Above-Ground Biomass Models of Caragana korshinskii and Sophora viciifolia in the Loess Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling Design
2.3. Biomass Equations
2.4. Statistical Analysis
3. Results
3.1. Correlation Analysis of Biomass Variables
3.2. Allometric Model for Biomass
3.3. Biomass Model Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Johnson, D.A.; Tieszen, L.L. Aboveground biomass allocation, leaf growth, and photosynthesis patterns in tundra plant forms in arctic Alaska. Oecologia 1976, 24, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Chapin, F.S.; Matson, P.A.; Vitousek, P. Principles of Terrestrial Ecosystem Ecology; Springer Science Business Media: Berlin, Germany, 2011; pp. 157–181. [Google Scholar]
- Conti, G.; Enrico, L.; Casanoves, F.; Díaz, S. Shrub biomass estimation in the semiarid Chaco forest: A contribution to the quantification of an underrated carbon stock. Ann. For. Sci. 2013, 70, 515–524. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumyo, E.; Colgan, M.S.; Delitti, W.B.C. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Thomas, S.M.; Abbott, K.C.; Moloney, K.A. Effects of aboveground herbivory on plants with long-term belowground biomass storage. Theor. Ecol. 2017, 10, 35–50. [Google Scholar] [CrossRef]
- Slik, J.W.; Paoli, G.; McGuire, K.; Amaral, L.; Barroso, J.; Bastian, M. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 2013, 22, 1261–1271. [Google Scholar] [CrossRef]
- Zheng, D.; Rademacher, J.; Chen, J.; Crow, T.; Bresee, M.; Moine, J.L.; Ryu, S.R. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens. Environ. 2004, 93, 402–411. [Google Scholar] [CrossRef]
- Arturo, A.S.C.; Javier, T.G.E.; Alberto, A.C.O.; Javier, J.P.; Aurelio, G.T.M.; René, V.L. Construction of aboveground biomass models with remote sensing technology in the intertropical zone in Mexico. J. Geogr. Sci. 2012, 22, 669–680. [Google Scholar] [CrossRef]
- Segura, M.; Kanninen, M.; Suárez, D. Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agrofor. Syst. 2006, 68, 143–150. [Google Scholar] [CrossRef]
- Zolkos, S.G.; Goetz, S.J.; Dubayah, R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens. Environ. 2013, 128, 289–298. [Google Scholar] [CrossRef]
- Baskerville, G.L. Use of logarithmic regression in the estimation of plant biomass. Can. J. Forest Res. 1972, 2, 49–53. [Google Scholar] [CrossRef]
- Parton, W.J.; Scurlock, J.M.O.; Ojima, D.S.; Gillmanov, T.G.; Scholes, R.J.; Schimel, D.S.; Kirchner, T.; Meanaut, J.C.; Seastedt, T.; Garcia Moya, E. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob. Biogeochem. Cycles 1993, 7, 785–809. [Google Scholar] [CrossRef]
- Jia, G.M.; Liu, B.R.; Wang, G.; Zhang, B. The microbial biomass and activity in soil with shrub (Caragana korshinskii K.) plantation in the semi-arid Loess Plateau in China. Eur. J. Soil Biol. 2010, 46, 6–10. [Google Scholar] [CrossRef]
- Englhart, S.; Keuck, V.; Siegert, F. Aboveground biomass retrieval in tropical forests-The potential of combined X-and L-band SAR data use. Remote Sens. Environ. 2011, 115, 1260–1271. [Google Scholar] [CrossRef]
- Cheng, J.; Wu, G.L.; Zhao, L.P.; Li, Y.; Li, M.; Cheng, J.M. Cumulative effects of 20-year exclusion of livestock grazing on above-and belowground biomass of typical steppe communities in arid areas of the Loess Plateau, China. Plant Soil Environ. 2011, 57, 96–102. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, H.; Xu, H. Study on establish and estimate method of compatible biomass model. Sci. Silvae Sin. 2000, 36, 19–27. [Google Scholar]
- Yoshida, T.; Oshima, Y.; Matsumura, Y. Gasification of biomass model compounds and real biomass in supercritical water. Biomass Bioenergy 2004, 26, 71–78. [Google Scholar]
- Roos, A.M.; Schellekens, T.; Kooten, T.V.; Wolfshaar, K.V.D.; Claessen, D.; Persson, L. Simplifying a physiologically structured population model to a stage-structured biomass model. Theor. Popul. Biol. 2008, 73, 47–62. [Google Scholar] [CrossRef]
- Wang, Q.; Bai, Y.; Gao, H.; He, J.; Chen, H.; Chesney, R.C.; Kuhn, N.J.; Li, H.W. Soil chemical properties and microbial biomass after 16 years of no-tillage farming on the Loess Plateau, China. Geoderma 2008, 144, 502–508. [Google Scholar] [CrossRef]
- Wang, X.C.; Li, J. Evaluation of crop yield and soil water estimates using the EPIC model for the Loess Plateau of China. Math. Comput. Model. 2010, 51, 1390–1397. [Google Scholar]
- Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2005, 26, 2509–2525. [Google Scholar] [CrossRef]
- Litton, C.M.; Boone, K.J. Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica 2008, 40, 313–320. [Google Scholar] [CrossRef]
- Anaya, J.A.; Chuvieco, E.; Palacios-Orueta, A. Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecol. Manag. 2009, 257, 1237–1246. [Google Scholar] [CrossRef]
- Lambert, M.C.; Ung, C.H.; Raulier, F. Canadian national tree aboveground biomass equations. Can. J. For. Res. 2005, 35, 1996–2018. [Google Scholar] [CrossRef]
- Jiang, W.; Cheng, Y.; Yang, X.; Yang, S.L. Chinese Loess Plateau vegetation since the Last Glacial Maximum and its implications for vegetation restoration. J. Appl. Ecol. 2013, 50, 440–448. [Google Scholar] [CrossRef]
- Lang, Y.; Zhiyuan, R.; Chong, Z.; Liu, W. Vegetation cover, climate and human activities on the Loess Plateau. Resour. Sci. 2014, 36, 166–174. (In Chinese) [Google Scholar]
- Ma, K.P.; Huang, J.H.; Yu, S.L.; Chen, L.Z. Plant community diversity in dongliang mountain, Beijing, China: II. Sepcies richness, evennes and species diersityes. Acta Ecol. Sin. 1995, 15, 268–277. (In Chinese) [Google Scholar]
- Peek, J.M. Relation of canopy area and volume to production of three woody species. Ecology 1970, 51, 1098–1101. [Google Scholar] [CrossRef]
- Yamaoka, K.; Nakagawa, T.; Uno, T. Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J. Pharmacokinet. Biopharm. 1978, 6, 165–175. [Google Scholar] [CrossRef]
- Posada, D.; Buckley, T.R. Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 2004, 53, 793–808. [Google Scholar] [CrossRef]
- Muukkonen, P.; Makipaa, R. Empirical biomass models of understorey vegetation in boreal forests according to stand and site attributes. Boreal Environ. Res. 2006, 11, 355–369. [Google Scholar]
- Gertrudix, R.R.P.; Montero, G.; Delrio, M. Biomass models to estimate carbon stocks for hardwood tree species. For. Syst. 2012, 21, 42–52. [Google Scholar] [CrossRef]
- Luo, Y.J.; Zhang, X.Q.; Wang, X.K.; Zhu, J.H.; Hou, Z.H.; Zhang, Z.J. Forest biomass estimation methods and their prospects. Sci. Silvae Sin. 2009, 8, 129–134. [Google Scholar]
- Zeng, W.S. A review of studies of shrub bio-mass modeling. World For. Res. 2015, 28, 31–36. [Google Scholar]
- Komiyama, A.; Ong, J.E.; Poungparn, S. Allometry, bio-mass and productivity of mangrove forests: A review. Aquat. Bot. 2008, 89, 128–137. [Google Scholar] [CrossRef]
- Ter-Mikaelian, M.T.; Korzukhin, M.D. Biomass equations for sixty-five North American tree species. For. Ecol. Manag. 1997, 97, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Bu, C.F.; Liu, G.B.; Zhang, W.H. Growth of characteristics of Sophora viciifolia population in the hilly and gully region of Loess Plateau. Acta Bot. Boreali-Occident. Sin. 2004, 10, 1792–1797. [Google Scholar]
- Bu, C.F.; Liu, G.B. Study on the transpiration of Sophara viciifolia in the hilly and gully Loess Plateau. Bull. Bot. Res. 2005, 1, 64–68. [Google Scholar]
- Zeng, Z.Y.; Liu, Q.J.; Zeng, H.Q. Study of biomass models of some kinds of shrubs in Qianyanzhou, Jiangxi Province. J. Fujian For. Sci. Technol. 2005, 4, 68–72. [Google Scholar]
- Luo, Y.K.; Fang, J.Y.; Hu, H.F. Biomass estimation models and allocation patterns of 14 shrub species in Mountain Luya, Shanxi, China. Chin. J. Plant Ecol. 2017, 1, 115–125. [Google Scholar]
Shrubs | Site | Sample Content | Longitude and Latitude | Slope/(%) | Altitude/(m) | Soil Temperature/(℃) 0–10 cm 10–20 cm | Accompanying Species | |
---|---|---|---|---|---|---|---|---|
Caragana korshinskii | 1 | 93 | 36°47′30″ N | SE | 1151 | 21.8 ± 1.7 a | 20.1 ± 0.6 b | Lespedeza daurica, Artemisia giraldii, Patriniascaniosaefolia |
109°16′10″ E | 15~23 | |||||||
2 | 161 | 36°49′01″ N | SW | 1329 | 22.6 ± 0.8 a | 20.7 ± 1.3 b | Lespedeza daurica, Artemisia giraldii, Patriniascaniosaefolia | |
109°14′46″ E | 10~20 | |||||||
3 | 161 | 36°49′04″ N | NE | 1347 | 27.4 ± 1.9 a | 25.6 ± 0.8 b | Lespedeza daurica, Artemisia giraldii, Melilotussuavcolen | |
109°14′43″ E | 23~35 | |||||||
4 | 160 | 36°43′54″ N | NE | 1219 | 20.8 ± 1.2 a | 20.7 ± 1.1 a | Artemisia vestita, Lespedeza daurica, Artemisia giraldii | |
109°15′30″ E | 9~18 | |||||||
5 | 158 | 36°45′36″ N | SW | 1301 | 21.2 ± 0.5 a | 19.9 ± 0.3 b | Artemisia vestita, Lespedeza daurica, Artemisiascoparia | |
109°16′01″ E | 10~20 | |||||||
6 | 128 | 36°44′49″ N | SW | 1236 | 22.0 ± 0.8 a | 20.5 ± 0.6 b | Artemisia vestita, Artemisiascoparia, Artemisia frigida | |
109°16′13″ E | 9~13 | |||||||
Sophora viciifolia | 1 | 116 | 36°47′20″ N | S | 1256 | 24.3 ± 5.1 a | 22.1 ± 2.3 b | Lespedeza daurica, Bothriochloaischaemum, Stipabungeana |
109°16′30″ E | 19~35 | |||||||
2 | 180 | 36°47′35″ N | W | 1248 | 23.4 ± 2.1 a | 21.2 ± 1.9 b | Lespedeza daurica, Bothriochloaischaemum, Stipabungeana | |
109°16′41″ E | 14~20 | |||||||
3 | 139 | 36°47′58″ N | SE | 1271 | 25.5 ± 3.2 a | 23.3 ± 1.7 b | Lespedeza daurica, Bothriochloaischaemum, Lespedeza daurica | |
109°16′47″ E | 8~12 | |||||||
4 | 165 | 36°44′42″ N | NE | 1283 | 25.2 ± 1.8 a | 24.4 ± 1.3 b | Lespedeza daurica, Bothriochloaischaemum, Thyme | |
109°14′35″ E | 11~19 | |||||||
5 | 96 | 36°44′56″ N | NW | 1269 | 27.9 ± 0.6 a | 25.3 ± 0.4 b | Lespedeza daurica, Artemisia giraldii, Bothriochloaischaemum | |
109°14′01″ E | 8~23 | |||||||
6 | 132 | 36°45′03″ N | NE | 1156 | 26.9 ± 0.9 a | 26.1 ± 1.1 a | Artemisia giraldii, Patriniascaniosaefolia, Lespedeza daurica | |
109°15′11″ E | 18~30 |
Shrubs | Site | Height/(cm) | Diameter/(mm) | Canopy Area/(cm2 104) | Canopy Volume/(cm3 106) | Coverage/(%) | Leaf Biomass/(g) | Branch Biomass/(g) |
---|---|---|---|---|---|---|---|---|
Caragana korshinskii | 1 | 156 ± 32 | 5.2 ± 0.6 | 2.91 ± 0.21 | 4.54 ± 0.56 | 58 ± 6 | 358 ± 35 | 589 ± 39 |
2 | 137 ± 21 | 4.8 ± 0.5 | 2.32 ± 0.58 | 3.18 ± 0.89 | 67 ± 9 | 321 ± 29 | 512 ± 35 | |
3 | 125 ± 35 | 4.6 ± 0.9 | 1.66 ± 0.35 | 2.08 ± 0.52 | 83 ± 8 | 305 ± 16 | 456 ± 29 | |
4 | 113 ± 19 | 3.2 ± 0.3 | 1.34 ± 0.26 | 1.51 ± 0.41 | 92 ± 12 | 294 ± 32 | 478 ± 34 | |
5 | 109 ± 26 | 3.4 ± 0.4 | 1.22 ± 0.10 | 1.33 ± 0.32 | 85 ± 5 | 287 ± 18 | 423 ± 25 | |
6 | 151 ± 14 | 5.1 ± 0.8 | 2.77 ± 0.43 | 4.18 ± 0.78 | 62 ± 8 | 389 ± 42 | 563 ± 37 | |
CV/(%) | 14.79 | 19.81 | 35.91 | 48.96 | 18.73 | 12.29 | 12.76 | |
Mean | 132 ± 19 a | 4.4 ± 0.9 a | 2.04 ± 0.73 a | 2.80 ± 1.37 a | 75 ± 14 a | 326 ± 40 a | 503 ± 64 a | |
F | 89.69 | 156.98 | 178.32 | 135.69 | 103.56 | 158.96 | 147.89 | |
Sophora viciifolia | 1 | 123 ± 11 | 4.2 ± 0.2 | 1.15 ± 0.09 | 1.41 ± 0.45 | 23 ± 3 | 324 ± 36 | 456 ± 52 |
2 | 96 ± 23 | 2.9 ± 0.6 | 0.83 ± 0.12 | 0.79 ± 0.21 | 35 ± 5 | 257 ± 23 | 356 ± 43 | |
3 | 108 ± 34 | 3.1 ± 0.5 | 0.90 ± 0.25 | 0.97 ± 0.19 | 38 ± 9 | 269 ± 18 | 324 ± 51 | |
4 | 145 ± 25 | 4.8 ± 0.8 | 1.92 ± 0.08 | 2.78 ± 0.23 | 20 ± 6 | 395 ± 25 | 423 ± 41 | |
5 | 112 ± 18 | 3.5 ± 0.4 | 1.09 ± 0.15 | 1.22 ± 0.35 | 43 ± 8 | 298 ± 31 | 389 ± 38 | |
6 | 97 ± 16 | 3.1 ± 0.3 | 0.86 ± 0.14 | 0.83 ± 0.14 | 39 ± 8 | 278 ± 17 | 362 ± 31 | |
CV/(%) | 16.81 | 20.79 | 36.47 | 56.05 | 28.23 | 16.69 | 12.51 | |
Mean | 114 ± 18 a | 3.6 ± 0.7 b | 1.13 ± 0.41 b | 1.33 ± 0.75 b | 33 ± 9 b | 304 ± 51 a | 385 ± 48 b | |
F | 96.38 | 156.41 | 147.85 | 125.87 | 214.79 | 134.57 | 126.84 |
Shrubs | Item | Height | Diameter | Canopy Area | Canopy Volume | Leaf Biomass | Branch Biomass |
---|---|---|---|---|---|---|---|
Caragana korshinskii | Height | 1.000 | |||||
Diameter | 0.724 * | 1.000 | |||||
Canopy area | 0.523 * | 0.321 | 1.000 | ||||
Canopy volume | 0.469 | 0.456 | 0.759 ** | 1.000 | |||
Leaf biomass | 0.826 ** | 0.856 ** | 0.223 | 0.566 * | 1.000 | ||
Branch biomass | 0.879 ** | 0.891 ** | 0396 | 0.547 * | 0.899 ** | 1.000 | |
Sophora viciifolia | Height | 1.000 | |||||
Diameter | 0.789 ** | 1.000 | |||||
Canopy area | 0.587 * | 0.563 * | 1.000 | ||||
Canopy volume | 0.436 | 0.525 * | 0.689** | 1.000 | |||
Leaf biomass | 0.875 ** | 0.845 ** | 0.368 | 0.698 ** | 1.000 | ||
Branch biomass | 0.786 ** | 0.756 ** | 0.423 | 0.513 * | 0.903 ** | 1.000 |
Shrubs | Outliers/% | Equation Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variate | Formula | Equations | a d | b d | c | R2 | Adjust R2 | SEE | F | ||
Caragana korshinskiia | 13.6 | xc = D | 1 | W = a + bx + cx2 | 13.424 | −6.203 | 1.308 | 0.729 *** | 0.701 | 35.154 | 560.709 |
9.2 | x = D2H | W = a + bx + cx2 | 4.282 | 0.005 | 0.007 | 0.770 *** | 0.625 | 33.368 | 968.813 | ||
6.8 | x = D | 2 | W = ax b | 0.864 | 1.739 | 0.765 *** | 0.632 | 31.682 | 1117.664 | ||
10.7 | x = D2H | W = ax b | 0.076 | 0.703 | 0.898 *** | 0.771 | 8.369 | 1748.984 | |||
8.5 | x = D | 3 | W = a + blnx | −18.354 | 22.196 | 0.695 *** | 0.524 | 35.389 | 483.002 | ||
9.3 | x = D2H | W = a + blnx | −49.752 | 9.039 | 0.775 *** | 0.605 | 32.347 | 777.264 | |||
Sophora viciifoliab | 6.2 | x = D | 1 | W = a + bx + cx2 | 0.001 | 0.125 | 2.727 | 0.683 *** | 0.598 | 31.157 | 130.596 |
3.8 | x = D2H | W = a + bx + cx2 | 0.150 | 0.153 | 1.371 | 0.829 *** | 0.772 | 7.492 | 1453.608 | ||
13.6 | x = D | 2 | W = ax b | 0.199 | 4.607 | 0.727 *** | 0.658 | 29.568 | 152.494 | ||
5.3 | x = D2H | W = ax b | 0.745 | 0.080 | 0.868 *** | 0.753 | 6.987 | 2614.672 | |||
4.9 | x = D | 3 | W = a + blnx | 2.226 | 4.653 | 0.681 *** | 0.602 | 34.714 | 145.606 | ||
8.2 | x = D2H | W = a + blnx | 6.025 | −27.358 | 0.805 *** | 0.647 | 11.493 | 1575.173 |
Shrubs | Equations | Goodness Indicator of Fitting | ||||
---|---|---|---|---|---|---|
MEa/g | MAE b/g | TREc/% | MSEd/% | MPSEe/% | ||
Caragana korshinskii | W = a + bx + cx2 | 13.256 | 43.257 | 2.369 | 15.036 | 32.568 |
W = ax b | 0.803 | 15.369 | −0.063 | −1.058 | 15.036 | |
W = a + blnx | 9.125 | 32.025 | 8.263 | 8.214 | 23.256 | |
Sophora viciifolia | W = a + bx + cx2 | 10.039 | 34.177 | −0.159 | 3.692 | 12.035 |
W = axb | 0.236 | 19.256 | −1.256 | 2.369 | 9.285 | |
W = a + blnx | 5.123 | 23.054 | 5.032 | 8.038 | 29.877 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, Y.; Yang, Y.; An, S. Above-Ground Biomass Models of Caragana korshinskii and Sophora viciifolia in the Loess Plateau, China. Sustainability 2019, 11, 1674. https://doi.org/10.3390/su11061674
Dou Y, Yang Y, An S. Above-Ground Biomass Models of Caragana korshinskii and Sophora viciifolia in the Loess Plateau, China. Sustainability. 2019; 11(6):1674. https://doi.org/10.3390/su11061674
Chicago/Turabian StyleDou, Yanxing, Yang Yang, and Shaoshan An. 2019. "Above-Ground Biomass Models of Caragana korshinskii and Sophora viciifolia in the Loess Plateau, China" Sustainability 11, no. 6: 1674. https://doi.org/10.3390/su11061674
APA StyleDou, Y., Yang, Y., & An, S. (2019). Above-Ground Biomass Models of Caragana korshinskii and Sophora viciifolia in the Loess Plateau, China. Sustainability, 11(6), 1674. https://doi.org/10.3390/su11061674