3fdirect%3dtrue%26db%3dbwh%26AN%3d201707051940PR.NEWS.USPR.BR32709%26lang%3dde%26site%3dehost-live (accessed on 7 March 2020).
- Tampio, E.; Marttinen, S.; Rintala, J. Liquid fertilizer products from anaerobic digestion of food waste: Mass, nutrient and energy balance of four digestate liquid treatment systems. J. Clean. Prod. 2016, 125, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Rehl, T.; Müller, J. Life cycle assessment of biogas digestate processing technologies. Resour. Conserv. Recycl. 2011, 56, 92–104. [Google Scholar] [CrossRef]
- Fuchs, W.; Drosg, B. Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. WST 2013, 67, 1984–1993. [Google Scholar] [CrossRef] [Green Version]
- Dahlin, J.; Beuthner, C.; Halbherr, V.; Kurz, P.; Nelles, M.; Herbes, C. Sustainable compost and potting soil marketing: Private gardener preferences. J. Clean. Prod. 2019, 208, 1603–1612. [Google Scholar] [CrossRef]
- Tur-Cardona, J.; Bonnichsen, O.; Speelman, S.; Verspecht, A.; Carpentier, L.; Debruyne, L.; Marchand, F.; Jacobsen, B.H.; Buysse, J. Farmers’ reasons to accept bio-based fertilizers: A choice experiment in seven different European countries. J. Clean. Prod. 2018, 197, 406–416. [Google Scholar] [CrossRef]
- Pappalardo, G.; Selvaggi, R.; Lusk, J.L. Procedural Invariance as a Result of Commitment Costs: Evidence from an Economic Experiment on Farmers’ Willingness to Pay for Digestate. Appl. Econ. Lett. 2019, 26, 1243–1246. [Google Scholar] [CrossRef]
- Dahlin, J.; Nelles, M.; Herbes, C. Biogas digestate management: Evaluating the attitudes and perceptions of German gardeners towards digestate-based soil amendments. Resour. Conserv. Recycl. 2017, 118, 27–38. [Google Scholar] [CrossRef]
- Louviere, J.J.; Woodworth, G. Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach Based on Aggregate Data. J. Mark. Res. 1983, 20, 350–367. [Google Scholar] [CrossRef]
- Lenk, P.J.; Desarbo, W.S.; Green, P.E.; Young, M.R. Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs. Mark. Sci. 1996, 15, 173–191. [Google Scholar] [CrossRef]
- Allenby, G.M.; Ginter, J.L. Using Extremes to Design Products and Segment Markets. J. Mark. Res. 1995, 32, 392–403. [Google Scholar] [CrossRef]
- Allenby, G.M.; Arora, N.; Ginter, J.L. Incorporating Prior Knowledge into the Analysis of Conjoint Studies. J. Mark. Res. 1995, 32, 152–162. [Google Scholar] [CrossRef]
- Williamson, P.O.; Lockshin, L.; Francis, I.L.; Mueller Loose, S. Influencing consumer choice: Short and medium term effect of country of origin information on wine choice. Food Qual. Prefer. 2016, 51, 89–99. [Google Scholar] [CrossRef]
- Meyerding, S.G.H. Consumer preferences for food labels on tomatoes in Germany—A comparison of a quasi-experiment and two stated preference approaches. Appetite 2016, 103, 105–112. [Google Scholar] [CrossRef]
- Balcombe, K.; Bradley, D.; Fraser, I.; Hussein, M. Consumer Preferences Regarding Country of Origin for Multiple Meat Products. Food Policy 2016, 64, 49–62. [Google Scholar] [CrossRef]
- Tuhkanen, H.; Piirsalu, E.; Nõmmann, T.; Karlõševa, A.; Nõmmann, S.; Czajkowski, M.; Hanley, N. Valuing the benefits of improved marine environmental quality under multiple stressors. Sci. Total Environ. 2016, 551–552, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Rakotonarivo, O.S.; Schaafsma, M.; Hockley, N. A systematic review of the reliability and validity of discrete choice experiments in valuing non-market environmental goods. J. Environ. Manag. 2016, 183, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Rakotonarivo, O.S.; Jacobsen, J.B.; Larsen, H.O.; Jones, J.P.G.; Nielsen, M.R.; Ramamonjisoa, B.S.; Mandimbiniaina, R.H.; Hockley, N. Qualitative and Quantitative Evidence on the True Local Welfare Costs of Forest Conservation in Madagascar: Are Discrete Choice Experiments a Valid ex ante Tool? World Dev. 2017, 94, 478–491. [Google Scholar] [CrossRef]
- Narjes, M.E.; Lippert, C. Longan fruit farmers’ demand for policies aimed at conserving native pollinating bees in Northern Thailand. Ecosyst. Serv. 2016, 18, 58–67. [Google Scholar] [CrossRef]
- Lancaster, K.J. A New Approach to Consumer Theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Rao, V.R. Applied Conjoint Analysis; Springer: Heidelberg, Germany, 2014. [Google Scholar]
- McFadden, D.; Train, K. Mixed MNL models for discrete response. J. Appl. Econ. 2000, 15, 447–470. [Google Scholar] [CrossRef]
- McFadden, D. The Choice Theory Approach to Market Research. Mark. Sci. 1986, 5, 275–297. [Google Scholar] [CrossRef]
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics; Academic Press: New York, NY, USA, 1974; pp. 105–142. [Google Scholar]
- Train, K. Discrete Choice Methods with Simulation.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Louviere, J.J.; Flynn, T.N.; Carson, R.T. Discrete Choice Experiments Are Not Conjoint Analysis. J. Choice Model. 2010, 3, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Levy, M.; Grewal, D.; Kopalle, P.K.; Hess, J.D. Emerging trends in retail pricing practice: Implications for research. J. Retail. 2004, 80, xiii. [Google Scholar] [CrossRef]
- Wang, T.; Venkatesh, R.; Chatterjee, R. Reservation Price as a Range: An Incentive-Compatible Measurement Approach. J. Mark. Res. 2007, 44, 200–213. [Google Scholar] [CrossRef] [Green Version]
- Breidert, C.; Hahsler, M.; Reutterer, T. A Review of Methods for Measuring Willingness-to-Pay. Innovat. Mark. 2006, 2, 8–32. [Google Scholar]
- Wittink, D.R.; Vriens, M.; Burhenne, W. Commercial use of conjoint analysis in Europe: Results and critical reflections. Int. J. Res. Mark. 1994, 11, 41–52. [Google Scholar] [CrossRef]
- Wittink, D.R.; Cattin, P. Commercial Use of Conjoint Analysis: An Update. J. Mark. 1989, 53, 91–96. [Google Scholar] [CrossRef]
- Sapede, C.; Girod, I. Willingness of Adults in Europe to Pay for a New Vaccine: The Application of Discrete Choice-Based Conjoint Analysis. Int. J. Market Res. 2002, 44, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gilbride, T.J.; Lenk, P.J.; Brazell, J.D. Market Share Constraints and the Loss Function in Choice-Based Conjoint Analysis. Mark. Sci. 2008, 27, 995–1011. [Google Scholar] [CrossRef] [Green Version]
- Brazell, J.D.; Diener, C.G.; Karniouchina, E.; Moore, W.L.; Séverin, V.; Uldry, P.-F. The no-choice option and dual response choice designs. Mark. Lett. 2006, 17, 255–268. [Google Scholar] [CrossRef]
- Natter, M.; Feurstein, M. Correcting for CBC model bias: A hybrid scanner data—conjoint model. Int. Rev. Retail Distrib. Consum. Res. 2001, 11, 247–254. [Google Scholar] [CrossRef]
- Kløjgaard, M.E.; Bech, M.; Søgaard, R. Designing a stated choice experiment: The value of a qualitative process. J. Choice Model. 2012, 5, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Rossi, P.E.; Allenby, G.M. Bayesian Statistics and Marketing. Mark. Sci. 2003, 22, 304–328. [Google Scholar] [CrossRef]
- Orme, B. CBC/HB v5: Software for Hierarchical Bayes Estimation for CBC Data; Sawtooth: Ketchum, ID, USA, 2009. [Google Scholar]
- Haws, K.L.; Winterich, K.P.; Naylor, R.W. Seeing the world through GREEN-tinted glasses: Green consumption values and responses to environmentally friendly products. J. Consum. Psychol. 2014, 24, 336–354. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Zielke, S. Can’t Buy Me Green? A Review of Consumer Perceptions of and Behavior toward the Price of Organic Food: Reviews and Commentary. J. Consum. Aff. 2017, 51, 211–251. [Google Scholar] [CrossRef]
- Smith, B.; Olaru, D.; Jabeen, F.; Greaves, S. Electric vehicles adoption: Environmental enthusiast bias in discrete choice models. Transp. Res. Part D 2017, 51, 290–303. [Google Scholar] [CrossRef]
- Neill, C.L.; Williams, R.B. Consumer Preference for Alternative Milk Packaging: The Case of an Inferred Environmental Attribute. J. Agricult. Appl. Econ. 2016, 48, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Hustvedt, G.; Bernard, J.C. Consumer willingness to pay for sustainable apparel: The influence of labelling for fibre origin and production methods. Int. J. Consum. Stud. 2008, 32, 491–498. [Google Scholar] [CrossRef]
- Herbes, C.; Friege, C.; Baldo, D.; Mueller, K.-M. Willingness to pay lip service? Applying a neuroscience-based method to WTP for green electricity. Energy Policy 2015, 87, 562–572. [Google Scholar] [CrossRef]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Applied Choice Analysis; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Allenby, G.M.; Brazell, J.; Howell, J.R.; Rossi, P.E. Valuation of Patented Product Features. J. Law Econ. 2014, 57, 629–663. [Google Scholar] [CrossRef]
- Dahlin, J.; Halbherr, V.; Kurz, P.; Nelles, M.; Herbes, C. Marketing Green Fertilizers: Insights into Consumer Preferences. Sustainability 2016, 8, 1169. [Google Scholar] [CrossRef] [Green Version]
- Byg, A.; Martin-Ortega, J.; Glenk, K.; Novo, P. Conservation in the face of ambivalent public perceptions—The case of peatlands as ‘the good, the bad and the ugly’. Biol. Conserv. 2017, 206, 181–189. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.; Kim, M.; Choi, J. Antecedents and interrelationships of three types of pro-environmental behavior. J. Bus. Res. 2014, 67, 2097–2105. [Google Scholar] [CrossRef]
- Scherer, C.; Emberger-Klein, A.; Menrad, K. Segmentation of interested and less interested consumers in sports equipment made of bio-based plastic. Sustain. Prod. Consum. 2018, 14, 53–65. [Google Scholar] [CrossRef]
- Pickett-Baker, J.; Ozaki, R. Pro-environmental products: Marketing influence on consumer purchase decision. J. Consum. Mark. 2008, 25, 281–293. [Google Scholar] [CrossRef]
- Grønhøj, A.; Thøgersen, J. Action speaks louder than words: The effect of personal attitudes and family norms on adolescents’ pro-environmental behaviour. J. Econ. Psychol. 2012, 33, 292–302. [Google Scholar] [CrossRef]
- Emberger-Klein, A.; Menrad, K.; Heider, D. Determinants of Consumers’ Willingness-to-pay for Fairly-produced, Locally Grown Dairy Products. Ger. J. Agricult. Econ. 2016, 65, 94–111. [Google Scholar]
- Barber, N.A.; Taylor, D.C.; Venkatachalam, V. Does the Product Really Matter? A Look at Mainstream Pro-Environmental Consumption Behavior. J. Food Products Mark. 2016, 22, 521–554. [Google Scholar] [CrossRef]
- Park, J.; Ha, S. Understanding pro-environmental behaviorA comparison of sustainable consumers and apathetic consumers. Int. J. Retail Distrib. Manag. 2012, 40, 388–403. [Google Scholar] [CrossRef]
- Johe, M.H.; Bhullar, N. To Buy or Not to Buy: The Roles of Self-Identity, Attitudes, Perceived Behavioral Control and Norms in Organic Consumerism. Ecol. Econ. 2016, 128, 99–105. [Google Scholar] [CrossRef]
- Ertz, M.; Karakas, F.; Sarigöllü, E. Exploring pro-environmental behaviors of consumers: An analysis of contextual factors, attitude, and behaviors. J. Bus. Res. 2016, 69, 3971–3980. [Google Scholar] [CrossRef]
- Schumacher, K.; Krones, F.; McKenna, R.; Schultmann, F. Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region. Energy Policy 2019, 126, 315–332. [Google Scholar] [CrossRef]
- Pehlken, A.; Madena, K.; Aden, C.; Klenke, T. Forming stakeholder alliances to unlock alternative and unused biomass potentials in bioenergy regions. J. Clean. Prod. 2016, 110, 66–77. [Google Scholar] [CrossRef]
- Herbes, C.; Jirka, E.; Braun, J.P.; Pukall, K. Der gesellschaftliche Diskurs um den "Maisdeckel" vor und nach der Novelle des Erneuerbare-Energien-Gesetzes (EEG) 2012; The Social Discourse on the "Maize Cap&" before and after the 2012 Amendment of the German Renewable Energies Act (EEG). GAIA 2014, 23, 100–108. [Google Scholar] [CrossRef]
- Herbes, C.; Beuthner, C.; Ramme, I. Consumer attitudes towards biobased packaging—A cross-cultural comparative study. J. Clean. Prod. 2018, 194, 203–218. [Google Scholar] [CrossRef]
- Lyytimäki, J.; Nygrén, N.A.; Pulkka, A.; Rantala, S. Energy transition looming behind the headlines? Newspaper coverage of biogas production in Finland. Energy Sustain. Soc. 2018, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, H.; Popkowski Leszczyc, P.T.L.; Lin, Y. Why is Price Dispersion Higher Online than Offline? The Impact of Retailer Type and Shopping Risk on Price Dispersion. J. Retail. 2018, 94, 136–153. [Google Scholar] [CrossRef]
- Cuellar, S.S.; Brunamonti, M. Retail channel price discrimination. J. Retail. Consum. Serv. 2014, 21, 339–346. [Google Scholar] [CrossRef]
- Campbell, J.; Rihn, A.; Khachatryan, H. Factors Influencing Home Lawn Fertilizer Choice in the United States. HortTechnology 2020, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, P.; Apaolaza-Ibáñez, V. Consumer attitude and purchase intention toward green energy brands: The roles of psychological benefits and environmental concern. J. Bus. Res. 2012, 65, 1254–1263. [Google Scholar] [CrossRef]
Attribute | Attribute Levels |
---|---|
Potting soil type |
|
Brand name |
|
Label I |
|
Label II |
|
Label III |
|
Resource (raw materials used) |
|
Price (40-liter package) |
|
Variable | Possible Values |
---|---|
Point of purchase |
|
Seller channel |
|
Attitude Variables | |
Knows how a biogas plant operates |
|
Realizes that inert materials (e.g., plastics) can occur in potting soil |
|
Recycles organic waste and uses the compost in the garden |
|
Uses renewable energy at home |
|
Considers biogas to be a source of sustainable energy |
|
Agrees that the following input materials are suitable for use in a biogas plant:
|
|
Accepts potting soil with fermentation residues from biogas plants that use the following input materials:
|
|
All Consumers | Raw-Material-Sensitive Premium Brand Customers | Raw-Material-Sensitive Customers (Guano Avoiding) | Label-Oriented Middle-Class Customers | Price-Sensitive Customers | Multicriteria Customers (Guano Seeking) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | |||||||||
n = 507 | n = 61 | n = 55 | n = 115 | n = 127 | n = 149 | ||||||||
Attribute | Level | Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. |
Potting soil type | Flower potting soil | 0.39 | 0.11 | −0.54 | 0.21 | 0.34 | 0.19 | −4.00 | 0.62 | −0.04 | 0.07 | 2.20 | 0.12 |
Brand | Premium brand | 0.10 | 0.04 | 2.42 | 0.36 | −0.40 | 0.21 | −4.00 | 0.68 | −0.30 | 0.09 | 0.74 | 0.11 |
Middle class brand | 0.08 | 0.02 | −0.48 | 0.16 | −0.21 | 0.16 | 4.00 | 0.71 | −0.11 | 0.08 | 2.08 | 0.13 | |
Label I | Labeled “organic” | 0.52 | 0.52 | 3.00 | 0.31 | 0.70 | 0.21 | 4.00 | 0.41 | 0.11 | 0.06 | 2.15 | 0.14 |
Label II | Labeled “peat free” | 0.46 | 0.14 | 3.00 | 0.31 | 0.30 | 0.15 | 4.00 | 0.63 | −0.16 | 0.09 | 2.12 | 0.11 |
Label III | Labeled “containing guano” | 0.37 | 0.12 | −4.00 | 0.34 | −1.28 | 0.21 | −4.00 | 0.67 | −0.17 | 0.05 | 4.00 | 0.62 |
Raw material | From renewable resources | 2.21 | 0.21 | 4.00 | 0.33 | 3.11 | 0.31 | −4.00 | 0.71 | 0.21 | 0.07 | 2.44 | 0.16 |
From fermentation residues | 0.74 | 0.12 | 3.83 | 0.29 | 0.93 | 0.21 | −4.00 | 0.68 | 0.08 | 0.04 | 2.13 | 0.13 |
Strength of Proenvironmental Attitudes | |||||||||
---|---|---|---|---|---|---|---|---|---|
High | Medium | Low | Very Low | ||||||
n = 181 | n = 192 | n = 114 | n = 20 | ||||||
Attribute | Level | Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. |
Potting soil type | Flower potting soil | 2.11 | 0.11 | 0.38 | 0.09 | 0.12 | 0.10 | −0.22 | 0.21 |
Brand | Premium brand | 1.73 | 0.09 | 0.11 | 0.08 | −0.35 | 0.11 | −0.33 | 0.24 |
Middle class brand | 1.42 | 0.10 | 0.03 | 0.07 | −0.09 | 0.10 | −0.15 | 0.22 | |
Label I | Labeled “organic” | 2.14 | 0.12 | 0.42 | 0.09 | 0.11 | 0.11 | 0.01 | 0.21 |
Label II | Labeled “peat free” | 2.24 | 0.13 | 0.41 | 0.09 | 0.00 | 0.13 | −0.18 | 0.19 |
Label III | Labeled “containing guano” | −2.31 | 0.11 | −0.29 | 0.04 | 0.03 | 0.09 | 0.26 | 0.18 |
Raw material | From renewable resources | 3.86 | 0.15 | 2.02 | 0.13 | 1.28 | 0.15 | 0.70 | 0.16 |
From fermentation residues | 2.48 | 0.13 | 0.54 | 0.09 | 0.48 | 0.11 | −0.10 | 0.21 |
Store Type | |||||||||
---|---|---|---|---|---|---|---|---|---|
CompostingPlant | Nursery | DIY Store | Supermarket | ||||||
n = 35 | n = 85 | n = 334 | n = 36 | ||||||
Attribute | Level | Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. |
Potting soil type | Flower potting soil | 2.45 | 0.17 | 0.62 | 0.11 | 0.40 | 0.10 | -0.04 | 0.11 |
Brand | Premium brand | −4.00 | 0.16 | 1.33 | 0.13 | 0.06 | 0.09 | −0.07 | 0.13 |
Middle class brand | 2.04 | 0.19 | 0.77 | 0.12 | 0.03 | 0.08 | 0.05 | 0.12 | |
Label I | Labeled as “organic” | 2.46 | 0.18 | 1.41 | 0.13 | 0.43 | 0.09 | 0.10 | 0.10 |
Label II | Labeled as “peat free” | 2.80 | 0.17 | 1.97 | 0.11 | 0.34 | 0.07 | −0.24 | 0.13 |
Label III | Labeled as “containing guano” | −4.00 | 0.38 | −4.00 | 0.46 | 0.28 | 0.09 | 0.20 | 0.12 |
Raw material | From renewable resources | 3.86 | 0.11 | 3.54 | 0.21 | 2.06 | 0.11 | 0.69 | 0.11 |
From fermentation residues | 2.77 | 0.14 | 0.80 | 0.09 | 0.69 | 0.06 | 0.48 | 0.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herbes, C.; Dahlin, J.; Kurz, P. Consumer Willingness To Pay for Proenvironmental Attributes of Biogas Digestate-Based Potting Soil. Sustainability 2020, 12, 6405. https://doi.org/10.3390/su12166405
Herbes C, Dahlin J, Kurz P. Consumer Willingness To Pay for Proenvironmental Attributes of Biogas Digestate-Based Potting Soil. Sustainability. 2020; 12(16):6405. https://doi.org/10.3390/su12166405
Chicago/Turabian StyleHerbes, Carsten, Johannes Dahlin, and Peter Kurz. 2020. "Consumer Willingness To Pay for Proenvironmental Attributes of Biogas Digestate-Based Potting Soil" Sustainability 12, no. 16: 6405. https://doi.org/10.3390/su12166405
APA StyleHerbes, C., Dahlin, J., & Kurz, P. (2020). Consumer Willingness To Pay for Proenvironmental Attributes of Biogas Digestate-Based Potting Soil. Sustainability, 12(16), 6405. https://doi.org/10.3390/su12166405