Identifying and Segmenting Commuting Behavior Patterns Based on Smart Card Data and Travel Survey Data
Abstract
:1. Introduction
2. Related Studies
2.1. Spatial and Temporal Regularities
2.2. Public Transit Demand Distribution
2.3. Multi-Source Data Fusion
3. Data
3.1. Smart Card Data
3.2. Travel Behavior Survey Data
3.3. Socioeconomic Data
4. Methods
4.1. Commuting Behavior Feature Extraction
4.2. Commuter Identification
4.3. Commuter Segmentation
- For each temporal pattern draw ;
- For each commuter in the dataset, choose a temporal pattern ;
- For each departure time label in commuter :
- (1)
- Draw a temporal pattern ;
- (2)
- Draw the departure time label .
5. Results
5.1. Commuter Identification Results
5.2. Commuter Segmentation Results
5.3. Commuting Behavior Interpretation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Litman, T. Evaluating Public Transit Benefits and Costs: Best Practices Guidbook. 2010. Available online: https://www.vtpi.org/tranben.pdf (accessed on 5 June 2020).
- Truong, L.T.; Currie, G. Macroscopic road safety impacts of public transport: A case study of Melbourne, Australia. Accid. Anal. Prev. 2019, 132, 105270. [Google Scholar] [CrossRef] [PubMed]
- Beijing Municipal Committee of Transport. Beijing Public Transport Network Master Planning. 2020. Available online: http://jtw.beijing.gov.cn/xxgk/tpxw/202004/P020200410652921416550.pdf (accessed on 3 June 2020).
- Briand, A.S.; Côme, E.; Mohamed, K.; Oukhellou, L. A mixture model clustering approach for temporal passenger pattern characterization in public transport. Int. J. Data Sci. Anal. 2016, 1, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Briand, A.S.; Côme, E.; Trépanier, M.; Oukhellou, L. Analyzing year-to-year changes in public transport passenger behaviour using smart card data. Transp. Res. Emerg. Technol. 2017, 79, 274–289. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, T. Understanding public transit patterns with open geodemographics to facilitate public transport planning. Transportmetrica 2020, 16, 76–103. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, K.; Côme, E.; Baro, J.; Oukhellou, L. Understanding Passenger Patterns in Public Transit Through Smart Card and Socioeconomic Data. In Proceedings of the 3rd International Workshop on Urban Computing, Seattle, WA, USA, 24 August 2014. [Google Scholar]
- Liu, Y.; Liu, Z.; Jia, R. DeepPF: A deep learning based architecture for metro passenger flow prediction. Transp. Res. Emerg. Technol. 2019, 101, 18–34. [Google Scholar] [CrossRef]
- Qi, G.; Huang, A.; Guan, W.; Fan, L. Analysis and prediction of regional mobility patterns of bus travellers using smart card data and points of interest data. IEEE Trans. Intell. Transp. Syst. 2018, 20, 1197–1214. [Google Scholar] [CrossRef]
- Ding, C.; Wang, D.; Ma, X.; Li, H. Predicting short-term subway ridership and prioritizing its influential factors using gradient boosting decision trees. Sustainability 2016, 8, 1100. [Google Scholar] [CrossRef] [Green Version]
- Marcińczak, S.; Bartosiewicz, B. Commuting patterns and urban form: Evidence from Poland. J. Transp. Geogr. 2018, 70, 31–39. [Google Scholar] [CrossRef]
- Zhao, P. The impact of the built environment on individual workers’ commuting behavior in Beijing. Int. J. Sustain. Transp. 2013, 7, 389–415. [Google Scholar] [CrossRef]
- Zhou, J.; Murphy, E. Day-to-day variation in excess commuting: An exploratory study of Brisbane, Australia. J. Transp. Geogr. 2019, 74, 223–232. [Google Scholar] [CrossRef]
- Bhaskar, A.; Chung, E. Passenger segmentation using smart card data. IEEE Trans. Intell. Transp. Syst. 2014, 16, 1537–1548. [Google Scholar]
- Ma, X.; Wu, Y.J.; Wang, Y.; Chen, F.; Liu, J. Mining smart card data for transit riders’ travel patterns. Transp. Res. Emerg. Technol. 2013, 36, 1–12. [Google Scholar] [CrossRef]
- Ma, X.; Liu, C.; Wen, H.; Wang, Y.; Wu, Y.J. Understanding commuting patterns using transit smart card data. J. Transp. Geogr. 2017, 58, 135–145. [Google Scholar] [CrossRef]
- Kieu, L.M.; Bhaskar, A.; Chung, E. A modified density-based scanning algorithm with noise for spatial travel pattern analysis from smart card AFC data. Transp. Res. Emerg. Technol. 2015, 58, 193–207. [Google Scholar] [CrossRef]
- Goulet-Langlois, G.; Koutsopoulos, H.N.; Zhao, J. Inferring patterns in the multi-week activity sequences of public transport users. Transp. Res. Emerg. Technol. 2016, 64, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Manley, E.; Zhong, C.; Batty, M. Spatiotemporal variation in travel regularity through transit user profiling. Transportation 2018, 45, 703–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; He, Z. Analysing the spatial-temporal characteristics of bus travel demand using the heat map. J. Transp. Geogr. 2017, 58, 247–255. [Google Scholar] [CrossRef]
- Tang, J.; Wang, X.; Zong, F.; Hu, Z. Uncovering Spatio-temporal Travel Patterns Using a Tensor-based Model from Metro Smart Card Data in Shenzhen, China. Sustainability 2020, 12, 1475. [Google Scholar] [CrossRef] [Green Version]
- Cats, O.; Wang, Q.; Zhao, Y. Identification and classification of public transport activity centres in Stockholm using passenger flows data. J. Transp. Geogr. 2015, 48, 10–22. [Google Scholar] [CrossRef]
- Gong, Y.; Lin, Y.; Duan, Z. Exploring the spatiotemporal structure of dynamic urban space using metro smart card records. Comput. Environ. Urban 2017, 64, 169–183. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, F.; Guo, X.; Lei, X. Assessing the Distribution of Commuting Trips and Jobs-Housing Balance Using Smart Card Data: A Case Study of Nanjing, China. Sustainability 2019, 11, 5346. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Levinson, D.; Wang, J.; Zhou, J.; Wang, Z.J. Tracking job and housing dynamics with smartcard data. Proc. Natl. Acad. Sci. USA 2018, 115, 12710–12715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Q.; Yao, X.; Zhao, P.; Wei, H.; Ren, H. Detecting home location and trip purposes for cardholders by mining smart card transaction data in Beijing subway. Transportation 2018, 45, 919–944. [Google Scholar] [CrossRef]
- Bao, J.; Xu, C.; Liu, P.; Wang, W. Exploring bikesharing travel patterns and trip purposes using smart card data and online point of interests. Netw. Spat. Econ. 2017, 17, 1231–1253. [Google Scholar] [CrossRef]
- Medina, S.A.O. Inferring weekly primary activity patterns using public transport smart card data and a household travel survey. Travel Behav. Soc. 2018, 12, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Murphy, E.; Long, Y. Commuting efficiency in the Beijing metropolitan area: An exploration combining smartcard and travel survey data. J. Transp. Geogr. 2014, 41, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Kusakabe, T.; Asakura, Y. Behavioural data mining of transit smart card data: A data fusion approach. Transp. Res. Emerg. Technol. 2014, 46, 179–191. [Google Scholar] [CrossRef]
- Long, Y.; Liu, X.; Zhou, J.; Chai, Y. Early birds, night owls, and tireless/recurring itinerants: An exploratory analysis of extreme transit behaviors in Beijing, China. Habitat Int. 2016, 57, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Yang, D. Identifying Public Transit Commuters Based on Both the Smartcard Data and Survey Data: A Case Study in Xiamen, China. J. Adv. Transp. 2018, 2063, 1–10. [Google Scholar] [CrossRef]
- Ji, Y.; Cao, Y.; Liu, Y.; Guo, W.; Gao, L. Research on classification and influencing factors of metro commuting patterns by combining smart card data and household travel survey data. IET Intell. Transp. Syst. 2019, 13, 1525–1532. [Google Scholar] [CrossRef]
- Long, Y.; Thill, J.C. Combining smart card data and household travel surveys to analyze jobs–housing relationships in Beijing. Comput. Environ. Urban 2015, 53, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Weng, J.C.; Wang, C.; Wang, Y.Y.; Chen, Z.H.; Peng, S. Extraction Method of Public Transit Trip Chains Based on the Individual Riders’ Data. J. Transp. Syst. Eng. Inf. Technol. 2017, 17, 67–73. [Google Scholar]
- Mercorelli, P. Denoising and harmonic detection using nonorthogonal wavelet packets in industrial applications. J. Syst. Sci. Complex. 2007, 20, 325–343. [Google Scholar] [CrossRef]
- Mercorelli, P. Biorthogonal wavelet trees in the classification of embedded signal classes for intelligent sensors using machine learning applications. J. Franklin Inst. 2007, 344, 813–829. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 3146–3154. [Google Scholar]
- Chinchor, N.; Sundheim, B. MUC-5 Evaluation Metrics. In Proceedings of the 5th Conference on Message Understanding, Maryland, MD, USA, 25–27 August 1993. [Google Scholar]
- Hand, D.J.; Till, R.J. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 2001, 45, 171–186. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Hoffman, M.D.; Blei, D.M.; Wang, C.; Paisley, J. Stochastic variational inference. J. Mach. Learn. Res. 2013, 14, 1303–1347. [Google Scholar]
- Hu, L.; Sun, T.; Wang, L. Evolving urban spatial structure and commuting patterns: A case study of Beijing, China. Transp. Res. Transp. Environ. 2018, 59, 11–22. [Google Scholar] [CrossRef]
Question | Question Type | |
---|---|---|
1 | What is your smart card ID? | Mandatory |
2 | Do you use public transit mainly for commuting (i.e., for work or study)? | Mandatory |
3 | How many days do you take public transit during the week? | Mandatory |
4 | How many times do you take public transit during weekdays? | Mandatory |
5 | What is the name of the station closest to your home? | Optional |
6 | What is the name of the station closest to your workplace? | Optional |
7 | What is the frequent departure time for your first trip? | Mandatory |
8 | What is the frequent departure time of your last trip? | Mandatory |
Smart Card ID | Label | ||||||
---|---|---|---|---|---|---|---|
***89199087*** | 7 | 11 | 6 | 2 | 0.91 | 0.65 | Non-commuter |
***89186404*** | 17 | 31 | 21 | 11 | 0.51 | 0.31 | Commuter |
***89125720*** | 18 | 28 | 28 | 10 | 0.41 | 0 | Commuter |
***89123750*** | 20 | 42 | 37 | 3 | 0.42 | 0.51 | Commuter |
***89034363*** | 5 | 9 | 9 | 3 | 0.83 | 0.41 | Non-commuter |
Model | F1 Score | AUC ROC |
---|---|---|
KNN | 0.9257 | 0.9256 |
SVM | 0.9300 | 0.9301 |
DT | 0.9094 | 0.9097 |
ANN | 0.9290 | 0.9289 |
NB | 0.9271 | 0.9269 |
LightGBM | 0.9343 | 0.9343 |
Type | ||||||
---|---|---|---|---|---|---|
Non-commuters | 3.77 | 5.95 | 3.82 | 1.06 | 0.57 | 0.52 |
Commuters | 17.98 | 33.76 | 24.18 | 9.42 | 0.45 | 0.30 |
Region | Proportion of Residences | Proportion of Workplace |
---|---|---|
Within the 2nd Ring Road | 6.31% | 15.9% |
Between the 2nd and 3rd Ring Road | 14.00% | 25.1% |
Between the 3rd and 4th Ring Road | 19.01% | 23.3% |
Between the 4th and 5th Ring Road | 18.91% | 18.2% |
Between the 5th and 6th Ring Road | 41.78% | 17.5% |
Category | |||||
---|---|---|---|---|---|
Cluster 1 | 1.87 | 0.40 | 0.25 | 15.77 | 25.33% |
Cluster 2 | 1.86 | 0.41 | 0.24 | 13.72 | 5.26% |
Cluster 3 | 1.82 | 0.49 | 0.27 | 13.24 | 3.17% |
Cluster 4 | 2.11 | 0.62 | 0.52 | 12.84 | 4.29% |
Cluster 5 | 1.73 | 0.41 | 0.30 | 18.00 | 22.00% |
Cluster 6 | 1.72 | 0.50 | 0.32 | 12.46 | 39.94% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.; Weng, J.; Alivanistos, D.; Ma, S.; Yin, B. Identifying and Segmenting Commuting Behavior Patterns Based on Smart Card Data and Travel Survey Data. Sustainability 2020, 12, 5010. https://doi.org/10.3390/su12125010
Lin P, Weng J, Alivanistos D, Ma S, Yin B. Identifying and Segmenting Commuting Behavior Patterns Based on Smart Card Data and Travel Survey Data. Sustainability. 2020; 12(12):5010. https://doi.org/10.3390/su12125010
Chicago/Turabian StyleLin, Pengfei, Jiancheng Weng, Dimitrios Alivanistos, Siyong Ma, and Baocai Yin. 2020. "Identifying and Segmenting Commuting Behavior Patterns Based on Smart Card Data and Travel Survey Data" Sustainability 12, no. 12: 5010. https://doi.org/10.3390/su12125010
APA StyleLin, P., Weng, J., Alivanistos, D., Ma, S., & Yin, B. (2020). Identifying and Segmenting Commuting Behavior Patterns Based on Smart Card Data and Travel Survey Data. Sustainability, 12(12), 5010. https://doi.org/10.3390/su12125010