Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Data of Sloping Farmland Area
2.2.2. Data of Driving Forces
2.3. Methods
2.3.1. Spatiotemporal Changes Analysis of Sloping Farmland
2.3.2. Driving Force Analysis
3. Results
3.1. Land Use Change in Sichuan Province from 2000 to 2015
3.2. Temporal Variation of Sloping Farmland Area
3.3. Spatial Variation of Sloping Farmland Area
3.4. Driving Force Analysis of the Changed Sloping Farmland Area
3.4.1. Correlation Analysis between the Sloping Farmland Area and Its Driving Force
3.4.2. Regional Characteristics of the Driving Force of Sloping Farmland Area Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, Y.Y.; Li, X.B.; Tan, M.H.; Wang, X.; Xin, L.J. The impact of cultivated land spatial shift on food crop production in China, 1990–2010. Land Degrad. Dev. 2018, 29, 1652–1659. [Google Scholar] [CrossRef]
- Su, M.; Guo, R.Z.; Hong, W.Y. Institutional transition and implementation path for cultivated land protection in highly urbanized regions: A case study of Shenzhen, China. Land Use Policy 2019, 81, 493–501. [Google Scholar] [CrossRef]
- Xie, H.; Zou, J.; Jiang, H.; Zhang, N.; Choi, Y. Spatiotemporal pattern and driving forces of arable land-use intensity in China: Toward sustainable land management using emergy analysis. Sustainability 2014, 6, 3504–3520. [Google Scholar] [CrossRef]
- Duo, L.; Hu, Z. Soil Quality Change after Reclaiming Subsidence Land with Yellow River Sediments. Sustainability 2018, 10, 4310. [Google Scholar] [CrossRef]
- Jiang, S.; Jin, J.; Xu, H.; Zhou, Y.L.; Wang, Y.Z. Fluctuations effect analysis of grain yield per hectare based on empirical mode decomposition and set pair analysis. Trans. Chin. Soc. Agric. Eng. 2013, 29, 213–221. [Google Scholar]
- Deng, L.J.; Ling, J.; Zhang, S.R.; Hu, Y.F. Problem of production and ecology of dry cropland and comprehensive harness of soil and water loss in Sichuan province. J. Soil Water Conserv. 2002, 16, 8–11. [Google Scholar]
- Ding, W.B.; Jiang, G.Y.; Shi, D.M.; Liu, Y.J.; Jiang, P.; Chang, S.G.; Liu, Z.P. Effect of different soil properties on plow-layer soil quality of sloping farmland in purple hilly areas. Acta Ecol. Sin. 2017, 37, 6480–6493. [Google Scholar]
- Peng, X.D.; Dai, Q.H.; Li, C.G. Output mechanism of soil nutrients from karst slope farmland under simulated rainfall. Acta Ecol. Sin. 2018, 38, 624–634. [Google Scholar]
- Simelton, E. Food self-sufficiency and natural hazards in China. Food Secur. 2011, 3, 35–52. [Google Scholar] [CrossRef]
- Zhao, P.; Tang, X.; Zhao, P.; Wang, C.; Tang, J.L. Tracing water flow from sloping farmland to streams using oxygen-18 isotope to study a small agricultural catchment in southwest China. Soil Tillage Res. 2013, 134, 180–194. [Google Scholar] [CrossRef]
- Novara, A.; Keesstra, S.; Cerdà, A.; Pereira, P.; Gristina, L. Understanding the role of soil erosion on CO2-C loss using 13C isotopic signatures in abandoned Mediterranean agricultural land. Sci. Total Environ. 2016, 550, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Yao, L.; Lin, C.W.; Wang, X.; Xu, W.Z.; Wang, H. 18-year grass hedge effect on soil water loss and soil productivity on sloping cropland. Soil Tillage Res. 2018, 177, 12–18. [Google Scholar] [CrossRef]
- Huang, X.J.; Zhang, Q.W.; Chen, S.H.; Dong, Y.Q.; Xiao, M.J.; Hamed, L. Aggregate Stability and Erodibility of Purple Soil on Sloping Farmland as affected by different Soil Thickness. EGU Gen. Assem. Conf. Abstr. 2017, 19, 3824. [Google Scholar]
- Salata, S. Land use change analysis in the urban region of Milan. Manag. Environ. Qual. Int. J. 2017, 28, 879–901. [Google Scholar] [CrossRef]
- Veldkamp, A.; Verburg, P.H. Modelling land use change and environmental impact. J. Environ. Manag. 2004, 72, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modelling: Current practice and research priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Sun, S.; Xiao, Y.; Guo, L. The study on the spatial-temporal changes of land use pattern in eastern Sichuan basin based on RS/GIS. In Proceedings of the IOP Conference Series: Earth and Environmental Science (ICAESEE), Harbin, China, 8–10 December 2017; 2018; Volume 113. [Google Scholar]
- Liu, S.; Dong, Y.; Cheng, F.; Yin, Y.J.; Zhang, Y.Q. Variation of soil organic carbon and land use in a dry valley in Sichuan province, Southwestern China. Ecol. Eng. 2016, 95, 501–504. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, W. Study on Land Use/Cover Change in Sichuan Province Based on RS and GIS. In Proceedings of the International Forum on Computer Science-Technology and Applications, Chongqing, China, 25–27 December 2009. [Google Scholar]
- Li, S.; Yang, S.; Liu, X.; Liu, Y.X.; Shi, M. NDVI-based analysis on the influence of climate change and human activities on vegetation restoration in the Shaanxi-Gansu-Ningxia Region, Central China. Remote Sens. 2015, 7, 11163–11182. [Google Scholar] [CrossRef]
- Tang, J.; Di, L. Past and Future Trajectories of Farmland Loss Due to Rapid Urbanization Using Landsat Imagery and the Markov-CA Model: A Case Study of Delhi, India. Remote Sens. 2019, 11, 180. [Google Scholar] [CrossRef]
- Xin, Y.; Liu, G.; Xie, Y.; Gao, Y.; Liu, Y.B.; Shen, B. Effects of soil conservation practices on soil losses from slope farmland in northeastern China using runoff plot data. CATENA 2019, 174, 417–424. [Google Scholar] [CrossRef]
- Serra, P.; Pons, X.; Saurí, D. Land-cover and land-use change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors. Appl. Geogr. 2008, 28, 189–209. [Google Scholar] [CrossRef]
- Kang, H.; Tao, W.; Chang, Y.; Zhang, Y.; Li, X.X.; Chen, P. A feasible method for the division of ecological vulnerability and its driving forces in Southern Shaanxi. J. Clean. Prod. 2018, 205, 619–628. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Dong, Y.H.; Chen, D.Q. Driving force analysis of soil degradation human-induced. J. Chin. Agric. Eng. 2008, 114–118. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.B.; Liu, J.; Cai, H.J.; Wu, P.; Geng, Q.L.; Xu, L.J. Sustainability assessment of regional water resources under the DPSIR framework. J. Hydrol. 2016, 532, 140–148. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Y.; Huang, W.; Shi, Y.L.; Bai, X.M.; Cui, S.H. Driving forces and impacts of food system nitrogen flows in China, 1990 to 2012. Sci. Total Environ. 2018, 610, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Song, K.S.; Liu, D.W.; Wang, Z.M.; Liu, H.J. Land use change in Sanjiang Plain and its driving forces analysis since 1954. Acta Geogr. Sin. 2008, 63, 93–104. [Google Scholar]
- Zhao, C.W.; Pu, L.J. Relationship between the arable land change and the grain production in Guizhou Province during the past 50 years. J. Nanjing Univ. Nat. Sci. 2005, 41, 105–112. [Google Scholar]
- Cao, Y.G.; Yuan, C.; Zhou, W.; Tao, J.; Hua, R. Analysis on driving forces and provincial differences of cultivated land change in China. China Land Sci. 2008, 22, 17–22. [Google Scholar]
- Nowak, A.; Scheifder, C. Environmental characteristics, agricultural land use, and vulnerability to degradation in Malopolska Province (Poland). Sci. Total Environ. 2017, 590, 620–632. [Google Scholar] [CrossRef]
- Magesh, N.S.; Chandrasekar, N. Driving forces behind land transformations in the Tamiraparani sub-basin, South India. Remote Sens. Appl. Soc. Environ. 2017, 8, 12–19. [Google Scholar] [CrossRef]
- Chen, Y.J.; Xiao, Y.I.; Fang, L.N.; Yang, R.Z. Analysis of Cultivated Land and Grain Production Potential in China. Sci. Agric. Sin. 2016, 49, 1117–1131. [Google Scholar]
- Zheng, H.; Huang, H.; Zhang, C.; Li, J.Y. National-scale paddy-upland rotation in Northern China promotes sustainable development of cultivated land. Agric. Water Manag. 2016, 170, 20–25. [Google Scholar] [CrossRef]
- Hua, X.B.; Yan, J.Z.; Li, H.L.; He, W.F.; Li, X.B. Wildlife damage and cultivated land abandonment: Findings from the mountainous areas of Chongqing. ChinaCrop Prot. 2016, 84, 141–149. [Google Scholar] [CrossRef]
- Monsieurs, E.; Dessie, M.; Adgo, E.; Poesen, J.; Deckers, J.; Verhoest, N.; Nyssen, J. Seasonal Surface Drainage of Sloping Farmland: A Review of Its Hydrogeomorphic Impacts. Land Degrad. Dev. 2015, 26, 35–44. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Liu, D.H.; Cheng, S.H.; Huang, X.J. Combined effects of runoff and soil erodibility on available nitrogen losses from sloping farmland affected by agricultural practices. Agric. Water Manag. 2016, 176, 1–8. [Google Scholar] [CrossRef]
- Yun, C.; Yun, M.; He, B. Effects of hedgerow on soil fractal characteristics and erodibility of sloping farmland in the purple soil area of Sichuan, China. In Proceedings of the IEEE World Automation Congress 2012, Puerto Vallarta, Mexico, 24–28 June 2012; pp. 1–4. [Google Scholar]
- Wang, S.Z.; Zhao, X.G. Study on the trend and driving factors of cultivated land area change in Shaanxi Province. Arid Zone Res. 2006, 23, 139–143. [Google Scholar]
- Liu, X.J.; Gong, J.Y.; Zhou, Q.M.; Tang, G.A. A Study of Accuracy and Algorithms for Calculating Slope and Aspect Based on Grid Digital Elevation Model (DEM). Acta Geod. Cartogr. Sin. 2004, 33, 258–263. [Google Scholar]
- Cui, X.; Sun, H.; Dong, Z.; Liu, Z.Y.; Li, C.; Zhang, Z.C.; Liu, X.L.; Liu, L.L. Temporal variation of the wind environment and its possible causes in the Mu Us Dunefield of Northern China, 1960–2014. Theor. Appl. Climatol. 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Fu, X.; Ji, C.G. Comprehensive evaluation of regional water resources carrying capacity: Application of the principal component analysis. Resour. Environ. Yangtze Basion 1999, 8, 168–173. [Google Scholar]
- Li, W.; Peng, M.; Wang, Q. Fault detectability analysis in PCA method during condition monitoring of sensors in a nuclear power plant. Ann. Nuclear Energy 2018, 119, 342–351. [Google Scholar] [CrossRef]
- Cho, K.; Yoon, T.; Park, S.; Park, D. Using standardization for fair data evaluation. In Proceedings of the 2018 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon-si Gangwon-do, Korea, 11–14 February 2018; pp. 585–589. [Google Scholar]
- Rezaei, S.A.; Gilkes, R.J.; Andrews, S.S. A minimum data set for assessing soil quality in rangelands. Geoderma 2006, 136, 229–234. [Google Scholar] [CrossRef]
- Uddin, M.N.; Saiful, A.K.M.; Bala, S.K.; Tarekul, I.G.M.; Adhikary, S.; Saha, D.; Haque, S.; Golam, R.F.; Akter, R. Mapping of climate vulnerability of the coastal region of Bangladesh using principal component analysis. Appl. Geogr. 2019, 102, 47–57. [Google Scholar] [CrossRef]
- Zhao, H.; He, H.; Wang, J.; Bai, C.; Zhang, C. Vegetation Restoration and Its Environmental Effects on the Loess Plateau. Sustainability 2018, 10, 4676. [Google Scholar] [CrossRef]
- Liu, C.H.; Xie, D.Y.; Tu, C.L.; Zhang, X.M.; He, T.B.; Zhang, H.L.; Ji, S.; He, F.F. Comprehensive exploitation and renovation on the slope farmland in Guizhou mountain region. Res. Water Soil Conserv. 2004, 11, 210–213. [Google Scholar]
- Zhang, Y.; Shi, M.; Zhao, X.; Wang, X.J.; Luo, Z.D.; Zhao, Y. Methods for automatic identification and extraction of terraces from high spatial resolution satellite data (China-GF-1). Int. Soil Water Conserv. Res. 2017, 5, 17–25. [Google Scholar] [CrossRef]
- Peng, T.; Wang, S. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena 2012, 90, 53–62. [Google Scholar] [CrossRef]
- Zou, J. Dynamic Change and Driving Forces of Cultivated Land in Changsha City; Agricultural University Of Hunan: Changsha, China, 2011. [Google Scholar]
- Zeng, C.; Yang, L.D.; Dong, J.N. Management of urban land expansion in China through intensity assessment: A big data perspective. J. Clean. Prod. 2017, 153, 637–647. [Google Scholar] [CrossRef]
- Energies. Effects of Urbanization-Induced Cultivated Land Loss on Ecosystem Services in the North China Plain. Energies 2015, 8, 5678–5693. [Google Scholar] [CrossRef] [Green Version]
- Trac, C.J.; Schmidt, A.H.; Harrell, S.; Hinckley, T.M. (Envionmental reviews and case studies: Is the Returning Farmland to Forest Program a Success? Three Case Studies from Sichuan. Environ. Pract. 2013, 15, 350–366. [Google Scholar] [CrossRef]
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | |
---|---|---|---|---|---|---|---|---|
Sichuan Province | −0.937 | −0.926 | −0.949 | −0.944 | −0.961 | −0.898 | −0.301 | 0.698 |
Chengdu | −0.973 | −0.995 | −0.949 | −0.899 | −0.921 | −0.886 | 1.000 | 0.78 |
Zigong | −0.862 | −0.951 | −0.817 | −0.933 | −0.896 | −0.835 | −0.808 | −0.145 |
Panzhihua | −0.797 | −0.874 | −0.998 | −0.996 | −0.952 | −0.913 | −0.99 | 0.116 |
Luzhou | −0.777 | −0.975 | −0.954 | −0.963 | −0.994 | −0.815 | −0.889 | 0.273 |
Deyang | −0.886 | −0.914 | −0.974 | −0.941 | −0.905 | −0.82 | 0.476 | 0.082 |
Mianyang | −0.959 | −0.895 | −0.948 | −0.931 | −0.909 | −0.908 | 0.119 | −0.051 |
Guangyuan | −0.261 | −0.969 | −0.091 | −0.984 | −0.991 | −0.898 | −0.988 | 0.173 |
Leshan | −0.781 | −0.929 | −0.945 | −0.972 | −0.989 | −0.874 | 0.812 | 0.161 |
Suining | −0.108 | −0.903 | −0.933 | −0.961 | −0.978 | −0.825 | 0.41 | 0.088 |
Neijiang | −0.835 | −0.795 | −0.881 | −0.844 | −0.944 | −0.836 | −0.019 | −0.313 |
Nanchongngng | −0.769 | −0.895 | −0.895 | −0.896 | −0.922 | −0.827 | −0.797 | −0.091 |
Meishan | −0.8 | −0.982 | −0.969 | −0.993 | −0.994 | −0.85 | −0.218 | 0.279 |
Yibin | −0.944 | −0.895 | −0.947 | −0.96 | −0.964 | −0.904 | −0.999 | 0.003 |
Guang’an | −0.732 | −0.994 | −0.968 | −0.971 | −0.977 | −0.727 | −0.954 | 0.288 |
Dazhou | −0.805 | −0.971 | −0.985 | −0.996 | −0.99 | −0.85 | −0.809 | 0.287 |
Ya’an | −0.652 | −0.993 | −0.974 | −0.99 | −0.974 | −0.16 | 0.661 | 0.42 |
Bazhong | −0.71 | −0.966 | −0.974 | −0.981 | −0.993 | −0.89 | −0.982 | 0.145 |
Ziyang | −0.771 | −0.766 | −0.845 | −0.843 | −0.79 | −0.803 | −0.063 | −0.207 |
Aba | −0.888 | −0.639 | −0.657 | −0.797 | −0.785 | −0.829 | 0.283 | −0.422 |
Ganzi | −0.791 | −0.476 | −0.684 | −0.761 | −0.38 | −0.785 | 0.184 | −0.772 |
Liangshan | −0.994 | −0.774 | −0.984 | −0.98 | −0.998 | −0.998 | −0.992 | −0.151 |
Region | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
Sichuan Province | 0.977 | 0.992 | 0.998 | 0.993 | 0.925 | |||
Chengdu | 0.993 | 0.978 | 1.000 | 0.989 | 0.994 | 0.950 | ||
Zigong | 0.934 | 0.959 | 0.987 | 0.992 | 0.983 | 0.945 | 0.989 | |
Panzhihua | 0.998 | 0.993 | 0.952 | 0.926 | 0.990 | |||
Luzhou | 0.958 | 0.994 | 0.997 | 0.995 | ||||
Deyang | 0.961 | 0.915 | 0.982 | 0.956 | 0.998 | 0.972 | ||
Mianyang | 0.965 | 0.997 | 0.999 | 0.999 | 0.970 | |||
Guangyuan | 0.935 | 0.999 | 0.993 | 0.973 | ||||
Leshan | 0.971 | 0.991 | 0.999 | 0.977 | ||||
Suining | 0.939 | 0.990 | 0.999 | 0.994 | ||||
Neijiang | 0.922 | 0.969 | 0.995 | 0.967 | 0.993 | |||
Nanchong | 0.960 | 0.999 | 0.999 | 0.997 | 0.930 | |||
Meishan | 0.904 | 0.958 | 0.999 | 0.992 | 0.952 | 0.937 | ||
Yibin | 0.969 | 0.931 | 0.997 | 0.999 | 0.999 | 0.976 | 0.952 | |
Guang’an | 0.966 | 0.999 | 0.998 | 0.975 | 0.992 | |||
Dazhou | 0.907 | 0.898 | 0.994 | 0.989 | 0.993 | 0.942 | 0.891 | |
Ya’an | 0.972 | 0.987 | 0.998 | 0.938 | ||||
Bazhong | 0.934 | 0.996 | 1.000 | 0.967 | 0.959 | 0.998 | ||
Ziyang | 0.911 | 0.955 | 0.985 | 0.985 | 0.992 | 0.934 | ||
Aba | 0.917 | 0.959 | 0.980 | 0.980 | 0.958 | 0.934 | ||
Ganzi | 0.967 | 0.994 | 0.982 | 0.987 | ||||
Liangshan | 0.988 | 0.996 | 0.994 | 0.996 | 0.988 | 0.977 |
Region | Index | Load Coefficient | Index | Load Coefficient | |
---|---|---|---|---|---|
Sichuan Province | X1 | 0.473 | Nanchong | X8 | 0.939 |
Chengdu | - | - | Meishan | X8 | 0.974 |
Zigong | X8 | 0.97 | Yibin | X8 | 0.982 |
Panzhihua | X8 | 0.965 | Guang’an | X8 | 0.979 |
Luzhou | X8 | 0.898 | Dazhou | X8 | 0.99 |
Deyang | X7 | 0.77 | Ya’an | X6 | 0.852 |
Mianyang | X8 | 0.952 | Bazhong | X8 | 0.964 |
Guangyuan | X1, X3 | 0.906,0909 | Ziyang | X8 | 0.921 |
Leshan | X8 | 0.866 | Aba | X8 | 0.941 |
Suining | X1 | 0.987 | Ganzi | X7 | 0.771 |
Neijiang | X8 | 0.968 | Liangshan | X8 | 0.987 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, M.; Zhang, Q.; Qu, L.; Hussain, H.A.; Dong, Y.; Zheng, L. Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region. Sustainability 2019, 11, 906. https://doi.org/10.3390/su11030906
Xiao M, Zhang Q, Qu L, Hussain HA, Dong Y, Zheng L. Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region. Sustainability. 2019; 11(3):906. https://doi.org/10.3390/su11030906
Chicago/Turabian StyleXiao, Meijia, Qingwen Zhang, Liqin Qu, Hafiz Athar Hussain, Yuequn Dong, and Li Zheng. 2019. "Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region" Sustainability 11, no. 3: 906. https://doi.org/10.3390/su11030906
APA StyleXiao, M., Zhang, Q., Qu, L., Hussain, H. A., Dong, Y., & Zheng, L. (2019). Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region. Sustainability, 11(3), 906. https://doi.org/10.3390/su11030906