Digital Communication: Information and Communication Technology (ICT) Usage for Education Sustainability
Abstract
:1. Introduction
2. Model Development and Hypotheses
2.1. Subjective Norm (SN)
2.2. Computer Self-Efficacy (CSE)
2.3. Perceived Enjoyment (PE)
2.4. Perceived Usefulness (PU)
2.5. Perceived Ease of Use (PEU)
2.6. Attitude towards Use (ACU)
2.7. Student Intentions to Use ICT
2.8. Students’ Satisfaction (SS) with ICT Usage
3. Research Methodology
3.1. Sample Characteristics and Data Collection
3.2. Measurement Instruments
4. Results and Analysis
4.1. Construct Validity of Measurements
4.2. Convergent Validity of Measurements
4.3. Convergent Validity of Measurements
4.4. Analysis of the Structural Model
4.5. Description and Analysis of Factors
5. Discussion and Implications
- ICT use in learning strategies should boost student usage and SS with ICT. Additionally, support from lecturers and supervisors can motivate students to use ICT as they resolve ambiguities, share knowledge, and provide information to improve students’ learning experiences, performance, and research skills.
- Higher educational institutions are advised to accept students who are familiar with using ICT for learning as opposed to forcing someone who is not familiar to do so. This is because the institutions need to integrate ICT components and tools throughout the learning process.
- Students’ ACU-ICT use and their SIU-ICT concern both technology and resources. Opportunities should be leveraged by students to use ICT to enrich their learning experience.
Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sarkar, S. The role of information and communication technology (ICT) in higher education for the 21st century. Sci. Probe 2012, 1, 30–41. [Google Scholar]
- Robinson, R.; Michael, M.; Landra, R. Facilitating learning. In Educational Technology: A Definition with Commentary; Routledge: London, UK, 2008; pp. 15–48. [Google Scholar]
- Alkharang, M.M. Factors that Influence the Adoption of e-Learning, an Empirical Study in Kuwait. Ph.D. Thesis, School of Information Systems Computing and Mathematics, Brunel University London, Uxbridge, UK, 2014. [Google Scholar]
- Kirkwood, A.; Price, L. Technology-enhanced learning and teaching in higher education: What is ‘enhanced’ and how do we know? A critical literature review. Learn. Media Technol. 2014, 39, 6–36. [Google Scholar] [CrossRef]
- Sife, A.; Lwoga, E.; Sanga, C. New technologies for teaching and learning: Challenges for higher learning institutions in developing countries. Int. J. Educ. Dev. Using ICT 2007, 3, 57–67. [Google Scholar]
- Roztocki, N.; Weistroffer, H.R. Information and communications technology in developing, emerging and transition economies: An assessment of research. Inf. Technol. Dev. 2015, 21, 330–364. [Google Scholar] [CrossRef]
- Bennett, S.; Dawson, P.; Bearman, M.; Molloy, E.; Boud, D. How technology shapes assessment design: Findings from a study of university teachers. Br. J. Educ. Technol. 2017, 48, 672–682. [Google Scholar] [CrossRef]
- Islam, A.A.; Mok, M.M.C.; Gu, X.; Spector, J.; Hai-Leng, C. ICT in Higher Education: An Exploration of Practices in Malaysian Universities. IEEE Access 2019, 7, 16892–16908. [Google Scholar] [CrossRef]
- Islam, A.Y.M.A. Development and Validation of the Technology Adoption and Gratification (TAG) Model in Assessing Teachers’ ICT Use. Ph.D. Thesis, University of Malaya, Kuala Lumpur, Malaya, 2015. [Google Scholar]
- Wu, J.; Tennyson, R.D.; Hsia, T.L. A study of student satisfaction in a blended e-learning system environment. Comput. Educ. 2010, 55, 155–164. [Google Scholar] [CrossRef]
- Ramlan, J.; Ahmed, E.M. The impact of ICT in Malaysia: A simultaneous equations approach. World J. Sci. Technol. Sustain. Dev. 2010, 7, 61–72. [Google Scholar] [CrossRef]
- Ajzen, I. Theory of planned behaviour. Organ. Behav. Hum. Decis. Process 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. The prediction of behavior from attitudinal and normative variables. J. Exp. Soc. Psychol. 1985, 6, 466–488. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Chow, Y.S.; Teicher, H. Probability Theory: Independence, Interchangeability, Martingales; Springer Science Business Media: Berlin, Germany, 2012. [Google Scholar]
- Rauniar, R.; Rawski, G.; Yang, J.; Johnson, B. Technology acceptance model (TAM) and social media usage: An empirical study on Facebook. J. Enterp. Inf. Manag. 2014, 27, 6–30. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.G.; Sheetz, S.D. The adoption of software measures: A technology acceptance model (TAM) perspective. Inf. Manag. 2014, 51, 249–259. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intension and Behaviour: An Introduction to Theory and Research; Addison Wesley: Reading, MA, USA, 1975. [Google Scholar]
- Teo, T. Modelling technology acceptance in education: A study of pre-service teachers. Comput. Educ. 2009, 52, 302–312. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy mechanism in human agency. Am. Psychol. 1992, 37, 122–147. [Google Scholar] [CrossRef]
- Venkatesh, V. Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Inf. Syst. Res. 2000, 11, 342–365. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.S.; Wang, Y.M.; Lin, H.H.; Tang, T.I. Determinants of user acceptance of Internet banking: An empirical study. Int. J. Serv. Ind. Manag. 2003, 14, 501–519. [Google Scholar] [CrossRef]
- Teo, T.; Zhou, M. Explaining the intention to use technology among university students: A structural equation modeling approach. J. Comput. High. Educ. 2014, 26, 124–142. [Google Scholar] [CrossRef]
- Macharia, J.K.N.; Pelser, T.G. Key factors that influence the diffusion and infusion of information and communication technologies in Kenyan higher education. Stud. High. Educ. 2012, 39, 695–709. [Google Scholar] [CrossRef]
- Hsu, M.K.; Wang, S.W.; Chiu, K.K. Computer attitude, statistics anxiety and self-efficacy on statistical software adoption behaviour: An empirical study of online MBA learners. Comput. Hum. Behav. 2009, 25, 412–420. [Google Scholar] [CrossRef]
- Durndell, A.; Haag, Z. Computer self-efficacy, computer anxiety, attitudes towards the internet and reported experience with the internet, by gender, in an east European sample. Comput. Hum. Behav. 2002, 18, 521–535. [Google Scholar] [CrossRef]
- Heijden, H.V. User Acceptance of Hedonic Information Systems. MIS Q. 2004, 28, 695–704. [Google Scholar] [CrossRef]
- Al-Rahmi, W.M.; Alias, N.; Othman, M.S.; Marin, V.I.; Tur, G. A model of factors affecting learning performance through the use of social media in Malaysian higher education. Comput. Educ. 2018, 121, 59–72. [Google Scholar] [CrossRef]
- Al-Rahmi, W.M.; Othman, M.S.; Yusuf, L.M. The effect of social media on researchers’ academic performance through collaborative learning in Malaysian higher education. Mediterr. J. Soc. Sci. 2015, 6, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Al-Rahmi, W.M.; Yahaya, N.; Alamri, M.M.; Alyoussef, I.Y.; Al-Rahmi, A.M.; Kamin, Y.B. Integrating innovation diffusion theory with technology acceptance model: Supporting students’ attitude towards using a massive open online courses (MOOCs) systems. Interact. Learn. Environ. 2019, 1–13. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Fabunmi, M.P.B.A.; Isaiah, A.A. Class factors as determinants of secondary school student’s academic performance in Oyo State, Nigeria. J. Soc. Sci. 2007, 14, 243–247. [Google Scholar] [CrossRef]
- Riaz, A.; Riaz, A.; Hussain, M. Students’ acceptance and commitment to e- learning: Evidence from Pakistan. J. Educ. Soc. Res. 2011, 1, 21–30. [Google Scholar]
- Tan, P.J.B. An empirical study of how the learning attitudes of college students toward English e-tutoring websites affect site sustainability. Sustainability 2019, 11, 1748. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Al-Rahmi, W.M.; Yahaya, N.; Alamri, M.M.; Aljarboa, N.A.; Kamin, Y.B.; Saud, M.S.B. How Cyber Stalking and Cyber Bullying Affect Students’ Open Learning. IEEE Access 2019, 7, 20199–20210. [Google Scholar] [CrossRef]
- Pelling, E.; White, K. The theory of planned behavior applied to young people’s use of social networking web sites. CyberPsychol. Behav. 2009, 12, 755–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B. Understanding antecedents of continuance intention in social-networking services. CyberPsychology Behav. Soc. Netw. 2011, 14, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Mena, J.A. An assessment of the use of partial least squares structural equation modeling in marketing research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Compeau, D.R.; Higgins, C.A. Computer self-efficacy: Development of a measure and initial test. MIS Q. 1995, 19, 189–211. [Google Scholar] [CrossRef] [Green Version]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Fan, R.J.D.; Tan, P.J.B. Application of Information Technology in Preschool Aesthetic Teaching from the Perspective of Sustainable Management. Sustainability 2019, 11, 2179. [Google Scholar] [CrossRef] [Green Version]
- Al-Rahmi, W.M.; Othman, M.S.; Yusuf, L.M. Social media for collaborative learning and engagement: Adoption framework in higher education institutions in Malaysia. Mediterr. J. Soc. Sci. 2015, 6, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Al-Rahmi, W.M.; Yahaya, N.; Aldraiweesh, A.A.; Alamri, M.M.; Aljarboa, N.A.; Alturki, U.; Aljeraiwi, A.A. Integrating Technology Acceptance Model with Innovation Diffusion Theory: An Empirical Investigation on students’ Intention to use E-Learning Systems. IEEE Access 2019, 7, 26797–26809. [Google Scholar] [CrossRef]
- Al-Rahmi, W.M.; Othman, M.S.; Yusuf, L.M. Using Social Media for Research: The Role of Interactivity, Collaborative Learning, and Engagement on the Performance of Students in Malaysian Post-Secondary Institutes. Mediterr. J. Soc. Sci. 2015, 6, 536–546. [Google Scholar] [CrossRef] [Green Version]
- Al-Rahmi, W.M.; Othman, M.S.; Yusuf, L.M. Effect of Engagement and Collaborative Learning on Satisfaction Through the use of Social Media on Malaysian Higher Education. Res. J. Appl. Sci. Eng. Technol. 2015, 9, 1132–1142. [Google Scholar] [CrossRef]
- Bala, M. Use of ICT in Higher Education. Multidisciplinary Higher Education. In Research Dynamics and Concepts; Swaranjali Publication: Perth, Australia, 2018; pp. 368–376. [Google Scholar]
- Agrawal, A.K.; Mittal, G.K. The Role of ICT in Higher Education. In Multidisciplinary Higher Education, Research, Dynamics and Concepts; Swaranjali Publication: Perth, Australia, 2018; pp. 76–83. [Google Scholar]
- Dave, D.D. An Analytical Study of the Role of ICT in Higher Education. J. Glob. Econ. 2019, 15, 56–61. [Google Scholar]
No | Factors | Code | SN | CSE | PE | PU | PEU | ATU-ICT | SIU-ICT | SSU-ICT |
---|---|---|---|---|---|---|---|---|---|---|
1 | Subjective Norms | SN1 | 0.831 | 0.562 | 0.493 | 0.412 | 0.425 | 0.524 | 0.507 | 0.413 |
2 | SN2 | 0.874 | 0.647 | 0.557 | 0.457 | 0.461 | 0.577 | 0.562 | 0.535 | |
3 | SN3 | 0.863 | 0.578 | 0.511 | 0.388 | 0.419 | 0.559 | 0.512 | 0.511 | |
4 | SN4 | 0.843 | 0.603 | 0.515 | 0.433 | 0.439 | 0.595 | 0.529 | 0.563 | |
5 | Computer Self-Efficacy | CSE1 | 0.519 | 0.805 | 0.474 | 0.392 | 0.425 | 0.488 | 0.576 | 0.492 |
6 | CSE2 | 0.622 | 0.880 | 0.587 | 0.451 | 0.477 | 0.562 | 0.622 | 0.576 | |
7 | CSE3 | 0.622 | 0.826 | 0.606 | 0.454 | 0.475 | 0.595 | 0.609 | 0.568 | |
8 | CSE4 | 0.539 | 0.776 | 0.464 | 0.441 | 0.438 | 0.499 | 0.570 | 0.553 | |
9 | Perceived Enjoyment | PE1 | 0.527 | 0.525 | 0.831 | 0.382 | 0.435 | 0.613 | 0.514 | 0.409 |
10 | PE2 | 0.500 | 0.505 | 0.850 | 0.415 | 0.449 | 0.642 | 0.514 | 0.454 | |
11 | PE3 | 0.488 | 0.516 | 0.861 | 0.407 | 0.436 | 0.624 | 0.519 | 0.414 | |
12 | PE4 | 0.478 | 0.539 | 0.818 | 0.467 | 0.472 | 0.598 | 0.490 | 0.408 | |
13 | PE5 | 0.515 | 0.580 | 0.778 | 0.577 | 0.618 | 0.641 | 0.555 | 0.539 | |
14 | Perceived Usefulness | PU1 | 0.437 | 0.470 | 0.504 | 0.820 | 0.608 | 0.458 | 0.488 | 0.468 |
15 | PU2 | 0.403 | 0.433 | 0.502 | 0.875 | 0.640 | 0.481 | 0.512 | 0.502 | |
16 | PU3 | 0.391 | 0.441 | 0.454 | 0.839 | 0.584 | 0.409 | 0.480 | 0.493 | |
17 | PU4 | 0.424 | 0.422 | 0.427 | 0.784 | 0.623 | 0.387 | 0.471 | 0.457 | |
18 | PU5 | 0.415 | 0.439 | 0.433 | 0.844 | 0.626 | 0.395 | 0.464 | 0.488 | |
19 | Perceived Ease of Use | PEU1 | 0.350 | 0.464 | 0.484 | 0.667 | 0.815 | 0.461 | 0.564 | 0.553 |
20 | PEU2 | 0.475 | 0.416 | 0.422 | 0.622 | 0.796 | 0.389 | 0.486 | 0.512 | |
21 | PEU3 | 0.375 | 0.454 | 0.533 | 0.570 | 0.817 | 0.475 | 0.514 | 0.461 | |
22 | PEU4 | 0.406 | 0.421 | 0.429 | 0.508 | 0.754 | 0.446 | 0.498 | 0.471 | |
23 | PEU5 | 0.437 | 0.434 | 0.496 | 0.556 | 0.779 | 0.491 | 0.452 | 0.490 | |
24 | Attitude towards ICT Use | ATU-CT1 | 0.440 | 0.443 | 0.630 | 0.320 | 0.383 | 0.670 | 0.460 | 0.390 |
25 | ATU-CT2 | 0.562 | 0.497 | 0.635 | 0.346 | 0.413 | 0.777 | 0.497 | 0.409 | |
26 | ATU-CT3 | 0.401 | 0.460 | 0.456 | 0.298 | 0.369 | 0.733 | 0.427 | 0.433 | |
27 | ATU-CT4 | 0.584 | 0.558 | 0.601 | 0.457 | 0.468 | 0.849 | 0.610 | 0.576 | |
28 | ATU-CT5 | 0.551 | 0.555 | 0.617 | 0.515 | 0.546 | 0.827 | 0.598 | 0.577 | |
29 | Students’ Intentions to Use ICT | SIU-ICT1 | 0.490 | 0.589 | 0.515 | 0.483 | 0.527 | 0.548 | 0.837 | 0.592 |
30 | SIU-ICT2 | 0.524 | 0.632 | 0.538 | 0.519 | 0.577 | 0.598 | 0.871 | 0.673 | |
31 | SIU-ICT3 | 0.535 | 0.631 | 0.520 | 0.490 | 0.540 | 0.569 | 0.868 | 0.645 | |
32 | SIU-ICT4 | 0.529 | 0.623 | 0.564 | 0.520 | 0.527 | 0.595 | 0.856 | 0.633 | |
33 | SIU-ICT5 | 0.558 | 0.599 | 0.552 | 0.454 | 0.530 | 0.577 | 0.820 | 0.588 | |
34 | Students’ Satisfaction with ICT Use | SSU-ICT1 | 0.479 | 0.575 | 0.464 | 0.523 | 0.556 | 0.542 | 0.667 | 0.851 |
35 | SSU-ICT2 | 0.533 | 0.557 | 0.495 | 0.503 | 0.565 | 0.541 | 0.620 | 0.835 | |
36 | SSU-ICT3 | 0.545 | 0.594 | 0.472 | 0.501 | 0.536 | 0.532 | 0.653 | 0.885 | |
37 | SSU-ICT4 | 0.498 | 0.573 | 0.450 | 0.489 | 0.523 | 0.542 | 0.603 | 0.854 | |
38 | SSU-ICT5 | 0.479 | 0.546 | 0.455 | 0.445 | 0.498 | 0.519 | 0.597 | 0.839 |
No | Factors | Code | Factors Loading | Cronbach’s Alpha | AVE | Composite Reliability | R-Square |
---|---|---|---|---|---|---|---|
1 | Subjective Norms | SN1 | 0.831 | 0.870 | 0.727 | 0.914 | 0.000 |
2 | SN2 | 0.874 | |||||
3 | SN3 | 0.863 | |||||
4 | SN4 | 0.843 | |||||
5 | Computer Self-Efficacy | CSE1 | 0.805 | 0.840 | 0.677 | 0.893 | 0.000 |
6 | CSE2 | 0.880 | |||||
7 | CSE3 | 0.826 | |||||
8 | CSE4 | 0.776 | |||||
9 | Perceived Enjoyment | PE1 | 0.831 | 0.886 | 0.686 | 0.916 | 0.000 |
10 | PE2 | 0.850 | |||||
11 | PE3 | 0.861 | |||||
12 | PE4 | 0.818 | |||||
13 | PE5 | 0.778 | |||||
14 | Perceived Usefulness | PU1 | 0.820 | 0.889 | 0.694 | 0.919 | 0.579 |
15 | PU2 | 0.875 | |||||
16 | PU3 | 0.839 | |||||
17 | PU4 | 0.784 | |||||
18 | PU5 | 0.844 | |||||
19 | Perceived Ease of Use | PEU1 | 0.815 | 0.852 | 0.628 | 0.894 | 0.412 |
20 | PEU2 | 0.796 | |||||
21 | PEU3 | 0.817 | |||||
22 | PEU4 | 0.754 | |||||
23 | PEU5 | 0.779 | |||||
24 | Attitude towards ICT Use | ATU-ICT1 | 0.670 | 0.832 | 0.599 | 0.881 | 0.345 |
25 | ATU-ICT2 | 0.777 | |||||
26 | ATU-ICT3 | 0.733 | |||||
27 | ATU-ICT4 | 0.849 | |||||
28 | ATU-ICT5 | 0.827 | |||||
29 | Students’ Intentions to Use ICT | SIU-ICT1 | 0.837 | 0.904 | 0.723 | 0.929 | 0.535 |
30 | SIU-ICT2 | 0.871 | |||||
31 | SIU-ICT3 | 0.868 | |||||
32 | SIU-ICT4 | 0.856 | |||||
33 | SIU-ICT5 | 0.820 | |||||
34 | Students’ Satisfaction with ICT Use | SSU-ICT1 | 0.851 | 0.906 | 0.728 | 0.930 | 0.603 |
35 | SSU-ICT2 | 0.835 | |||||
36 | SSU-ICT3 | 0.885 | |||||
37 | SSU-ICT4 | 0.854 | |||||
38 | SSU-ICT5 | 0.839 |
No | Factors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
1 | Subjective Norms | 0.915 | |||||||
2 | Computer Self-Efficacy | 0.382 | 0.893 | ||||||
3 | Perceived Enjoyment | 0.437 | 0.411 | 0.911 | |||||
4 | Perceived Usefulness | 0.532 | 0.543 | 0.598 | 0.899 | ||||
5 | Perceived Ease of Use | 0.434 | 0.481 | 0.548 | 0.406 | 0.874 | |||
6 | Attitudes towards ICT Use | 0.388 | 0.501 | 0.359 | 0.541 | 0.527 | 0.909 | ||
7 | Students’ Intentions to Use ICT | 0.320 | 0.458 | 0.397 | 0.509 | 0.468 | 0.499 | 0.893 | |
8 | Students’ Satisfaction with ICT Use | 0.546 | 0.349 | 0.391 | 0.476 | 0.512 | 0.503 | 0.492 | 0.907 |
H | Independent | Relationship | Dependent | Path | S.E. | T. Value | Result |
---|---|---|---|---|---|---|---|
H1 | SN | | PU | 0.070 | 0.032 | 2.162 | Supported |
H2 | SN | | PEU | 0.130 | 0.046 | 2.923 | Supported |
H3 | CSE | | PU | 0.082 | 0.037 | 2.223 | Supported |
H4 | CSE | | PEU | 0.215 | 0.044 | 4.899 | Supported |
H5 | PE | | PU | 0.106 | 0.033 | 3.188 | Supported |
H6 | PE | | PEU | 0.378 | 0.039 | 9.766 | Supported |
H7 | PEU | | PU | 0.596 | 0.031 | 19.027 | Supported |
H8 | PU | | SIU-ICT | 0.315 | 0.031 | 10.199 | Supported |
H9 | PU | | ATU-ICT | 0.200 | 0.055 | 3.631 | Supported |
H10 | PEU | | SSU-ICT | 0.227 | 0.033 | 6.894 | Supported |
H11 | PEU | | ATU-ICT | 0.423 | 0.053 | 8.062 | Supported |
H12 | ATU-ICT | | SIU-ICT | 0.518 | 0.032 | 16.124 | Supported |
H13 | ATU-ICT | | SSU-ICT | 0.177 | 0.039 | 4.530 | Supported |
H14 | SIU-ICT | | SSU-ICT | 0.373 | 0.041 | 11.489 | Supported |
Variable | Code | 1 | 2 | 3 | 4 | 5 | Mean | SD |
---|---|---|---|---|---|---|---|---|
f (%) | f (%) | f (%) | f (%) | f (%) | ||||
Subjective Norms | SN 1 | 12 (2.4) | 18 (3.6) | 79 (15.7) | 223 (44.4) | 170 (33.9) | 3.68 | 0.866 |
SN 2 | 12 (2.4) | 38 (7.6) | 59 (11.8) | 207 (41.2) | 186 (37.1) | 3.52 | 0.884 | |
SN 3 | 8 (1.6) | 27 (5.4) | 76 (15.1) | 235 (46.8) | 156 (31.1) | 3.69 | 0.850 | |
SN 4 | 14 (2.8) | 52 (10.4) | 78 (15.5) | 201 (40.0) | 157 (31.3) | 3.55 | 0.967 |
Variable | Code | 1 | 2 | 3 | 4 | 5 | Mean | SD |
---|---|---|---|---|---|---|---|---|
f (%) | f (%) | f (%) | f (%) | f (%) | ||||
Computer Self-Efficacy | CSE 1 | 7 (1.4) | 32 (6.4) | 67 (13.3) | 214 (42.6) | 182 (36.3) | 3.60 | 0.848 |
CSE 2 | 11 (2.2) | 33 (6.6) | 90 (17.9) | 205 (40.8) | 163 (32.5) | 3.66 | 0.912 | |
CSE 3 | 3 (0.6) | 35 (7.0) | 76 (15.1) | 189 (37.6) | 199 (39.6) | 3.60 | 0.848 | |
CSE 4 | 4 (0.8) | 30 (6.0) | 65 (12.9) | 219 (43.6) | 184 (36.7) | 3.62 | 0.814 |
Variable | Code | 1 | 2 | 3 | 4 | 5 | Mean | SD |
---|---|---|---|---|---|---|---|---|
f (%) | f (%) | f (%) | f (%) | f (%) | ||||
Perceived Enjoyment | PE 1 | 10 (2.0) | 18 (3.6) | 109 (21.7) | 217 (43.2) | 148 (29.5) | 3.79 | 0.890 |
PE 2 | 5 (1.0) | 44 (8.8) | 69 (13.7) | 205 (40.8) | 179 (35.7) | 3.58 | 0.869 | |
PE 3 | 6 (1.2) | 31 (6.2) | 67 (13.3) | 207 (41.2) | 191 (38.0) | 3.59 | 0.840 | |
PE 4 | 6 (1.2) | 40 (8.0) | 87 (17.3) | 206 (41.0) | 163 (32.5) | 3.65 | 0.898 | |
PE 5 | 13 (2.6) | 32 (6.4) | 77 (15.3) | 204 (40.6) | 176 (35.1) | 3.60 | 0.912 |
Variable | Code | 1 | 2 | 3 | 4 | 5 | Mean | SD |
---|---|---|---|---|---|---|---|---|
f (%) | f (%) | f (%) | f (%) | f (%) | ||||
Perceived Ease of Use | PEU 1 | 5 (1.0) | 13 (2.6) | 86 (17.1) | 253 (50.4) | 145 (28.9) | 4.04 | 0.808 |
PEU 2 | 3 (0.6) | 12 (2.4) | 105 (20.9) | 248 (49.4) | 134 (26.7) | 3.88 | 0.782 | |
PEU 3 | 9 (1.8) | 25 (5.0) | 107 (21.3) | 229 (45.6) | 132 (26.3) | 3.80 | 0.893 | |
PEU 4 | 10 (2.0) | 23 (4.6) | 102 (20.3) | 237 (47.2) | 130 (25.9) | 3.79 | 0.885 | |
PEU 5 | 10 (2.0) | 23 (4.6) | 103 (20.5) | 235 (46.8) | 131 (26.1) | 3.79 | 0.887 |
Variable | Code | 1 | 2 | 3 | 4 | 5 | Mean | SD |
---|---|---|---|---|---|---|---|---|
f (%) | f (%) | f (%) | f (%) | f (%) | ||||
Perceived Usefulness | PU 1 | 8(1.6) | 16(3.2) | 96(19.1) | 236(47.0) | 146(29.1) | 3.99 | 0.869 |
PU 2 | 8(1.6) | 35(7.0) | 68(13.5) | 197(39.2) | 194(38.6) | 3.56 | 0.869 | |
PU 3 | 6(1.2) | 16(3.2) | 93(18.5) | 251(50.0) | 136(27.1) | 3.81 | 0.811 | |
PU 4 | 6(1.2) | 16(3.2) | 105(20.9) | 255(50.8) | 120(23.9) | 3.87 | 0.817 | |
PU 5 | 11(2.2) | 15(3.0) | 96(19.1) | 240(47.8) | 140(27.9) | 3.79 | 0.862 |
Variable | Code | 1 | 2 | 3 | 4 | 5 | Mean | SD |
---|---|---|---|---|---|---|---|---|
f (%) | f (%) | f (%) | f (%) | f (%) | ||||
Attitudes towards ICT Use | ATU-CT1 | 4 (0.8) | 16 (3.2) | 117 (23.3) | 234 (46.6) | 131 (26.1) | 3.88 | 0.825 |
ATU-CT2 | 1 (0.2) | 24 (4.8) | 92 (18.3) | 263 (52.4) | 122 (24.3) | 3.84 | 0.781 | |
ATU-CT3 | 4 (0.8) | 15 (3.0) | 114 (22.7) | 240 (47.8) | 129 (25.7) | 3.89 | 0.815 | |
ATU-CT4 | 5 (1.0) | 26 (5.2) | 99 (19.7) | 232 (46.2) | 140 (27.9) | 3.78 | 0.853 | |
ATU-CT5 | 6 (1.2) | 12 (2.4) | 105 (20.9) | 232 (46.2) | 145 (28.9) | 3.84 | 0.822 |
Variable | Code | 1 | 2 | 3 | 4 | 5 | Mean | SD |
---|---|---|---|---|---|---|---|---|
f (%) | f (%) | f (%) | f (%) | f (%) | ||||
Students’ Intentions to Use ICT | SIU-ICT1 | 2 (0.4) | 24 (4.8) | 92 (18.3) | 245 (48.8) | 139 (27.7) | 3.80 | 0.805 |
SIU-ICT2 | 8 (1.6) | 22 (4.4) | 70 (13.9) | 203 (40.4) | 199 (39.6) | 3.60 | 0.839 | |
SIU-ICT3 | 6 (1.2) | 23 (4.6) | 83 (16.5) | 219 (34.6) | 171 (34.1) | 3.70 | 0.841 | |
SIU-ICT4 | 6 (1.2) | 22 (4.4) | 106 (21.1) | 238 (47.4) | 130 (25.9) | 3.83 | 0.852 | |
SIU-ICT5 | 6 (1.2) | 17 (3.4) | 117 (23.3) | 233 (46.4) | 129 (25.7) | 3.87 | 0.847 |
Variable | Code | 1 | 2 | 3 | 4 | 5 | Mean | SD |
---|---|---|---|---|---|---|---|---|
f (%) | f (%) | f (%) | f (%) | f (%) | ||||
Student’s Satisfaction | SSU-ICT 1 | 18 (3.6) | 23 (4.6) | 83 (16.5) | 213 (42.4) | 165 (32.9) | 3.64 | 0.933 |
SSU-ICT 2 | 21 (4.2) | 29 (5.8) | 65 (12.9) | 215 (42.8) | 172 (34.3) | 3.55 | 0.935 | |
SSU-ICT 3 | 13 (2.6) | 32 (6.4) | 69 (13.7) | 201 (40.0) | 187 (37.3) | 3.56 | 0.898 | |
SSU-ICT 4 | 9 (1.8) | 27 (5.4) | 72 (14.3) | 245 (48.8) | 149 (29.7) | 3.69 | 0.848 | |
SSU-ICT 5 | 13 (2.6) | 30 (6.0) | 74 (14.7) | 215 (42.8) | 170 (33.9) | 3.61 | 0.899 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rahmi, W.M.; Alzahrani, A.I.; Yahaya, N.; Alalwan, N.; Kamin, Y.B. Digital Communication: Information and Communication Technology (ICT) Usage for Education Sustainability. Sustainability 2020, 12, 5052. https://doi.org/10.3390/su12125052
Al-Rahmi WM, Alzahrani AI, Yahaya N, Alalwan N, Kamin YB. Digital Communication: Information and Communication Technology (ICT) Usage for Education Sustainability. Sustainability. 2020; 12(12):5052. https://doi.org/10.3390/su12125052
Chicago/Turabian StyleAl-Rahmi, Waleed Mugahed, Ahmed Ibrahim Alzahrani, Noraffandy Yahaya, Nasser Alalwan, and Yusri Bin Kamin. 2020. "Digital Communication: Information and Communication Technology (ICT) Usage for Education Sustainability" Sustainability 12, no. 12: 5052. https://doi.org/10.3390/su12125052
APA StyleAl-Rahmi, W. M., Alzahrani, A. I., Yahaya, N., Alalwan, N., & Kamin, Y. B. (2020). Digital Communication: Information and Communication Technology (ICT) Usage for Education Sustainability. Sustainability, 12(12), 5052. https://doi.org/10.3390/su12125052