A Numerical Study on Mitigation Strategies of Urban Heat Islands in a Tropical Megacity: A Case Study in Kaohsiung City, Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulated Area and Site Characteristics
2.2. CFD Simulation
2.2.1. ENVI-Met
2.2.2. Parameter Setting
2.2.3. Simulation Items and Accuracy Verification
2.3. Simulated Configurations
2.4. Analysis at Different Levels
3. Results and Discussion
3.1. Verification of Simulation Results (2:00 p.m.)
3.2. Thermal Environment Status in the Block
3.3. Pedestrian Activity Layer Benefits of Each Improvement Strategy (H = 1.5 m)
3.3.1. Analysis of the Effect of Temperature Mitigation and Mechanism
3.3.2. Analysis of the Effect of Comfort and Mechanism
3.4. Analysis of the Effectiveness of Improvement Strategies at Different Height Layers
3.4.1. Temperature Mitigation Effects and Wind Speed Changes
3.4.2. Analysis of the Effect of Comfort and MRT
3.5. Comparison of Different Areas (Streets, Parks, Buildings)
3.5.1. Comparison of the Effects Between Permeable Pavement and Greening at Streets (C1 vs. C2)
3.5.2. Comparison of Differences in the Park (C4–C3 vs. C3–C2)
3.6. Influence of Different GCR on Streets
3.7. Influence of Different Building Cover Areas on Roof Greening
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Akbari, H.; Davis, S.; Dorsano, S.; Huang, J.M.; Winnett, S. (Eds.) Cooling Our Communities: A Guidebook on Tree Planting and Light-Colored Surfacing; U.S. Environmental Protection Agency, Office of Policy Analysis, Climate Change Division: Washington, DC, USA, 1992. [Google Scholar]
- Brown, R.D.; Terry, J.G. Microclimatic Landscape Design: Creating Thermal Comfort and Energy Efficiency; John Wiley & Sons, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Givoni, B. Climate Consideration in Building and Urban Design; Van Nostrand Reinhold: New York, NY, USA, 1997. [Google Scholar]
- UN United Nations. World Urbanization Prospects 2018; UN Population Division; UN United Nations: New York, NY, USA, 2018.
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, UK; New York, NY, USA, 1987. [Google Scholar]
- Lin, H.T.; Lee, K.P. Experimental Analyses of Urban Heat Island Effects of the Four Metropolitan Cities in Taiwan (I)--The Comparision of the Heat Island Intensities Between Taiwan and the World Cities. J. Arch. 1999, 31, 51–73. (In Chinese) [Google Scholar]
- Ministry of the Environment Government of Japan. Investigation Report of Heat Island Measures and Method; Ministry of the Environment Government of Japan: Tokyo, Japan, 2001. (In Japanese)
- Observation Data Inquire System of Taiwan Central Weather Bureau. Available online: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp (accessed on 7 May 2020).
- Sun, C.Y.; Jian, Z.X. Heat Island Effect of Taipei Metropolitan Area. J. City Plan. 2016, 43, 437–462. (In Chinese) [Google Scholar]
- Huang, J.M.; Chang, H.Y.; Wang, Y.S. Spatiotemporal Changes in the Built Environment Characteristics and Urban Heat Island Effect in a Medium-sized City, Chiayi City, Taiwan. Sustainability 2020, 12, 365. [Google Scholar] [CrossRef] [Green Version]
- Royé, D. The effects of hot nights on mortality in Barcelona, Spain. Int. J. Biometeorol. 2017, 61, 2127–2140. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.A.; Waugh, D.W.; Zaitchik, B.F. Reduced Urban Heat Island intensity under warmer conditions. Environ. Res. Lett. 2018, 13, 064003. [Google Scholar] [CrossRef]
- Oke, T.R. Canyon Geometry and the Nocturnal Urban Heat Island: Comparison of Scale Model and Field Observations. Int. J. Climatol. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Ooka, R. Recent development of assessment tools for urban climate and heat-island investigation especially based on experiences in Japan. Int. J. Climatol. 2007, 27, 1919–1930. [Google Scholar] [CrossRef]
- Huang, J.; Ooka, R.; Omori, T. The Effect of the Urban Heat Island Mitigation Strategies on Outdoor Thermal Environment in Tokyo Central City-Numerical Simulation. In Proceedings of the 7th Asia-Pacific Conference on Wind Engineering, Taipei, Taiwan, 8–12 November 2009. [Google Scholar]
- Ministry of the Environment Government of Japan. Report on Actual Analysis of Urban Heat Island Phenomenon and Measures to be Taken; Ministry of the Environment Government of Japan: Tokyo, Japan, 2000; pp. 9–13. (In Japanese)
- Ministry of the Environment Government of Japan. Investigation Report on the Environmental Impact of the Heat Island Phenomenon; Ministry of the Environment Government of Japan: Tokyo, Japan, 2003; pp. 1–18. (In Japanese)
- Yoshida, S.; Ooka, R.; Mochida, T. Study on Effect of Greening on Outdoor Thermal Environment Using Three Dimensional Plant Canopy Model. J. Archit. Trans. Aij 2000, 536, 87–94. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Ooka, R.; Huang, H.; Tsuchiya, T. Study on mitigation measures for outdoor thermal environment on present urban blocks in Tokyo using coupled simulation. Build. Environ. 2009, 44, 2290–2299. [Google Scholar] [CrossRef]
- Hu, T.; Yoshie, R. Indices to evaluate ventilation efficiency in newly-built urban area at pedestrian level. J. Wind Eng. Ind. Aerodyn. 2013, 112, 39–51. [Google Scholar] [CrossRef]
- Lan, Y.; Zhan, Q. How do urban buildings impact summer air temperature? The effects of building configurations in space and time. Build. Environ. 2017, 125, 88–98. [Google Scholar] [CrossRef]
- Santos Nouri, A.; Fröhlich, D.; Matos Silva, M.; Matzarakis, A. The Impact of Tipuana tipu Species on Local Human Thermal Comfort Thresholds in Different Urban Canyon Cases in Mediterranean Climates: Lisbon, Portugal. Atmosphere 2018, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Rui, L.; Buccolieri, R.; Gao, Z.; Ding, W.; Shen, J. The Impact of Green Space Layouts on Microclimate and Air Quality in Residential Districts of Nanjing, China. Forests 2018, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Srivanit, M.; Jareemit, D. Modeling the influences of layouts of residential townhouses and tree-planting patterns on outdoor thermal comfort in Bangkok suburb. J. Build. Eng. 2020, 30, 101262. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lam, Y.F. Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s micro-climate and thermal comfort. Build. Environ. 2016, 103, 262–275. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Acero, J.A. Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Clim. 2015, 4, 251–267. [Google Scholar] [CrossRef]
- Alcazar, S.S.; Olivieri, F.; Neila, J. Green roofs: Experimental and analytical study of its potential for urban microclimate regulation in Mediterranean–continental climates. Urban Clim. 2016, 17, 304–317. [Google Scholar] [CrossRef]
- Jin, C.; Bai, X.; Luo, T.; Zou, M. Effects of green roofs’ variations on the regional thermal environment using measurements and simulations in Chongqing, China. Urban For. Urban Green. 2018, 29, 223–237. [Google Scholar] [CrossRef]
- Lyu, T.; Buccolieri, R.; Gao, Z. A Numerical Study on the Correlation between Sky View Factor and Summer Microclimate of Local Climate Zones. Atmosphere 2019, 10, 438. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Liu, Z.; Jin, Y.; Kang, J.; Liu, J. The Effects of Residential Area Building Layout on Outdoor Wind Environment at the Pedestrian Level in Severe Cold Regions of China. Sustainability 2017, 9, 2310. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, X.; Lu, X.; Hu, J.; Pan, X.; Zhu, Q.; Su, W. Effects of Building Design Elements on Residential Thermal Environment. Sustainability 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Skelhorn, C.; Lindley, S.; Levermore, G. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc. Urban Plan. 2014, 121, 129–140. [Google Scholar] [CrossRef]
- Sodoudi, S.; Zhang, H.; Chi, X.; Müller, F.; Li, H. The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban Forest. Urban Green. 2018, 34, 85–96. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Wang, Y.; Akbari, H. The effects of street tree planting on Urban Heat Island mitigation in Montreal. Sustain. Cities Soc. 2016, 27, 122–128. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Chen, L. Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc. Urban Plan 2016, 148, 37–50. [Google Scholar] [CrossRef]
- Aboelata, A. Vegetation in different street orientations of aspect ratio (H/W 1:1) to mitigate UHI and reduce buildings’ energy in arid climate. Build. Environ. 2020, 172, 106712. [Google Scholar] [CrossRef]
- Aboelata, A.; Sodoudi, S. Evaluating the effect of trees on UHI mitigation and reduction of energy usage in different built up areas in Cairo. Build. Environ. 2020, 168, 106490. [Google Scholar] [CrossRef]
- Ambrosini, D.; Galli, G.; Mancini, B.; Nardi, I.; Sfarra, S. Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met Climate Model. Sustainability 2014, 6, 7013–7029. [Google Scholar] [CrossRef] [Green Version]
- O’Malley, C.; Piroozfar, P.; Farr, E.R.; Pomponi, F. Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustain. Cities Soc. 2015, 19, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Razzaghmanesh, M.; Beecham, S.; Salemi, T. The role of green roofs in mitigating Urban Heat Island effects in themetropolitan area of Adelaide, South Australia. Urban For. Urban Green. 2016, 15, 89–102. [Google Scholar] [CrossRef]
- Dwivedi, A.; Mohan, B.K. Impact of green roof on micro climate to reduce Urban Heat Island. Remote Sens. Appl. Soc. Environ. 2018, 10, 56–69. [Google Scholar] [CrossRef]
- Ziaul, S.; Pal, S. Modeling the effects of green alternative on heat island mitigation of a meso level town, West Bengal, India. Adv. Space Res. 2020, 65, 1789–1802. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, S.; Zhao, L. Evaluation of the ENVI-Met Vegetation Model of Four Common Tree Species in a Subtropical Hot-Humid Area. Atmosphere 2018, 9, 198. [Google Scholar] [CrossRef] [Green Version]
- .Kim, Y.; An, S.M.; Eum, J.H.; Woo, J.H. Analysis of Thermal Environment over a Small-Scale Landscape in a Densely Built-Up Asian Megacity. Sustainability 2016, 8, 358. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.M.; Hong, S.L. A study on the Spatial Pattern of Taiwan Urban Parks to Improve the Urban Heat Island Effect—Taking Chiayi City Park as an example. J. Landsc. 2019, 23, 19–50. (In Chinese) [Google Scholar]
- Derkzen, M.L.; van Teeelen, A.J.A.; Verburg, P.H. Green infrastructure for urban climate adaptation: How do residents’ views on climate impacts and green infrastructure shape adaptation preferences? Landsc. Urban Plan 2017, 157, 106–130. [Google Scholar] [CrossRef]
- Jia, Z.; Tang, S.; Luo, W.; Li, S.; Zhou, M. Small scale green infrastructure design to meet dierent urban hydrological criteria. J. Environ. Manag. 2016, 171, 92–100. [Google Scholar] [CrossRef]
- Bruse, M.; Fleer, H. Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ. Model Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Huttner, S. Further Develop and Application of the 3D Microclimate Simulation ENVI-met; Johannes Gutenberg-University: Mainz, Germany, 2012; p. 147. [Google Scholar]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Gagge, A.P.; Fobelets, A.P.; Berglund, P.E. A standard predictive index of human response to the thermal environment. Ashrae Trans. 1986, 92, 709–731. [Google Scholar]
- Höppe, P. The physiological equivalent temperature – A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Mayer, H. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Erell, E.; Pearlmutter, D.; Williamson, T. Urban Microclimate: Designing the Spaces between Buildings; Routledge: New York, NY, USA, 2011; p. 266. [Google Scholar]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Lin, T.P.; Ho, Y.F.; Huang, Y.S. Seasonal effect of pavement on outdoor thermal environments in subtropical Taiwan. Build. Environ. 2007, 42, 4124–4131. [Google Scholar] [CrossRef]
- Klok, L.; Zwart, S.; Verhagen, H.; Mauric, E. The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resour. Conserv. Recycl. 2012, 64, 23–29. [Google Scholar] [CrossRef]
- Mathew, A.; Khandelwal, S.; Kaul, N. Analysis of diurnal surface temperature variations for the assessment of surface urban heat island effect over Indian cities. Energy Build. 2018, 159, 271–295. [Google Scholar] [CrossRef]
- Yu, C.; Hien, W.N. Thermal Benefits of City Parks. Energy Build. 2006, 38, 105–120. [Google Scholar] [CrossRef]
- Huang, J.M.; Ooka, R.; Katsuki, T. (Part 1) The research on the cool island effects and the thermal environment of the medium size green space in the city. In Proceedings of the 60th Japan National Congress for Theoretical and Applied Mechanics, Tokyo, Japan, 2011. (In Japanese). [Google Scholar]
- Lin, T.P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
Type of Land Use | Class of Building Floor | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
(%) | Government | Park | Residential | Road | (%) | 1F | 2–4F | 5F | 6–14F | >15F |
Percentage of Area | 7.1 | 2.3 | 49.5 | 39.1 | Percentage of Area | 8.3 | 47.6 | 17.9 | 21.6 | 4.6 |
Space Size | Grid Size | Geographical Location | |||||
---|---|---|---|---|---|---|---|
x-Grids | 55 | dx | 10.00 | Place | TAIWAN | Latitude and longitude | |
y-Grids | 65 | dy | 10.00 | Zone | CET/UTC+8 | Latitude (–W, +E) | 120.00 |
z-Grids | 40 | dz | 3.00 | 120.00 | longitude (–S, +N) | 22.10 |
Start Date | 2016.06.27 | Start Time | 00:00:00 | Simulation Time (h) | 48 |
Air Temperature (°C) | 29.7 | Wind Speed(m/s) | 1.9 | Wind Direction (360°) | 266 |
Relative Humidity (%) | 52–76 | Pressure (hPa) | 1006.7 | - |
Surface Materials | Plants | |||||||
---|---|---|---|---|---|---|---|---|
Type | Asphalt | Permeable asphalt | Pavement | Permeable pavement | Loamy | Type | Grass | Arbor |
Code | ST | SW | PP | PW | LO | Code | XX | T1 |
Albedo | 0.125 | 0.125 | 0.225 | 0.225 | 0.300 | Albedo | 0.225 | 0.200 |
Emissivity | 0.95 | 0.950 | 0.805 | 0.805 | 0.925 | H(m) | 0.2 | 10 |
Permeability | False | True | False | True | True | LAD | 0.3 | 2.18 |
SET (°C) | <17 | 17~30 | 30~34 | 34~37 | >37 | ||||
---|---|---|---|---|---|---|---|---|---|
Thermal perception | Cool | Comfortable | Warm | Hot | Very hot | ||||
PET (°C) | <4 | 4~8 | 8~13 | 13~18 | 18~23 | 23~29 | 29~35 | 35~41 | >41 |
Thermal perception | Very cold | Cold | Cool | Slightly cool | Comfortable | Slightly warm | Warm | Hot | Very hot |
Grade of physiological stress | Extreme cold stress | Strong cold stress | Moderate cold stress | Slight cold stress | No thermal stress | Slight heat stress | Moderate heat stress | Strong heat stress | Extreme heat stress |
Scenario | Street | Site of Building | Park | ||||||
---|---|---|---|---|---|---|---|---|---|
GCR (arbor) | Permeable Pavement | GCR of 1F | Permeable Pavement | GCR | GCR (arbor) | Permeable Pavement | GCR of 1F | ||
(%) | (T/F) | (%) | (T/F) | (%) | (%) | (T/F) | (%) | ||
B0 | Present Situation | 24 | F | 14 | F | 0 | 50 | 26.3 | F |
C1 | Permeable Pavement | 0 | T | 0 | T | 0 | 60 | 50 | F |
C2 | IncreaseSGCR | 60 | F | 60 | F | 0 | 60 | 50 | F |
C2a | 40 | ||||||||
C2b | 50 | ||||||||
C2c | 70 | ||||||||
C3 | C2 + Permeable Pavement | 60 | T | 60 | T | 0 | 60 | 50 | T |
C4 | C3 + IncreaseGCR of Park | 60 | T | 60 | T | 0 | 80 | 75 | T |
C5 | C4 + Roof Greening of Public Building (12.5%) | 60 | T | 60 | T | 100 | 80 | 75 | T |
C5a | C4 + Roof Greening of all buildings (100%) |
Scenario | B0 | C1 | C2 | |
---|---|---|---|---|
3D Model | | | | |
Scenario | C3 | C4 | C5 | |
3D Model | | | | |
Scenario | C2a | C2b | C2c | C5a |
3D Model | | | | |
C5a–C5 | T. Surface | Ta | Wind Speed | Spec. Humidity | MRT | PET | SET |
---|---|---|---|---|---|---|---|
(°C) | (°C) | (m/s) | (g/kg) | (°C) | (°C) | (°C) | |
H = 1.5m | –0.05(0M) | –0.22 | –0.005 | 0.182 | –0.074 | –0.147 | 0.009 |
H = 2.7m | - | –0.23 | –0.005 | 0.183 | –0.077 | –0.143 | 0.012 |
H = 7.5m | - | –0.27 | –0.006 | 0.194 | –0.087 | –0.197 | 0.005 |
H = 16.5m | - | –0.33 | –0.005 | 0.218 | –0.087 | –0.353 | –0.057 |
H = 25.5m | - | –0.27 | –0.002 | 0.166 | –0.082 | –0.319 | –0.069 |
Average of Block | B0 | C1–B0 | C2–B0 | C3–B0 | C4–B0 | C5–B0 |
---|---|---|---|---|---|---|
Air temperature (AT) (°C) | 35.91 | –1.37 | –0.44 | –1.93 | –1.96 | –2.00 |
Wind speed (m/s) | 0.76 | 0.21 | –0.10 | –0.09 | –0.10 | –0.10 |
MRT(°C) | 62.50 | –2.81 | –5.27 | –11.31 | –11.70 | –11.71 |
T. surface (ST) (°C) | 49.90 | –7.90 | –3.24 | –11.51 | –11.69 | –11.70 |
PET (°C) | 50.51 | –2.46 | –2.62 | –6.83 | –7.04 | –7.07 |
SET (°C) | 38.32 | –1.80 | –0.61 | –2.45 | –2.49 | –2.50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.-M.; Chen, L.-C. A Numerical Study on Mitigation Strategies of Urban Heat Islands in a Tropical Megacity: A Case Study in Kaohsiung City, Taiwan. Sustainability 2020, 12, 3952. https://doi.org/10.3390/su12103952
Huang J-M, Chen L-C. A Numerical Study on Mitigation Strategies of Urban Heat Islands in a Tropical Megacity: A Case Study in Kaohsiung City, Taiwan. Sustainability. 2020; 12(10):3952. https://doi.org/10.3390/su12103952
Chicago/Turabian StyleHuang, Jou-Man, and Liang-Chun Chen. 2020. "A Numerical Study on Mitigation Strategies of Urban Heat Islands in a Tropical Megacity: A Case Study in Kaohsiung City, Taiwan" Sustainability 12, no. 10: 3952. https://doi.org/10.3390/su12103952
APA StyleHuang, J.-M., & Chen, L.-C. (2020). A Numerical Study on Mitigation Strategies of Urban Heat Islands in a Tropical Megacity: A Case Study in Kaohsiung City, Taiwan. Sustainability, 12(10), 3952. https://doi.org/10.3390/su12103952