Human-Induced Enrichment of Potentially Toxic Elements in a Sediment Core of Lake Balkhash, the Largest Lake in Central Asia
Abstract
:1. Introduction
2. Regional Setting
3. Materials and Methods
3.1. Sampling and Laboratory Analyses
3.2. Enrichment Factor
3.3. Potential Ecological Risk Assessment
4. Results
4.1. Chronology of the Sediment Profile
4.2. Element Concentrations in the Lake Balkhash Sediment Core
5. Discussion
6. Conclusions
- (1)
- The dominant factor that has influenced most elements in the lake sediments, including potentially toxic elements (V, Cr, Co, Ni, Zn, Cu, Cd, and Pb), is the physical weathering of terrestrial materials. Calcium (Ca) levels have been influenced by the formation of authigenic carbonate.
- (2)
- Since 1930, potentially toxic elements (Cr, Co, Ni, Zn, Cu, Cd, and Pb) in the lake sediments have obviously been affected by human activities, but the impact of human activities has not exceeded that of natural terrestrial weathering.
- (3)
- The average ecological risks of Cd were higher than the criterion of 30, suggesting a moderate risk to the local ecosystem in recent years. The assessment of total risk indices indicated moderate potential ecological risk for the lake ecology.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loska, K.; Wiechuła, D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 2003, 51, 723–733. [Google Scholar] [CrossRef]
- Chen, J.; Wan, G.; Zhang, D.D.; Chen, Z.; Xu, J.; Xiao, T.; Huang, R. The ‘Little Ice Age’ recorded by sediment chemistry in Lake Erhai, southwest China. Holocene 2005, 15, 925–931. [Google Scholar] [CrossRef]
- Wu, Y.; Hou, X.; Cheng, X.; Yao, S.; Xia, W.; Wang, S. Combining geochemical and statistical methods to distinguish anthropogenic source of metals in lacustrine sediment: A case study in Dongjiu Lake, Taihu Lake catchment, China. Environ. Earth Sci. 2007, 52, 1467–1474. [Google Scholar] [CrossRef]
- Yuan, F. A multi-element sediment record of hydrological and environmental changes from Lake Erie since 1800. J. Paleolimnol. 2017, 58, 23–42. [Google Scholar] [CrossRef]
- Karl, T.R.; Trenberth, K.E. Modern Global Climate Change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [Green Version]
- Meybeck, M. The global change of continental aquatic systems: Dominant impacts of human activities. Water Sci. Technol. 2004, 49, 73–83. [Google Scholar] [CrossRef]
- Ma, L.; Wu, J.; Abuduwaili, J.; Liu, W. Geochemical Responses to Anthropogenic and Natural Influences in Ebinur Lake Sediments of Arid Northwest China. PLoS ONE 2016, 11, e0155819. [Google Scholar] [CrossRef] [Green Version]
- Akhbarizadeh, R.; Moore, F.; Keshavarzi, B.; Moeinpour, A. Microplastics and potentially toxic elements in coastal sediments of Iran’s main oil terminal (Khark Island). Environ. Pollut. 2017, 220, 720–731. [Google Scholar] [CrossRef]
- Hsu, L.-C.; Chen, H.-W.; Chan, Y.-T.; Teah, H.Y.; Chen, T.-Y.; Chang, C.-F.; Liu, Y.-T.; Tzou, Y.-M.; Huang, C.-Y.; Chuang, Y.-H. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries. Sci. Rep. 2016, 6, 34250. [Google Scholar] [CrossRef]
- Zhou, J.; Ma, D.; Pan, J.; Nie, W.; Wu, K. Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: A case study in Yangzhong, China. Environ. Earth Sci. 2007, 54, 373–380. [Google Scholar] [CrossRef]
- Willén, E. The Lakes Handbook, Volume II. Lake Restoration and Rehabilitation. Freshw. Boil. 2007, 2, 213–214. [Google Scholar] [CrossRef]
- Petr, T. Lake Balkhash, Kazakhstan. Int. J. Salt Lake Res. 1992, 1, 21–46. [Google Scholar] [CrossRef]
- Chen, F.; Yuan, Y.; Yu, S. Tree-ring indicators of rainfall and streamflow for the Ili-Balkhash Basin, Central Asia since CE 1560. Palaeogeogr. Palaeoclim. Palaeoecol. 2017, 482, 48–56. [Google Scholar] [CrossRef]
- Long, A.; Deng, M.; Xie, L.; Wang, J.; Li, X. A study of the water balance of Lake Balkhash. J. Glaciol. Geocryol. 2011, 33, 1341–1352. [Google Scholar]
- Propastin, P. Patterns of Lake Balkhash water level changes and their climatic correlates during 1992–2010 period. Lakes Reserv. Res. Manag. 2012, 17, 161–169. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Li, J.; Yang, L.; Fang, H. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environ. Monit. Assess. 2010, 178, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Xia, Z. Temperature and precipitation long-term trends and variations in the Ili-Balkhash Basin. Theor. Appl. Clim. 2013, 115, 219–229. [Google Scholar] [CrossRef]
- Krupa, E.; Stuge, T.S.; Lopareva, T.Y.; Shaukharbaeva, D.S. Distribution of planktonic crustaceans in Lake Balkhash in relation to environmental factors. Inland Water Boil. 2008, 1, 150–157. [Google Scholar] [CrossRef]
- Barinova, S.; Krupa, E.; Kadyrova, U. Spatial dynamics of species richness of phytoplankton of Lake Balkhash in the gradient of abiotic factors. Transylv. Rev. Syst. Ecol. Res. 2017, 19, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Abuduwaili, J.; Ma, L. Geochemistry of major and trace elements and their environmental significances in core sediments from Bosten Lake, arid northwestern China. J. Limnol. 2019, 78, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Ma, L.; Wu, J.; Abuduwaili, J. Environmental variability and human activity over the past 140 years documented by sediments of Ebinur Lake in arid central Asia. J. Limnol. 2017, 76, 534–545. [Google Scholar] [CrossRef]
- Ma, L.; Wu, J.; Abuduwaili, J. Climate and environmental changes over the past 150 years inferred from the sediments of Chaiwopu Lake, central Tianshan Mountains, northwest China. Acta Diabetol. 2012, 102, 959–967. [Google Scholar] [CrossRef]
- Aiman, I.; Niels, T.; Sebastian, S.; Sabir, N.; Ruslan, S. Vegetation, fauna, and biodiversity of the Ile Delta and southern Lake Balkhash-A review. J. Gt. Lakes Res. 2015, 41, 688–696. [Google Scholar]
- Panyushkina, I.; Meko, D.M.; Macklin, M.G.; Toonen, W.H.J.; Mukhamadiev, N.S.; Konovalov, V.G.; Ashikbaev, N.Z.; Sagitov, A.O. Runoff variations in Lake Balkhash Basin, Central Asia, 1779–2015, inferred from tree rings. Clim. Dyn. 2018, 51, 3161–3177. [Google Scholar] [CrossRef]
- Isbekov, K.B.; Tsoy, V.N.; Crétaux, J.-F.; Aladin, N.V.; Plotnikov, I.S.; Clos, G.; Berge-Nguyen, M.; Assylbekova, S.Z. Impacts of water level changes in the fauna, flora and physical properties over the Balkhash Lake watershed. Lakes Reserv. Res. Manag. 2019, 24, 195–208. [Google Scholar] [CrossRef]
- Myrzakhmetov, A.; Dostay, Z.; Alimkulov, S.; Madibekov, A. Level regime of Balkhash Lake as the indicator of the state of the environmental ecosystems of the region. Int. J. Adv. Res. Sci. Eng. Tech. 2017, 4, 4554–4563. [Google Scholar]
- Feng, Z.-D.; Wu, H.; Zhang, C.; Ran, M.; Sun, A. Bioclimatic change of the past 2500 years within the Balkhash Basin, eastern Kazakhstan, Central Asia. Quat. Int. 2013, 311, 63–70. [Google Scholar] [CrossRef]
- Chen, X.; Qiao, Q.; McGowan, S.; Zeng, L.; Stevenson, M.A.; Xu, L.; Huang, C.; Liang, J.; Cao, Y. Determination of geochronology and sedimentation rates of shallow lakes in the middle Yangtze reaches using 210Pb, 137Cs and spheroidal carbonaceous particles. Catena 2019, 174, 546–556. [Google Scholar] [CrossRef]
- Ma, L.; Abuduwaili, J.; Liu, W. Spatial Distribution and Health Risk Assessment of Potentially Toxic Elements in Surface Soils of Bosten Lake Basin, Central Asia. Int. J. Environ. Res. Public Heal. 2019, 16, 3741. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Yan, M.; Wang, C.; Li, L.; Shen, H. Geochemical standard reference samples GSD 9–12, GSS 1–8 AND GSR 1–6. Geostand. Newsl. 1989, 13, 83–179. [Google Scholar] [CrossRef]
- Standard test method for rapid determination of carbonate content of soils. In ASTM D4373-14; ASTM International: West Conshohocken, PA, USA, 2014.
- Yadav, I.C.; Devi, N.L.; Singh, V.K.; Li, J.; Zhang, G. Spatial distribution, source analysis, and health risk assessment of heavy metals contamination in house dust and surface soil from four major cities of Nepal. Chemosphere 2018, 218, 1100–1113. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Yan, T.; Birch, G.; Zhu, Y. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci. Total. Environ. 2014, 476, 522–531. [Google Scholar] [CrossRef]
- Idris, A.M. Combining multivariate analysis and geochemical approaches for assessing heavy metal level in sediments from Sudanese harbors along the Red Sea coast. Microchem. J. 2008, 90, 159–163. [Google Scholar] [CrossRef]
- Taylor, S. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, H.; Wang, D.; Chen, Z.; Xu, S. Toxic heavy metal contamination and risk assessment of street dust in small towns of Shanghai suburban area, China. Environ. Sci. Pollut. Res. 2012, 20, 323–332. [Google Scholar] [CrossRef]
- Kempter, H.; Krachler, M.; Shotyk, W.; Zaccone, C. Major and trace elements in Sphagnum moss from four southern German bogs, and comparison with available moss monitoring data. Ecol. Indic. 2017, 78, 19–25. [Google Scholar] [CrossRef]
- Kaarina, W.; Saunders, K.; Gell, P.; Skilbeck, C. Applications of Paleoenvironmental Techniques in Estuarine Studies; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Endo, K.; Chiba, T.; Sugai, T.; Haraguchi, T.; Hideo, Y.; Nakayama, Y.; Yoshinaga, Y.; Miyata, K.; Ogi, S. Reconstruction of Lake Level and Paleoenvironmental Changes from a Core from Balkhash Lake, Kazakhstan. In Proceedings of Reconceptualizing Cultural and Environmental Change in Central Asia; An Historical Perspective on the Future: Kyoto, Japan, 2012; pp. 93–104. [Google Scholar]
- Grunsky, E.; Mueller, U.; Corrigan, D. A study of the lake sediment geochemistry of the Melville Peninsula using multivariate methods: Applications for predictive geological mapping. J. Geochem. Explor. 2014, 141, 15–41. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Guimarães, J.T.F.; Souza-Filho, P.W.M.; Powell, M.A.; da Silva, M.S.; Moraes, A.M.; Alves, R.; Leite, A.S.; Júnior, W.N.; Rodrigues, T.M.; et al. Statistical analysis of lake sediment geochemical data for understanding surface geological factors and processes: An example from Amazonian upland lakes, Brazil. Catena 2019, 175, 47–62. [Google Scholar] [CrossRef]
- Lee, A.-S.; Huang, J.-J.S.; Burr, G.; Kao, L.C.; Wei, K.-Y.; Liou, S.Y.H. High resolution record of heavy metals from estuary sediments of Nankan River (Taiwan) assessed by rigorous multivariate statistical analysis. Quat. Int. 2019, 527, 44–51. [Google Scholar] [CrossRef]
- Peng, H.; Chen, C.; Cantin, J.; Saunders, D.M.V.; Sun, J.; Tang, S.; Codling, G.; Hecker, M.; Wiseman, S.; Jones, P.; et al. Untargeted Screening and Distribution of Organo-Bromine Compounds in Sediments of Lake Michigan. Environ. Sci. Technol. 2015, 50, 321–330. [Google Scholar] [CrossRef]
- Bell, M.A.; Overy, D.P.; Blais, J.M. A continental scale spatial investigation of lake sediment organic compositions using sedimentomics. Sci. Total. Environ. 2020, 719, 137746. [Google Scholar] [CrossRef]
- Bing, H.; Wu, Y.; Sun, Z.; Yao, S. Historical trends of heavy metal contamination and their sources in lacustrine sediment from Xijiu Lake, Taihu Lake catchment, China. J. Environ. Sci. 2011, 23, 1671–1678. [Google Scholar] [CrossRef]
- Kawabata, Y.; Tsukatani, T.; Katayama, Y. A demineralization mechanism for Lake Balkhash. Int. J. Salt Lake Res. 1999, 8, 99–112. [Google Scholar] [CrossRef]
- Liu, E.; Shen, J.; Liu, X.; Zhu, Y.; Wang, S. Variation characteristics of heavy metals and nutrients in the core sediments of Taihu Lake and their pollution history. Sci. China Ser. D: Earth Sci. 2006, 49, 82–91. [Google Scholar] [CrossRef]
- Bakytzhanova, B.; Kopylov, I.; Dal, L.; Satekov, T. Geoecology of Kazakhstan: Zoning, environmental status and measures for environment protection. Eur. J. Nat. Hist. 2016, 17–21. [Google Scholar]
- Chien, C.-T.; Allen, B.; Dimova, N.T.; Yang, J.; Reuter, J.; Schladow, G.; Paytan, A. Evaluation of atmospheric dry deposition as a source of nutrients and trace metals to Lake Tahoe. Chem. Geol. 2019, 511, 178–189. [Google Scholar] [CrossRef]
- Liu, H.-L.; Zhou, J.; Li, M.; Hu, Y.-M.; Liu, X.; Zhou, J. Study of the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica chinensis L.) system. J. Hazard. Mater. 2019, 362, 9–16. [Google Scholar] [CrossRef]
- Rzymski, P.; Klimaszyk, P.; Niedzielski, P.; Marszelewski, W.; Borowiak, D.; Nowiński, K.; Baikenzheyeva, A.; Kurmanbayev, R.; Aladin, N. Pollution with trace elements and rare-earth metals in the lower course of Syr Darya River and Small Aral Sea, Kazakhstan. Chemosphere 2019, 234, 81–88. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, Y.; Ding, M.; Xie, Z. Level, source identification, and risk analysis of heavy metal in surface sediments from river-lake ecosystems in the Poyang Lake, China. Environ. Sci. Pollut. Res. 2017, 24, 21902–21916. [Google Scholar] [CrossRef]
- Moore, M.J.; Mitrofanov, I.V.; Valentini, S.S.; Volkov, V.V.; Kurbskiy, A.V.; Zhimbey, E.N.; Eglinton, L.B.; Stegeman, J.J. Cytochrome P4501A expression, chemical contaminants and histopathology in roach, goby and sturgeon and chemical contaminants in sediments from the Caspian Sea, Lake Balkhash and the Ily River Delta, Kazakhstan. Mar. Pollut. Bull. 2003, 46, 107–119. [Google Scholar] [CrossRef]
- Dzhetimov, M.; Andasbayev, E.; Esengabylov, I.; Koyanbekova, S.; Tokpanov, E. Physical and chemical research of processes of salt formation in the water of Balkhash lake. CBU Int. Conf. Proc. 2013, 400–411. [Google Scholar] [CrossRef] [Green Version]
- Amirgaliev, N. Polychlorinated biphenyls in the water of Lake Balkhash and the rivers flowing into it. J. Sect. 2019, 121, 121. [Google Scholar]
- Hou, D.; He, J.; Lü, C.; Ren, L.; Fan, Q.; Wang, J.; Xie, Z. Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicol. Environ. Saf. 2013, 93, 135–144. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Kong, L.; Liu, E.; Wang, L.; Zhu, J. Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. Catena 2015, 125, 200–205. [Google Scholar] [CrossRef]
- Suresh, G.; Sutharsan, P.; Ramasamy, V.; Venkatachalapathy, R. Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol. Environ. Saf. 2012, 84, 117–124. [Google Scholar] [CrossRef]
- Chen, X.-H.; Wang, Z.-H.; Yang, N.; Chen, Z.-L.; Han, S.-G. Geological characteristics of and metallogenic model for large-scale sayak copper ore field in Balkhash metallogenic belt, Central Asia. J. Geomech. 2010, 16, 189–202. [Google Scholar]
Value | Grades of Ecological Risk for a Single Metal | Value | Grades of Potential Ecological Risk for the Environment |
---|---|---|---|
Er < 30 | Low risk | RI < 60 | Low risk |
30 ≤ Er < 60 | Moderate risk | 60 ≤ RI < 120 | Moderate risk |
60 ≤ Er < 120 | Considerable risk | 120 ≤ RI < 240 | Considerable risk |
120 ≤ Er < 240 | High risk | 240 ≤ RI | Very high risk |
240 ≤ Er | Very high risk |
Element | Unit | Minimum | Maximum | Average | Standard Deviation |
---|---|---|---|---|---|
Al | g kg−1 | 45.18 | 57.67 | 50.62 | 3.92 |
Ca | g kg−1 | 108.10 | 145.10 | 124.16 | 8.51 |
Fe | g kg−1 | 24.51 | 33.85 | 28.73 | 3.04 |
K | g kg−1 | 15.30 | 19.96 | 17.28 | 1.40 |
Mg | g kg−1 | 16.53 | 19.39 | 18.31 | 0.89 |
Mn | mg kg−1 | 506.93 | 738.13 | 627.49 | 83.08 |
Na | g kg−1 | 7.19 | 10.93 | 8.87 | 1.24 |
P | mg kg−1 | 362.31 | 650.66 | 486.19 | 63.11 |
Ti | g kg−1 | 2.42 | 2.97 | 2.65 | 0.17 |
V | mg kg−1 | 68.10 | 90.42 | 77.24 | 7.20 |
Cr | mg kg−1 | 41.29 | 58.93 | 49.18 | 5.87 |
Co | mg kg−1 | 8.54 | 12.34 | 10.31 | 1.27 |
Ni | mg kg−1 | 21.42 | 30.13 | 25.42 | 3.00 |
Cu | mg kg−1 | 30.01 | 42.18 | 36.89 | 3.86 |
Zn | mg kg−1 | 54.86 | 82.29 | 67.81 | 8.73 |
Cd | mg kg−1 | 0.13 | 0.28 | 0.20 | 0.05 |
Pb | mg kg−1 | 15.34 | 29.35 | 22.81 | 4.97 |
Carbonate | g kg−1 | 317.22 | 445.99 | 360.62 | 34.19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Ma, L.; Abuduwaili, J.; Liu, W.; Issanova, G.; Saparov, G.; Lin, L. Human-Induced Enrichment of Potentially Toxic Elements in a Sediment Core of Lake Balkhash, the Largest Lake in Central Asia. Sustainability 2020, 12, 4717. https://doi.org/10.3390/su12114717
Huang K, Ma L, Abuduwaili J, Liu W, Issanova G, Saparov G, Lin L. Human-Induced Enrichment of Potentially Toxic Elements in a Sediment Core of Lake Balkhash, the Largest Lake in Central Asia. Sustainability. 2020; 12(11):4717. https://doi.org/10.3390/su12114717
Chicago/Turabian StyleHuang, Kun, Long Ma, Jilili Abuduwaili, Wen Liu, Gulnura Issanova, Galymzhan Saparov, and Lin Lin. 2020. "Human-Induced Enrichment of Potentially Toxic Elements in a Sediment Core of Lake Balkhash, the Largest Lake in Central Asia" Sustainability 12, no. 11: 4717. https://doi.org/10.3390/su12114717
APA StyleHuang, K., Ma, L., Abuduwaili, J., Liu, W., Issanova, G., Saparov, G., & Lin, L. (2020). Human-Induced Enrichment of Potentially Toxic Elements in a Sediment Core of Lake Balkhash, the Largest Lake in Central Asia. Sustainability, 12(11), 4717. https://doi.org/10.3390/su12114717