Pitfalls of Wastewater Treatment in Oil Refinery Enterprises in Kazakhstan—A System Approach
Abstract
:1. Introduction
- (a)
- Overview and compare national and international regulations in the case of water use, treatment and discharge.
- (b)
- Investigate advanced wastewater treatment techniques as well as methods of rational water use.
- (c)
- Assess the efficiency of wastewater treatment processes at the oil refinery factories in Kazakhstan and evaluate their influence on the environment in accordance with national and international safe water guidelines.
- (d)
- Investigate experiences of other refineries reported in the literature concerning their implementation of tougher legislation and advanced water use methods.
- (e)
- Suggest recommendations about possible ways to enhance each step of legislative control functions to prevent pollution and thus protect the environment and public health.
2. Materials and Methods
2.1. International and National Regulations on Water Quality
2.1.1. World Health Organization
2.1.2. European Union
2.1.3. Kazakhstan
2.2. Description of the Area and the Industry
2.3. Use of Water for Technological Purposes
2.4. Wastewater Treatment Technology Review
2.4.1. Primary Treatment
2.4.2. Secondary (Tertiary) Treatment
2.4.3. Post-Treatment
2.4.4. Wastewater Reuse
2.5. Wastewater Treatment Technology in Kazakhstani Refineries
2.6. Final Discharge of Treated Wastewater
3. Results and Discussion
4. Summary
5. Conclusions
- (a)
- Enforcement of legislation allowed developed countries to eliminate risks for environment and public health. It was the first step towards sustainable water use. Pressure of stringent law and high fees stimulated industry to implement innovative and high-efficient techniques of water use.
- (b)
- The literature review shows that developing countries are on the way to minimizing potential damage to the society and nature. The practice of sustainable water use and care about saving water sources inspired conventional industrial society to improve the current situation.
- (c)
- There is insufficient driving force represented by suitable law in Kazakhstan to enhance an efficiency of wastewater treatment at oil refinery enterprises in Kazakhstan. Low penalties and disadvantages of current legislation allows the situation to remain unchanged.
- (d)
- The authors of this paper consider that toughening of the legislation as well as the ensuing use of new technologies in wastewater treatment systems is the only effective way to prevent potential damage to the public health of people who use groundwater as drinking water.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Kazakhstan’s Second National Communication to the Conference of the Parties of the United Nations Framework Convention on Climate Change. 2009. Available online: https://unfccc.int/resource/docs/natc/kaznc2e.pdf (accessed on 6 March 2019).
- Kazakhstan Stock Exchange. Oil and gas industry of the Republic of Kazakhstan. 2017. Available online: http://kase.kz/files/presentations/ru/Oil_gas_november_2017.pdf (accessed on 6 March 2019).
- BP Statistical Review of World Energy. 2017. Available online: https://www.bp.com/content/dam/bp-country/de_ch/PDF/bp-statistical-review-of-world-energy-2017-full-report.pdf (accessed on 6 March 2019).
- Walker, M.E.; Lv, Z.; Masanet, E. Industrial Steam Systems and the Energy-Water Nexus. Environ. Sci. Technol. 2013, 47, 13060–13067. [Google Scholar] [CrossRef] [PubMed]
- Wangt, R.R.; Zimmerman, J. Hybrid Analysis of Blue Water Consumption and Water Scarcity Implications at the Global, National, and Basin Levels in an Increasingly Globalized World. Environ. Sci. Technol. 2016, 50, 5143–5153. [Google Scholar] [CrossRef]
- National Report on the State of the Environment and on the Use of Natural Resources of the Republic of Kazakhstan. 2016. Available online: http://ecogosfond.kz/orhusskaja-konvencija/dostup-k-jekologicheskoj-informacii/jekologijaly-zha-daj/r-orsha-an-ortany-zhaj-k-ji-turaly-ltty-bajandamalar/ (accessed on 6 March 2019).
- Ohe, T.; Watanabe, T.; Wakabayashi, K. Mutagens in surface waters: A review. Mutat. Res.-Rev. Mutat. 2004, 567, 109–149. [Google Scholar] [CrossRef]
- Schmoll, O.; Howard, G.; Chilton, J.; Chorus, I. Protecting Groundwater for Health: Managing the Quality of Drinking-Water Sources; IWA Publishing: London, UK, 2006; Volume 1, p. 310. [Google Scholar]
- WHO. Drinking Water. Available online: http://www.who.int/mediacentre/factsheets/fs391/en/ (accessed on 6 March 2019).
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO Press: Geneva, Switzerland, 2017. [Google Scholar]
- WHO. Guidlines for the Safe Use of Wastewater, Excreta and Greywater, 3rd ed.; WHO Press: Geneva, Switzerland, 2006; Volume 1. [Google Scholar]
- The Directive Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy 2013/39/EU. 2013. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF (accessed on 6 March 2019).
- The Directive Concerning Urban Wastewater Treatment 1991/271/EEC. 1991. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0271&from=EN (accessed on 6 March 2019).
- Nugumanova, L.; Yemelina, N.; Yugay, S.; Frey, M. Environmental Problems and Policies in Kazakhstan: Air Pollution, Waste and Water; IOS Working Papers; Leibniz-Institut für Ost- und Südosteuropaforschung (IOS): Regensburg, Germany, 2017. [Google Scholar]
- Order No. 110 “On Approval of the Methodology for Determining Emission Standards for the Environment”. 2012. Available online: http://adilet.zan.kz/rus/docs/V1200007664 (accessed on 6 March 2019).
- JSC NC “Kazmunaygas” Annual Report. 2016. Available online: http://www.kmg.kz/uploads/AnnualReport2016FinalEng2.pdf (accessed on 6 March 2019).
- Speight, J.G. The Refinery of the Future; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Kent, J.A.; Bommaraju, T.; Barnicki, S.D. Handbook of Industrial Chemistry and Biotechnology, 13th ed.; Springer: Boston, MA, USA, 2017. [Google Scholar]
- Cherdabayev, B. 70th Anniversary of Atyrau Refinery. 2015. Available online: https://www.anpz.kz/upload/medialibrary/5d5/5d5051bc33d70d11c9ed417654178380.pdf (accessed on 6 March 2019).
- Robinson, P.R. Hydroconversion processes and technology for clean fuel and chemical production. In Advances in Clean Hydrocarbon Fuel Processing; Khan, M.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Merlo, R.; Gerhardt, M.B.; Burlingham, F.; Casas, C.D.; Gill, E.; Flippin, T.H. Petroleum Refinery Stripped Sour Water Treatment Using the Activated Sludge Process. Water Environ. Res. 2011, 83, 2067–2078. [Google Scholar] [CrossRef]
- El-Halwagi, M.M.; El-Halwagi, A.M.; Manousiouthakis, V. Optimal-Design of Dephenolization Networks for Petroleum-Refinery Wastes. Process Saf. Environ. 1992, 70, 131–139. [Google Scholar]
- Alva-Argaez, A.; Kokossis, A.C.; Smith, R. The design of water-using systems in petroleum refining using a water-pinch decomposition. Chem. Eng. J. 2007, 128, 33–46. [Google Scholar] [CrossRef]
- Hafiz, A.A.; El-Din, H.M.; Badawi, A.M. Chemical destabilization of oil-in-water emulsion by novel polymerized diethanolamines. J. Colloid Interfaces Sci. 2005, 284, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Zolfaghari, R.; Fakhru’l-Razi, A.; Abdullah, L.C.; Elnashaie, S.S.E.H.; Pendashteh, A. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep. Purif. Technol. 2016, 170, 377–407. [Google Scholar] [CrossRef]
- Yu, L.; Han, M.; He, F. A review of treating oily wastewater. Arab. J. Chem. 2017, 10, S1913–S1922. [Google Scholar] [CrossRef] [Green Version]
- Alegbeleye, O.O.; Opeolu, B.O.; Jackson, V.A. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. Environ. Manag. 2017, 60, 758–783. [Google Scholar] [CrossRef] [PubMed]
- Leusch, F.; Bartkow, M. A Short Primer on Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) in the Environment and in Hydraulic Fracturing Fluids. Available online: https://environment.des.qld.gov.au/management/coal-seam-gas/pdf/btex-report.pdf (accessed on 6 March 2019).
- Huang, J.H.; Wang, X.G.; Jin, Q.Z.; Liu, Y.F.; Wang, Y. Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite. J. Environ. Manag. 2007, 84, 229–236. [Google Scholar] [CrossRef]
- Wake, H. Oil refineries: A review of their ecological impacts on the aquatic environment. Estuar. Coast. Shelf Sci. 2005, 62, 131–140. [Google Scholar] [CrossRef]
- Santo, C.E.; Vilar, V.J.P.; Botelho, C.M.S.; Bhatnagar, A.; Kumar, E.; Boaventura, R.A.R. Optimization of coagulation-flocculation and flotation parameters for the treatment of a petroleum refinery effluent from a Portuguese plant. Chem. Eng. J. 2012, 183, 117–123. [Google Scholar] [CrossRef]
- Ela, S.I.A.-E.; Nawar, S.S. Treatment of wastewater from an oil and soap factory via dissolved air flotation. Environ. Int. 1980, 4, 47–52. [Google Scholar] [CrossRef]
- Moursy, A.S.; EI-Ela, S.E.A. Treatment of oily refinery wastes using a dissolved air flotation process. Environ. Int. 1982, 7, 267–270. [Google Scholar] [CrossRef]
- Demirbas, E.; Kobya, M. Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes. Process Saf. Environ. 2017, 105, 79–90. [Google Scholar] [CrossRef]
- Lu, J.; Li, Y.; Yin, M.X.; Ma, X.Y.; Lin, S.L. Removing heavy metal ions with continuous aluminum electrocoagulation: A study on back mixing and utilization rate of electro-generated Al ions. Chem. Eng. J. 2015, 267, 86–92. [Google Scholar] [CrossRef]
- Gong, C.H.; Shen, G.; Huang, H.O.; He, P.R.; Zhang, Z.G.; Ma, B.Q. Removal and transformation of polycyclic aromatic hydrocarbons during electrocoagulation treatment of an industrial wastewater. Chemosphere 2017, 168, 58–64. [Google Scholar] [CrossRef]
- Bouamra, F.; Drouiche, N.; Ahmed, D.S.; Lounici, H. Treatment of Water Loaded With Orthophosphate by Electrocoagulation. Procedia Eng. 2012, 33, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Zewail, T.M.; Yousef, N.S. Chromium ions (Cr6+ & Cr3+) removal from synthetic wastewater by electrocoagulation using vertical expanded Fe anode. J. Electroanal. Chem. 2014, 735, 123–128. [Google Scholar] [CrossRef]
- Abdelwahab, O.; Amin, N.K.; El-Ashtoukhy, E.S.Z. Electrochemical removal of phenol from oil refinery wastewater. J. Hazard. Mater. 2009, 163, 711–716. [Google Scholar] [CrossRef]
- Li, X.D.; Song, J.K.; Guo, J.D.; Wang, Z.C.; Feng, Q.Y. Landfill leachate treatment using electrocoagulation. Procedia Environ. Sci. 2011, 10, 1159–1164. [Google Scholar] [CrossRef] [Green Version]
- Lacasa, E.; Canizares, P.; Saez, C.; Fernandez, F.J.; Rodrigo, M.A. Removal of nitrates from groundwater by electrocoagulation. Chem. Eng. J. 2011, 171, 1012–1017. [Google Scholar] [CrossRef]
- Garcia-Garcia, A.; Martinez-Miranda, V.; Martinez-Cienfuegos, I.G.; Almazan-Sanchez, P.T.; Castaneda-Juarez, M.; Linares-Hernandez, I. Industrial wastewater treatment by electrocoagulation-electrooxidation processes powered by solar cells. Fuel 2015, 149, 46–54. [Google Scholar] [CrossRef]
- Shahriari, T.; Karbassi, A.R.; Reyhani, M. Treatment of oil refinery wastewater by electrocoagulation–flocculation (Case Study: Shazand Oil Refinery of Arak). Int. J. Environ. Sci. Technol. 2018, 2018, 13762. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. Oil and grease removal from wastewaters: Sorption treatment as an alternative to state-of-the-art technologies. A critical review. Chem. Eng. J. 2016, 297, 229–255. [Google Scholar] [CrossRef]
- Aljuboury, D.A.; Palaniandy, P.; Aziz, H.B.A.; Feroz, S. Treatment of petroleum wastewater by conventional and new technologies—A review. Glob. Nest J. 2017, 19, 439–452. [Google Scholar]
- Mallick, S.K.; Chakraborty, S. Treatment of synthetic refinery wastewater in anoxic–aerobic sequential moving bed reactors and sulphur recovery. J. Environ. Sci. Health Part A 2017, 52, 1257–1268. [Google Scholar] [CrossRef]
- Basu, S. Impact of opportunity crudes on refinery desalter and wastewater treatment performance-Part 2. Hydrocarb. Process. 2018, 97, 97–100. [Google Scholar]
- Dale, C.; Ekenber, M.; Wenta, R. Advanced biological treatment removes benzene, phenol from refinery wastewater. Hydrocarb. Process. 2018, 97, 79–80. [Google Scholar]
- Diya’uddeen, B.H.; Daud, W.M.A.W.; Aziz, A.R.A. Treatment technologies for petroleum refinery effluents: A review. Process Saf. Environ. 2011, 89, 95–105. [Google Scholar] [CrossRef]
- Qin, J.J.; Oo, M.H.; Tao, G.H.; Kekre, K.A. Feasibility study on petrochemical wastewater treatment and reuse using submerged MBR. J. Membr. Sci. 2007, 293, 161–166. [Google Scholar] [CrossRef]
- Alkmim, A.R.; da Costa, P.R.; Moser, P.B.; Neta, L.S.F.; Santiago, V.M.J.; Cerqueira, A.C.; Amaral, M.C.S. Long-term evaluation of different strategies of cationic polyelectrolyte dosage to control fouling in a membrane bioreactor treating refinery effluent. Environ. Technol. 2016, 37, 1026–1035. [Google Scholar] [CrossRef]
- Amaral, M.C.S.; Neta, L.S.D.; Borges, C.P.; Cerqueira, A.C.; Torres, A.P.; Florido, P.L.; Santiago, V.M.J. Treatment of refinery effluents by pilot membrane bioreactors: Pollutants removal and fouling mechanism investigation. Desalin. Water Treat. 2015, 56, 583–597. [Google Scholar] [CrossRef]
- Fallah, N.; Bonakdarpour, B.; Nasernejad, B.; Moghadam, M.R.A. Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): Effect of hydraulic retention time (HRT). J. Hazard. Mater. 2010, 178, 718–724. [Google Scholar] [CrossRef]
- Munirasu, S.; Abu Haija, M.; Banat, F. Use of membrane technology for oil field and refinery produced water treatment-A review. Process Saf. Environ. 2016, 100, 183–202. [Google Scholar] [CrossRef]
- Alzahrani, S.; Mohammad, A.W. Challenges and trends in membrane technology implementation for produced water treatment: A review. J. Water Process Eng. 2014, 4, 107–133. [Google Scholar] [CrossRef]
- Gong, C.; Yu, S.L.; Yufei, S.G.; Gu, Z.Y.; Yang, W.Z.; Ren, L.M. A Review of Ultrafiltration and Forward Osmosis:application and modification. IOP Conf. Ser. Earth Environ. 2018, 128. [Google Scholar] [CrossRef]
- Abbasi, M.; Mirfendereski, M.; Nikbakht, M.; Golshenas, M.; Mohammadi, T. Performance study of mullite and mullite-alumina ceramic MF membranes for oily wastewaters treatment. Desalination 2010, 259, 169–178. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Ashaghi, K.S.; Engel, L.; Willershausen, D.; Mund, P.; Bolduan, P.; Czermak, P. Characterization and application of different ceramic membranes for the oil-field produced water treatment. Desalination 2009, 245, 533–540. [Google Scholar] [CrossRef]
- Alzahrani, S.; Mohammad, A.W.; Hilal, N.; Abdullah, P.; Jaafar, O. Comparative study of NF and RO membranes in the treatment of produced water II: Toxicity removal efficiency. Desalination 2013, 315, 27–32. [Google Scholar] [CrossRef]
- Alzahrani, S.; Mohammad, A.W.; Hilal, N.; Abdullah, P.; Jaafar, O. Comparative study of NF and RO membranes in the treatment of produced water-Part I: Assessing water quality. Desalination 2013, 315, 18–26. [Google Scholar] [CrossRef]
- Findik, S. Treatment of petroleum refinery effluent using ultrasonic irradiation. Pol. J. Chem. Technol. 2018, 20, 20–25. [Google Scholar] [CrossRef]
- Stepnowski, P.; Siedlecka, E.M.; Behrend, P.; Jastorff, B. Enhanced photo-degradation of contaminants in petroleum refinery wastewater. Water Res. 2002, 36, 2167–2172. [Google Scholar] [CrossRef]
- Talei, M.; Mowla, D.; Esmaeilzadeh, F. Ozonation of an effluent of oil refineries for COD and sulfide removal. Desalin. Water Treat. 2015, 56, 1648–1656. [Google Scholar] [CrossRef]
- Rueda-Marquez, J.J.; Levchuk, I.; Salcedo, I.; Acevedo-Merino, A.; Manzano, M.A. Post-treatment of refinery wastewater effluent using a combination of AOPs (H2O2 photolysis and catalytic wet peroxide oxidation) for possible water reuse. Comparison of low and medium pressure lamp performance. Water Res. 2016, 91, 86–96. [Google Scholar] [CrossRef]
- Sponza, D.T.; Oztekin, R. Removals of PAHs and acute toxicity via sonication in a petrochemical industry wastewater. Chem. Eng. J. 2010, 162, 142–150. [Google Scholar] [CrossRef]
- Fu, F.L.; Wang, Q.; Tang, B. Fenton and Fenton-like reaction followed by hydroxide precipitation in the removal of Ni(II) from NiEDTA wastewater: A comparative study. Chem. Eng. J. 2009, 155, 769–774. [Google Scholar] [CrossRef]
- Coelho, A.; Castro, A.V.; Dezotti, M.; Sant’Anna, G.L. Treatment of petroleum refinery sourwater by advanced oxidation processes. J. Hazard. Mater. 2006, 137, 178–184. [Google Scholar] [CrossRef]
- Huang, D.L.; Wang, C.; Xu, P.; Zeng, G.M.; Lu, B.A.; Li, N.J.; Huang, C.; Lai, C.; Zhao, M.H.; Xu, J.J.; et al. A coupled photocatalytic-biological process for phenol degradation in the Phanerochaete chrysosporium-oxalate-Fe3O4 system. Int. Biodeterior. Biodegrad. 2015, 97, 115–123. [Google Scholar] [CrossRef]
- Mohadesi, M.; Shokri, A. Evaluation of Fenton and photo-Fenton processes for the removal of p-chloronitrobenzene in aqueous environment using Box-Behnken design method. Desalin. Water Treat. 2017, 81, 199–208. [Google Scholar] [CrossRef]
- Bustillo-Lecompte, C.F.; Kakar, D.; Mehrvar, M. Photochemical treatment of benzene, toluene, ethylbenzene, and xylenes (BTEX) in aqueous solutions using advanced oxidation processes: Towards a cleaner production in the petroleum refining and petrochemical industries. J. Clean. Prod. 2018, 186, 609–617. [Google Scholar] [CrossRef]
- Heidari, B.; Soleimani, M.; Mirghaffari, N. The use of steel slags in the heterogeneous Fenton process for decreasing the chemical oxygen demand of oil refinery wastewater. Water Sci. Technol. 2018, 78, 1159–1167. [Google Scholar] [CrossRef]
- Estrada-Arriaga, E.B.; Zepeda-Aviles, J.A.; Garcia-Sanchez, L. Post-treatment of real oil refinery effluent with high concentrations of phenols using photo-ferrioxalate and Fenton’s reactions with membrane process step. Chem. Eng. J. 2016, 285, 508–516. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for treatment of industrial wastewaters: A review. Ecol. Eng. 2014, 73, 724–751. [Google Scholar] [CrossRef]
- Hawkins, W.B.; Rodgers, J.H.; Gillespie, W.B.; Dunn, A.W.; Dorn, P.B.; Cano, M.L. Design and construction of wetlands for aqueous transfers and transformations of selected metals. Ecotoxicol. Environ. Saf. 1997, 36, 238–248. [Google Scholar] [CrossRef]
- Huddleston, G.M.; Gillespie, W.B.; Rodgers, J.H. Using constructed wetlands to treat biochemical oxygen demand and ammonia associated with a refinery effluent. Ecotoxicol. Environ. Saf. 2000, 45, 188–193. [Google Scholar] [CrossRef]
- Moore, B.J.; Ross, S.D.; Gibson, D.; Callow, L. Constructed wetlands for treatment of dissolved phase hydrocarbons in cold climates. In Proceedings of the International Conference on Wetlands Remediation, Salt Lake City, UT, USA, 16–17 November 1999; pp. 333–340. [Google Scholar]
- Wallace, S.D. On-site remediation of petroleum contact wastes using subsurface-flow wetlands. In Proceedings of the International Conference on Wetlands Remediation, Salt Lake City, UT, USA, 16–17 November 1999; pp. 125–132. [Google Scholar]
- Aslam, M.M.; Malik, M.; Baig, M.; Qazi, I.A.; Iqbal, J. Treatment performances of compost-based and gravel-based vertical flow wetlands operated identically for refinery wastewater treatment in Pakistan. Ecol. Eng. 2007, 30, 34–42. [Google Scholar] [CrossRef]
- Ji, G.D.; Sun, T.H.; Ni, J.R. Surface flow constructed wetland for heavy oil-produced water treatment. Bioresour. Technol. 2007, 98, 436–441. [Google Scholar] [CrossRef]
- Mustapha, H.I.; van Bruggen, H.J.J.A.; Lens, P.N.L. Vertical subsurface flow constructed wetlands for the removal of petroleum contaminants from secondary refinery effluent at the Kaduna refining plant (Kaduna, Nigeria). Environ. Sci. Pollut. Res. 2018, 25, 30451–30462. [Google Scholar] [CrossRef]
- Yang, L.; Hu, C.C. Treatments of oil-refinery and steel-mill wastewaters by mesocosm constructed wetland systems. Water Sci. Technol. 2005, 51, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.B.; Wallace, S.; Brix, H.; Kuschk, P.; Kirui, W.K.; Masi, F.; Dong, R.J. Treatment of industrial effluents in constructed wetlands: Challenges, operational strategies and overall performance. Environ. Pollut. 2015, 201, 107–120. [Google Scholar] [CrossRef]
- Mustapha, H.I.; van Bruggen, J.J.A.; Lens, P.N.L. Optimization of Petroleum Refinery Wastewater Treatment by Vertical Flow Constructed Wetlands Under Tropical Conditions: Plant Species Selection and Polishing by a Horizontal Flow Constructed Wetland. Water Air Soil Pollut. 2018, 229. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.Q.; Dong, J.W.; Tan, S.K. Constructed wetlands for wastewater treatment in cold climate—A review. J. Environ. Sci.-China 2017, 57, 293–311. [Google Scholar] [CrossRef]
- Pombo, F.R.; Magrini, A.; Szklo, A. An analysis of water management in Brazilian petroleum refineries using rationalization techniques. Resour. Conserv. Recycl. 2013, 73, 172–179. [Google Scholar] [CrossRef]
- Hansen, E.; Rodrigues, M.A.S.; Aragao, M.E.; de Aquim, P.M. Water and wastewater minimization in a petrochemical industry through mathematical programming. J. Clean. Prod. 2018, 172, 1814–1822. [Google Scholar] [CrossRef]
- Mohammadnejad, S.; Bidhendi, G.R.N.; Mehrdadi, N. Water pinch analysis in oil refinery using regeneration reuse and recycling consideration. Desalination 2011, 265, 255–265. [Google Scholar] [CrossRef]
- Mughees, W.; Al-Ahmad, M. Application of water pinch technology in minimization of water consumption at a refinery. Comput. Chem. Eng. 2015, 73, 34–42. [Google Scholar] [CrossRef]
- Duyvesteijn, C.P.T.M. Water re-use in an oil refinery. Desalination 1998, 119, 357–358. [Google Scholar] [CrossRef]
- Peeters, J.G.; Theodoulou, S.L. Consider membrane technologies to treat oily wastewater. Hydrocarb. Process. 2007, 86, 81–86. [Google Scholar]
- Puckorius, P.R.; Loretitsch, G.A.; Tvedt, T.J. Reuse water quality for chemical plants, refineries, utilities and air conditioning. In Proceedings of the Corrosion 98, San Diego, CA, USA, 22–27 March 1998. [Google Scholar]
- Iancu, P.; Plesu, V.; Lavric, V. Regeneration of internal streams as an effective tool for wastewater network optimisation. Comput. Chem. Eng. 2009, 33, 731–742. [Google Scholar] [CrossRef]
- Wang, D.X.; Tong, F.; Aerts, P. Application of the combined ultrafiltration and reverse osmosis for refinery wastewater reuse in Sinopec Yanshan Plant. Desalin. Water Treat. 2011, 25, 133–142. [Google Scholar] [CrossRef]
- El-Halwagi, M.M.; Manousiouthakis, V. Synthesis of Mass Exchange Networks. Aich. J. 1989, 35, 1233–1244. [Google Scholar] [CrossRef]
- Wang, Y.P.; Smith, R. Waste-Water Minimization. Chem. Eng. Sci. 1994, 49, 981–1006. [Google Scholar] [CrossRef]
- Mann, J.G.; Liu, Y.A. Industrial Water Reuse and Wastewater Mini-Mization, 1st ed.; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Bagajewicz, M. A review of recent design procedures for water networks in refineries and process plants. Comput. Chem. Eng. 2000, 24, 2093–2113. [Google Scholar] [CrossRef] [Green Version]
- Koppol, A.R.; Bagajewicz, M.J.; Dericks, B.J.; Savelski, M.J. On zero water discharge solutions in the process industry. Adv. Environ. Res. 2004, 8, 151–171. [Google Scholar] [CrossRef]
- Technological regulations of a complex of mechanical treatment facilities for industrial wastewater. “PPCP”.
- Technological regulations of the complex of biological treatment facilities for industrial effluents. “PPCP”.
- Technological regulations of the complex of treatment facilities. “PKOP”.
- Technological regulations of the complex of biological treatment facilities for industrial effluents. “AR”.
- Tussupova, K.; Hjorth, P.; Berndtsson, R. Access to Drinking Water and Sanitation in Rural Kazakhstan. Int. J. Environ. Res. Public Health 2016, 13, 1115. [Google Scholar] [CrossRef] [PubMed]
- Tussupova, K.; Berndtsson, R.; Bramryd, T.; Beisenova, R. Investigating Willingness to Pay to Improve Water Supply Services: Application of Contingent Valuation Method. Water 2015, 7, 3024–3039. [Google Scholar] [CrossRef] [Green Version]
- Sanitary and Epidemiological Requirements for Water Sources, Water Intake Points for Household and Drinking Purposes, Domestic and Drinking Water Supply and Places of Cultural and Domestic Water Use and Water Safety. Available online: http://adilet.zan.kz/rus/docs/V1500010774 (accessed on 6 March 2019).
- Pinedo, J.; Ibanez, R.; Lijzen, J.P.A.; Irabien, A. Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances. J. Environ. Manag. 2013, 130, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.A.; Knightes, C.D.; Brown, D.G. Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment. Environ. Sci. Technol. 1999, 33, 4499–4507. [Google Scholar] [CrossRef]
- Mcgauhey, P.H. Ground-Water Hydrology—Todd, Dk. Am. J. Public Health 1960, 50, 592. [Google Scholar] [CrossRef]
- UNDP. Sustainable Management of Water and Sanitation. Available online: https://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-6-clean-water-and-sanitation/targets/ (accessed on 6 March 2019).
- Nanbo, K. Control of Industrial Wastewater in Osaka. Water Pollut. Control Fed. 1980, 52, 992–998. [Google Scholar]
- Hamer, G. The impact of government legislation on industrial effluent treatment. Conserv. Recycl. 1985, 8, 25–43. [Google Scholar] [CrossRef]
- EPA. Guide for the Application of Effluent Limitations Guidelines for the Petroleum Refining Industry. 1985. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/petro-refining_guidance_june-1985.pdf (accessed on 6 March 2019).
- Osin, O.A.; Yu, T.Y.; Lin, S.J. Oil refinery wastewater treatment in the Niger Delta, Nigeria: Current practices, challenges, and recommendations. Environ. Sci. Pollut. Res. 2017, 24, 22730–22740. [Google Scholar] [CrossRef]
- Bandyopadhyay, A. Assessment of accidental refinery wastewater discharge: A case study. Clean. Technol. Environ. Policy 2010. [Google Scholar] [CrossRef]
- Aljuboury, D.A.A.; Palaniandy, P.; Aziz, H.B.; Feroz, S. Evaluation of the solar photo-Fenton process to treat the petroleum wastewater by response surface methodology (RSM). Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Sadatipour, S.M.T.; Mirzaie, L.; Rezaei, A.A. An investigation on Kangan gas refinery wastewater. Int. J. Environ. Sci. Technol. 2004, 1, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Haque, N. Exploratory analysis of fines for water pollution in Bangladesh. Water Resour. Ind. 2017, 18, 1–8. [Google Scholar] [CrossRef]
- Operating instructions of water supply unit “PPCP”.
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef]
- Katko, T.S.; Hukka, J.J. Social and economic importance of water services in the built environment: Need for more structured thinking. Proc. Econ. Financ. 2015, 21, 217–223. [Google Scholar] [CrossRef]
Name | Oil Refining Volumes, Million Tons per Year | Oil Refining Capacity, Million Tons per Year | Processing Depth (Conversion Ratio), % |
---|---|---|---|
“Atyrau Refinery” (AR) | 4.491 | 5.0 | 65.2 |
“PetroKazakhstan Oil Products” (PKOP) | 4.272 | 5.3 | 75.4 |
“Pavlodar PC Plant” (PPCP) | 4.036 | 5.1 | 76.6 |
Parameter | Units | Refinery X | Refinery Y | Refinery Z |
---|---|---|---|---|
Ammonia (NH4+) | mg/L | 55.18 | 8.0 | 4.53 |
Total petroleum hydrocarbons (TPH) | mg/L | 3.02 | 8.0 | 2.03 |
Biochemical consumption of Oxygen (BOD) | mgO2/L | 17.82 | 16.6 | 11.6 |
Nitrates (NO3−) | mg/L | 19.2 | 7.8 | 8.96 |
Nitrites (NO2−) | mg/L | 7.7 | 0.5 | - |
Sulfates (SO42−) | mg/L | 643.05 | 500.0 | 471.1 |
Phenol’s index | mg/L | 0.25 | 0.05 | 0.182 |
Chlorides (Cl−) | mg/L | 169.8 | 350.0 | 678.8 |
Suspended solids | mg/L | 20.98 | 25.75 | 6.05 |
Surfactants | mg/L | 0.52 | 2.80 | 1.27 |
Phosphates (PO43−) | mg/L | 1.05 | 2.0 | 6.89 |
Total Dissolved Solids (TDS) | mg/L | Existing concentration | 6000 | - |
Parameter | Units | Range | Median | Mean | Std. Deviation |
---|---|---|---|---|---|
Chlorides (Cl−) | mg/L | 49.80–135.04 | 70.61 | 82.48 | 26.47 |
Nitrites (NO2−) | mg/L | 0.08–4.37 | 0.43 | 0.10 | 1.27 |
Sulfates (SO42−) | mg/L | 238.32–588.73 | 469.50 | 449.04 | 90.98 |
Nitrates (NO3−) | mg/L | 1.77–16.41 | 13.23 | 12.49 | 3.96 |
Ammonia (NH4+) | mg/L | 38.56–54.34 | 52.36 | 49.26 | 5.97 |
Total Petroleum Hydrocarbons (TPH) | mg/L | 0.68–2.15 | 1.23 | 1.30 | 0.40 |
Phenol’s index | mg/L | 0.01–0.03 | 0.02 | 0.02 | 0.01 |
Suspended solids | mg/L | 4.40–9.10 | 7.69 | 7.29 | 1.35 |
Surfactants | mg/L | 0.20–0.45 | 0.36 | 0.34 | 0.08 |
Biochemical oxygen demand (BOD) | mgO2/L | 8.51–13.12 | 10.56 | 10.60 | 1.48 |
Parameter | Units | KZ, WHO Standards [10,105] | Range | Mean | Std. Deviation |
---|---|---|---|---|---|
Chlorides (Cl−) | mg/L | 350.0 | 15.00–16,000.00 | 2201.33 | 4344.54 |
Sulfates (SO42−) | mg/L | 500.0 | 152.71–9400.00 | 1366.97 | 2720.60 |
Total Petroleum Hydrocarbons (TPH) | mg/L | 0.1 | 0.11–0.75 | 0.33 | 0.18 |
Total Hardness (TH) | mmol/L | 7.0 | 3.65–377.50 | 41.86 | 92.19 |
Sodium (Na+) | mg/L | 200.0 | 10.00–7900.00 | 1159.43 | 2099.72 |
Potassium | mg/L | 12.0 | 0.00–34.00 | 3.30 | 7.49 |
Total dissolved solids (TDS) | mg/L | 1000 | 1041.00–36,392.00 | 5458.37 | 9903.54 |
Nitrites (NO2−) | mg/L | 3.0 | 0.00–14.50 | 0.62 | 2.45 |
Nitrates (NO3−) | mg/L | 45.0 | 0.30–21.00 | 3.96 | 5.30 |
Ammonia (NH4+) | mg/L | 2.0 | 0.00–10.91 | 1.83 | 3.11 |
Carbonates (CO32−) | mg/L | - | 0.00–72.60 | 19.05 | 14.89 |
Hydrocarbonates (HCO3−) | mg/L | - | 44.50–709.43 | 362.28 | 154.32 |
Calcium (Ca2+) | mg/L | - | 8.60–2700.00 | 126.19 | 455.10 |
Magnesium (Mg2+) | mg/L | - | 28.00–3600.00 | 436.19 | 891.50 |
Surfactants | mg/L | 0.5 | 0.00–1.44 | 0.36 | 0.36 |
pH | pH units | 6–9 | 7.88–9.00 | 8.55 | 0.33 |
Free carbon dioxide (CO2) | mg/L | - | 0.00–19.16 | 1.34 | 3.75 |
Phenol’s index | mg/L | 0.25 | 0.00–0.12 | 0.01 | 0.02 |
Phosphates (PO43−) | mg/L | 3.5 | 0.01–0.19 | 0.03 | 0.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radelyuk, I.; Tussupova, K.; Zhapargazinova, K.; Yelubay, M.; Persson, M. Pitfalls of Wastewater Treatment in Oil Refinery Enterprises in Kazakhstan—A System Approach. Sustainability 2019, 11, 1618. https://doi.org/10.3390/su11061618
Radelyuk I, Tussupova K, Zhapargazinova K, Yelubay M, Persson M. Pitfalls of Wastewater Treatment in Oil Refinery Enterprises in Kazakhstan—A System Approach. Sustainability. 2019; 11(6):1618. https://doi.org/10.3390/su11061618
Chicago/Turabian StyleRadelyuk, Ivan, Kamshat Tussupova, Kulshat Zhapargazinova, Madeniyet Yelubay, and Magnus Persson. 2019. "Pitfalls of Wastewater Treatment in Oil Refinery Enterprises in Kazakhstan—A System Approach" Sustainability 11, no. 6: 1618. https://doi.org/10.3390/su11061618
APA StyleRadelyuk, I., Tussupova, K., Zhapargazinova, K., Yelubay, M., & Persson, M. (2019). Pitfalls of Wastewater Treatment in Oil Refinery Enterprises in Kazakhstan—A System Approach. Sustainability, 11(6), 1618. https://doi.org/10.3390/su11061618