Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Textural Characterization
3.2. Chemical Characterization
3.3. Kinetic Study
3.3.1. Pseudo-First Order Kinetic Model
3.3.2. Pseudo-Second Order Kinetic Model
3.3.3. Intraparticle Diffusion Kinetics
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Escher, B.I.; Baumgartner, R.; Koller, M.; Treyer, K.; Lienert, J.; McArdell, C.S. Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Res. 2011, 45, 75–92. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Benigna, I.; Sorlini, S.; Torretta, V. Overview of the Main Disinfection Processes for Wastewater and Drinking Water Treatment Plants. Sustainability 2018, 10, 86. [Google Scholar] [CrossRef]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminats in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Rossner, A.; Snyder, S.A.; Knappe, D.R.U. Removal of emerging contaminants of concern by alternative adsorbents. Water Res. 2009, 43, 3787–3796. [Google Scholar] [CrossRef] [PubMed]
- De García, S.O.; Pinto, G.P.; Encina, P.G.; Mata, R.I. Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain. Sci. Total Environ. 2013, 444, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Deo, R.P.; Halden, R.U. Pharmaceuticals in the built and natural water environment of the United States. Water 2013, 5, 1346–1365. [Google Scholar] [CrossRef]
- Gómez-Chaparro, M.; García-Sanz-Calcedo, J.; Armenta-Márquez, L. Study on the Use and Consumption of Water in Spanish Private Hospitals as related to Healthcare Activity. Urban Water J. 2018, 15, 601–608. [Google Scholar] [CrossRef]
- Al Sawaf, M.B.; Karaca, F. Different stakeholders’ opinions toward the sustainability of common textile wastewater treatment technologies in Turkey: A Case study Istanbul province. Sustain. Cities Soc. 2018, 42, 194–205. [Google Scholar] [CrossRef]
- González, A.G.; García-Sanz-Calcedo, J.; Salgado, D.R. Quantitative Determination of Potable Cold Water Consumption in German Hospitals. Sustainability 2018, 10, 932. [Google Scholar] [CrossRef]
- Kovalova, L.; Siegrist, H.; Singer, H.; Wittmer, A.; McArdell, C. Hospital wastewater treatment by membrane bioreactor: Performance and efficiency for organic micropollutant elimination. Environ. Sci. Technol. 2012, 46, 1536–1545. [Google Scholar] [CrossRef] [PubMed]
- Thiebault, T.; Boussafir, M.; Le Milbeau, C. Occurrence and removal efficiency of pharmaceuticals in an urban wastewater treatment plant: Mass balance, fate and consumption assessment. J. Environ. Chem. Eng. 2017, 5, 2894–2902. [Google Scholar] [CrossRef]
- Escola Casas, M.; Chhetri, R.K.; Ooi, G.; Hansen, K.M.S.; Litty, K.; Christensson, M.; Kragelund, C.; Andersen, H.R.; Bester, K. Biodegradation of pharmaceuticals in hospital wastewater by staged moving bed biofilm reactors. Water Res. 2015, 83, 293–302. [Google Scholar] [CrossRef]
- Macías-García, A.; Corzo, M.G.; Domínguez, M.A.; Franco, M.A.; Naharro, J.M. Study of the adsorption and electro-adsorption process of Cu (II) ions within thermally and chemically modified activated carbon. J. Hazard. Mater. 2017, 328, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, P.; Ghaedi, M.; Dashtian, M.R.; Rahimi, M.R.; Purkait, M.K. Removal of methyl orange by copper sulphide nanoparticles loaded activated carbon kinetic and isotherm investigation. J. Mol. Liq. 2016, 219, 299–305. [Google Scholar] [CrossRef]
- Zhou, Q.; Duan, Y.F.; Hong, Y.G.; Zhu, C.; She, M.; Zhang, J.; Wei, H.Q. Experimental and kinetic studies of gas-phase mercury adsorption by ram and bromide modified activated carbon. Fuel Process. Technol. 2015, 134, 325–332. [Google Scholar] [CrossRef]
- Nekonei, F.; Nekonei, S.; Tyagi, I.; Gupta, V.K. Kinetic, thermodynamic and isotherm studies for acid blue 129 removal liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. J. Mol. Liq. 2015, 201, 124–133. [Google Scholar] [CrossRef]
- Krishnan, K.A.; Anirudhan, T.S. Removal of cadmium (II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-bagasse pith: Kinetics and equilibrium studies. Water Sa 2003, 29, 147–156. [Google Scholar] [CrossRef]
- Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Souza, L.S.; Martins, A.C.; Silva, T.L.; Junior, O.O.S.; Visentainer, J.V.; Almeida, V.C. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem. Eng. J. 2016, 288, 778–788. [Google Scholar] [CrossRef]
- Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 2016, 153, 365–385. [Google Scholar] [CrossRef]
- Nielsen, L.; Biggs, M.J.; Skinner, W.; Bandosz, T.J. The effects of activated carbon surface features on the reactive adsorption of carbamazepine and sulfamethoxazole. Carbon 2014, 80, 419–432. [Google Scholar] [CrossRef]
- Li, H.; Zhang, D.; Han, X.; Xing, B. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics. Chemosphere 2014, 95, 150–155. [Google Scholar] [CrossRef]
- Álvarez-Torrellas, S.; Rodríguez, A.; Ovejero, G.; García, J. Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem. Eng. J. 2016, 283, 936–947. [Google Scholar] [CrossRef]
- Ersan, G.; Kaya, Y.; Apul, O.G.; Karanfil, T. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions. Sci. Total Environ. 2016, 565, 811–817. [Google Scholar] [CrossRef]
- Rakic, V.; Rac, V.; Krmar, M.; Otman, O.; Auroux, A. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons. J. Hazard. Mater. 2015, 282, 141–149. [Google Scholar] [CrossRef]
- Altmann, J.; Sperlich, A.; Jekel, M. Integrating organic micropolluant removal into tertiary filtration: Combining PAC adsorption with advances phosphosrus removal. Water Res. 2015, 84, 58–65. [Google Scholar] [CrossRef]
- Altmann, J.; Rehfeld, D.; Träder, K.; Sperlich, A.; Jekel, M. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropolluant and phosphorus removal. Water Res. 2016, 92, 131–139. [Google Scholar] [CrossRef]
- Radovic, L.R.; Moreno-Castilla, C.; Rivera-Utrilla, J. Carbon materials as adsorbents in aqueous solutions. Chem. Phys. Carbon 2001, 27, 227–406. [Google Scholar]
- Blanchard, G.; Maunaye, M.; Martin, G. Removal of Heavy Metals from Waters by Means of Natural Zeolites. Water Res. 1984, 18, 1501. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Saf. Environ. Prot. 1998, 76, 332. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Advances in water pollution research: Removal of biologically resistant pollutant from wastewater by adsorption. In Proceedings of the 1st International Conference on Water Pollution Symposium, Oxford, UK, 1 September 1962; pp. 231–266. [Google Scholar]
- Olivares-Marín, M.; Fernández-González, C.; García, A.M.; Gómez-Serrano, V. Porous structure of activated carbon prepared from cherry stones by chemical activation with phosphoric acid. Energy Fuels 2007, 21, 2942–2949. [Google Scholar] [CrossRef]
- Karen, J.; Peña, H.; Giraldo, L.; Moreno, J.C. Preparation of activated carbon from orange peel by chemical activation. Physical and chemical characterization. Rev. Colomb. Quím. 2012, 41, 311–323. [Google Scholar]
- Pretsch, W.; Clerc, E.; Seibl, T.; Simon, J. Tabla Para la Elucidación Estructural de Compuestos Orgánicos por Métodos de Espectroscópicos; Alambra: Madrid, Spain, 1980. [Google Scholar]
- Melillo, M.; Phillips, G.J.; Davies, J.G.; Lloyd, A.W.; Tennison, S.R.; Kozynchenko, O.P.; Mikhalovsky, S.V. The effect of protein binding on ibuprofen adsorption to activated carbons. Carbon 2004, 42, 565–571. [Google Scholar] [CrossRef]
- Otero, M.A.; Grande, C.A.; Rodrigues, E. Adsorption of salicylic acid onto polymeric adsorbents and activated charcoal. React. Funct. Polym. 2004, 60, 203–213. [Google Scholar] [CrossRef]
- Bridelli, M.G.; Ciati, A.; Crippa, P.R. Binding of chemicals to melanins re-examined: Adsorption of some drugs to the surface melanin particles. Biophys. Chem. 2006, 119, 137–145. [Google Scholar] [CrossRef]
- Ruiz, B.; Cabrita, I.; Mestre, A.S.; Parra, J.B.; Pires, J.; Carvalho, A.P.; Ania, C.O. Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueoussolution. Appl. Surf. Sci. 2010, 256, 5171–5175. [Google Scholar] [CrossRef]
- Wen, D.; Ho, Y.S.; Tang, X. Comparative sorption kinetic studies of ammonium onto zeolite. J. Hazard. Mater. 2006, 133, 252–256. [Google Scholar] [CrossRef]
- Mukoko, T.; Mupa, M.; Guyo, U.; Dziike, F. Preparation of Rice Hull Activated Carbon for the Removal of Selected Pharmaceutical Waste Compounds in Hospital Effluent. J. Environ. Anal. Toxicol. 2015, 7, 2–9. [Google Scholar]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solutions. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–60. [Google Scholar]
- Asuquo, E.; Martin, A.; Nzerem, P.; Siperstein, F.; Fan, X. Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies. J. Environ. Chem. Eng. 2017, 5, 679–698. [Google Scholar] [CrossRef]
- Mittal, A.; Malviya, A.; Kaur, D.; Mittal, J.; Kurup, L. Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. J. Hazard. Mater. 2007, 148, 229–240. [Google Scholar] [CrossRef]
- Huang, Y.; Li, S.; Chen, J.; Zhang, X.; Chen, Y. Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4activation: Adsorption capacity, kinetic and isotherm studies. Appl. Surf. Sci. 2014, 293, 160–168. [Google Scholar] [CrossRef]
- Qiu, H.; Lv, L.; Pan, B.C.; Zhang, Q.J.; Zhang, W.M.; Zhang, Q.X. Critical review in adsorption kinetic models. J. Zhejiang Univ. A 2009, 10, 716–724. [Google Scholar] [CrossRef]
- Kumar, K.V. Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J. Hazard. Mater. 2006, 137, 1538–1544. [Google Scholar] [CrossRef]
- Hameed, B.H.; Tan, I.A.W.; Ahmad, A.L. Adsorption isotherm, kinetic modelling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chem. Eng. J. 2008, 144, 235–244. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C.; Thavorn-Amornsri, T.; Pereira, M.F.R.; Figueiredo, J.L. Adsorption of ciprofloxacin on surface-modified carbon Materials. Water Res. 2011, 45, 4583–4591. [Google Scholar] [CrossRef]
- Petrescu, D.C.; Petrescu-Mag, R.M.; Manciula, D.I.; Nistor, I.A.; Ilieș, V.I. Wastewater Reflections in Consumer Mind: Evidence from Sewage Services Consumer Behaviour. Sustainability 2019, 11, 123. [Google Scholar] [CrossRef]
Sample | SBET (m2∙g−1) | Vmi (cm3∙g−1) | Vme (cm3∙g−1) | Vme-p (cm3∙g−1) | Vma-p (cm3·g−1) |
---|---|---|---|---|---|
K-36-500 | 1556 | 0.88 | 0.22 | 0.22 | 0.25 |
K-60-500 | 2270 | 0.88 | 1.15 | 0.35 | 0.42 |
K-85-500 | 1957 | 1.11 | 0.96 | 0.96 | 0.59 |
Samples | qe (mg·L−1) | tequilibrium (min) |
---|---|---|
K-36-500 | 0.08 | 1500 |
K-60-500 | 0.15 | 1000 |
K-85-500 | 0.13 | 1000 |
Samples | Intraparticle Diffusion | Intraparticle Diffusion | ||||
---|---|---|---|---|---|---|
qe (mg/g) | k1 (g/mg/min) | R2 | qe (mg/g) | k2 (min−1) | R2 | |
K-36-500 | 0.060 | 0.0025 | 0.933 | 0.086 | 0.0750 | 0.996 |
K-60-500 | 0.062 | 0.0035 | 0.857 | 0.154 | 0.1700 | 0.999 |
K-85-500 | 0.061 | 0.0022 | 0.786 | 0.132 | 0.1440 | 0.999 |
Samples | Intraparticle Diffusion | Intraparticle Diffusion | ||||
---|---|---|---|---|---|---|
C1 (mg/g) | kid1 (g/mg/min) | R2 | C2 (mg/g) | kid2 (min−1) | R2 | |
K-36-500 | 0.0893 | 0.06035 | 0.988 | 0.0773 | 0.0044 | 0.981 |
K-60-500 | 0.1551 | 0.13868 | 0.971 | 0.1456 | 0.0133 | 0.943 |
K-85-500 | 0.1332 | 0.11790 | 0.956 | 0.1233 | 0.0103 | 0.933 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macías-García, A.; García-Sanz-Calcedo, J.; Carrasco-Amador, J.P.; Segura-Cruz, R. Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters. Sustainability 2019, 11, 2672. https://doi.org/10.3390/su11092672
Macías-García A, García-Sanz-Calcedo J, Carrasco-Amador JP, Segura-Cruz R. Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters. Sustainability. 2019; 11(9):2672. https://doi.org/10.3390/su11092672
Chicago/Turabian StyleMacías-García, Antonio, Justo García-Sanz-Calcedo, Juan Pablo Carrasco-Amador, and Raúl Segura-Cruz. 2019. "Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters" Sustainability 11, no. 9: 2672. https://doi.org/10.3390/su11092672
APA StyleMacías-García, A., García-Sanz-Calcedo, J., Carrasco-Amador, J. P., & Segura-Cruz, R. (2019). Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters. Sustainability, 11(9), 2672. https://doi.org/10.3390/su11092672