Spatial Structure Evolution of Urban Agglomerations and Its Driving Factors in Mainland China: From the Monocentric to the Polycentric Dimension
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources
3. Defining and Measuring the Spatial Structure of the UAs from Polycentric/Monocentric Dimensions
4. Regression Analysis
4.1. Model Settings
4.2. Variable Selection and Description
4.3. Estimation Methods and Robustness Test
5. Results
5.1. The Spatial Structure Measures
5.2. Socio-Economic Factors Influencing the Evolution of Spatial Structure
5.3. Typology Differences of the Influencing Factors on Polycentric UAs
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
UAs | 1992 | 1997 | 2002 | 2007 | 2012 | UAs | 1992 | 1997 | 2002 | 2007 | 2012 |
---|---|---|---|---|---|---|---|---|---|---|---|
YRD | 0.9946 | 0.8300 | 0.7724 | 0.7462 | 0.7020 | WTS | 0.7092 | 0.6800 | 0.6685 | 0.6769 | 0.6715 |
PRD | 0.6557 | 0.6665 | 0.6480 | 0.6082 | 0.5970 | JIH | 0.8582 | 0.7718 | 0.7188 | 0.6375 | 0.6374 |
BTH | 1.1312 | 0.9425 | 0.9299 | 0.8775 | 0.8116 | SGX | 1.3133 | 1.1572 | 1.1454 | 0.9642 | 0.7977 |
MYZ | 0.8438 | 0.8098 | 0.7662 | 0.7482 | 0.7350 | NTSM | 1.6828 | 1.4778 | 1.4142 | 1.3845 | 1.2499 |
CHC | 1.4144 | 1.3353 | 1.2280 | 1.2378 | 1.2057 | HBEY | 0.8288 | 0.7282 | 0.7100 | 0.6858 | 0.6495 |
HAC | 1.0587 | 1.0491 | 1.0348 | 0.9981 | 0.9647 | NXYR | 1.2117 | 0.8260 | 0.8086 | 0.7664 | 0.7209 |
CPL | 0.8929 | 0.7843 | 0.7690 | 0.8217 | 0.8140 | LAX | 1.9140 | 1.7449 | 1.6266 | 1.5746 | 1.3953 |
GZP | 1.4787 | 1.1231 | 1.0424 | 1.0167 | 0.9915 | CSX | 0.8224 | 0.7823 | 0.8151 | 0.7491 | 0.6981 |
SDP | 0.6943 | 0.6025 | 0.6035 | 0.5891 | 0.5806 | CGZ | 1.7009 | 1.4879 | 1.2722 | 1.2147 | 1.2009 |
CSLN | 0.6193 | 0.6078 | 0.5870 | 0.6005 | 0.5731 | CYN | 2.1319 | 1.8009 | 1.7103 | 1.7027 | 1.6685 |
References
- Yue, W.; Zhang, L.; Liu, Y. Measuring sprawl in large Chinese cities along the Yangtze River via combined single and multidimensional metrics. Habitat Int. 2016, 57, 43–52. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Wang, L.; Lin, Z. Assessing urbanization quality using structure and function analyses: A case study of the urban agglomeration around Hangzhou Bay (UAHB), China. Habitat Int. 2015, 49, 165–176. [Google Scholar] [CrossRef]
- Mu, X.; Yeh, A.G.O. Measuring polycentricity of mega-city regions in China based on the intercity migration flows. ISPRS-international archives of the photogrammetry. Remote Sens. Spat. Inf. Sci. 2016, XLI-B6, 275–281. [Google Scholar] [CrossRef]
- Shen, J.; Wu, F. Restless urban landscapes in China: A case study of three projects in Shanghai. J. Urban Aff. 2012, 34, 255–277. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Hay, I. Polycentric city-regions in the state-scalar politics of land development: The case of China. Land Use Policy 2016, 59, 168–175. [Google Scholar] [CrossRef]
- Meijers, E.J.; Burger, M.J. Spatial structure and productivity in US metropolitan areas. Environ. Plan. A 2010, 42, 1383–1402. [Google Scholar] [CrossRef]
- Hall, P.; Pain, K. The polycentric metropolis: Learning from mega-city regions in Europe. J. Am. Plan. Assoc. 2008, 74, 384–385. [Google Scholar] [CrossRef]
- Hall, P. Looking Backward, Looking forward: The city region of the Mid-21st Century. Reg. Stud. 2009, 43, 803–817. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, J.; Liu, Y.; Wu, J. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing-Tianjin-Hebei region, China. Urban Ecosyst. 2016, 20, 701–714. [Google Scholar] [CrossRef]
- Kloosterman, R.C.; Musterd, S. The polycentric urban region: Towards a research agenda. Urban Stud. 2001, 38, 623–633. [Google Scholar] [CrossRef]
- Bertolini, P.; Giovannetti, E.; Pagliacci, F. Regional patterns in the achievement of the Lisbon strategy: A comparison between polycentric regions and monocentric ones. Cent. Anal. Public Policies 2011, 19, 2967–2972. [Google Scholar]
- Garrison, W.L. Spatial structure of the economy. Ann. Assoc. Am. Geogr. 1959, 49, 232–239. [Google Scholar] [CrossRef]
- Berry, B.J.L. Central places in southern Germany. Econ. Geogr. 1966, 43, 275–276. [Google Scholar] [CrossRef]
- Berry, B.J.L.; Garrison, W.L. The functional bases of the central place hierarchy. Econ. Geogr. 1958, 34, 145–154. [Google Scholar] [CrossRef]
- Li, Y.; Wu, F. The emergence of centrally initiated regional plan in China: A case study of Yangtze River Delta regional plan. Habitat Int. 2013, 39, 137–147. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, C. Polycentric network organization of mega-city regions in Yangtze River Delta. Procedia Earth Planet. Sci. 2011, 2, 309–314. [Google Scholar] [CrossRef]
- Zhao, M.; Derudder, B.; Huang, J. Examining the transition processes in the Pearl River Delta polycentric mega-city region through the lens of corporate networks. Cities 2017, 60, 147–155. [Google Scholar] [CrossRef]
- Zhao, M.; Derudder, B.; Huang, J. Polycentric development in China’s mega-city regions, 2001–08: A comparison of the Yangtze and Pearl River Deltas. Die Erde 2017, 148, 1–13. [Google Scholar] [CrossRef]
- Wei, C.; Taubenböck, H.; Blaschke, T. Measuring urban agglomeration using a city-scale dasymetric population map: A study in the Pearl River Delta, China. Habitat Int. 2017, 59, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Song, G.; Lin, J. Measuring spatial structure of China’s megaregions. J. Urban Plan. Dev. 2014, 141, 04014021. [Google Scholar] [CrossRef]
- Liu, X.; Derudder, B.; Wang, M. Polycentric urban development in China: A multi-scale analysis. Environ. Plan. B Urban Anal. City Sci. 2017, 45, 953–972. [Google Scholar] [CrossRef]
- Liu, X.; Derudder, B.; Wu, K. Measuring polycentric urban development in China: An intercity transportation network perspective. Reg. Stud. 2015, 50, 1302–1315. [Google Scholar] [CrossRef]
- Sun, B.; Hua, J.; Li, W.; Zhang, T. Spatial structure change and influencing factors of city clusters in China: From monocentric to polycentric based on population distribution. Prog. Geogr. 2017, 36, 1294–1303. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, J.; Dang, X.; Wang, X. The evolution of spatial structure of urban agglomerations: Empirical evidence from western China. Econ. Rev. 2009, 4, 27–34. (In Chinese) [Google Scholar] [CrossRef]
- Fang, C. Important progress and future direction of studies on China’s urban agglomerations. J. Geogr. Sci. 2015, 25, 1003–1024. [Google Scholar] [CrossRef] [Green Version]
- Hale, J.D.; Davies, G.; Fairbrass, A.J.; Matthews, T.J.; Rogers, C.D.; Sadler, J.P. Mapping lightscapes: Spatial patterning of artificial lighting in an urban landscape. PLoS ONE 2013, 8, e61460. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ge, L.; Chen, X. Detecting Zimbabwe’s decadal economic decline using nighttime light imagery. Remote Sens. 2013, 5, 4551–4570. [Google Scholar] [CrossRef]
- Propastin, P.; Kappas, M. Assessing satellite-observed nighttime lights for monitoring socioeconomic parameters in the republic of Kazakhstan. GISci. Remote Sens. 2013, 49, 538–557. [Google Scholar] [CrossRef]
- Nordhaus, W.; Chen, X. A sharper image? Estimates of the precision of nighttime lights as a proxy for economic statistics. J. Econ. Geogr. 2015, 15, 217–246. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Anderson, S.J.; Sutton, P.C.; Ghosh, T. The Lumen Gini Coefficient: A satellite imagery derived human development index. Soc. Geogr. Discuss. 2012, 8, 27–59. [Google Scholar] [CrossRef]
- Tang, L.; Cheng, H.; Qu, G. Estimating provincial economic development level of China using DMSP/OLS nighttime light satellite imagery. Adv. Mater. Res. 2013, 807–809, 1903–1908. [Google Scholar] [CrossRef]
- Levin, N.; Duke, Y. High spatial resolution night-time light images for demographic and socio-economic studies. Remote Sens. Environ. 2012, 119, 1–10. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, Y.; Li, Y.; Gao, B. A simulation study on the urban population of China based on nighttime light data acquired from DMSP/OLS. Sustainability 2016, 8, 521. [Google Scholar] [CrossRef]
- Zhou, N.; Hubacek, K.; Roberts, M. Analysis of spatial patterns of urban growth across South Asia using DMSP-OLS nighttime lights data. Appl. Geogr. 2015, 63, 292–303. [Google Scholar] [CrossRef]
- Xu, H.; Yang, H.; Li, X.; Jin, H.; Li, D. Multi-scale measurement of regional inequality in mainland China during 2005–2010 Using DMSP/OLS night light imagery and population density grid data. Sustainability 2015, 7, 13469–13499. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Baugh, K.; Elvidge, C.; Ghosh, T.; Ziskin, D. Development of a 2009 stable lights product using DMSP-OLS data. Proc. Asia-Pac. Adv. Netw. 2010, 30, 114–130. [Google Scholar] [CrossRef]
- Elvidge, C.; Ziskin, D.; Baugh, K.; Tuttle, B.; Ghosh, T.; Pack, D.; Erwin, E.; Zhizhin, M. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Cao, Z.; Wu, Z.; Kuang, Y.; Huang, N. Correction of DMSP/OLS night-time light images and its application in China. J. Geo-Inf. Sci. 2015, 17, 1092–1102. (In Chinese) [Google Scholar] [CrossRef]
- Li, W.; Sun, B.; Zhao, J.; Zhang, T. Economic performance of spatial structure in Chinese prefecture regions: Evidence from night-time satellite imagery. Habitat Int. 2018, 76, 29–39. [Google Scholar] [CrossRef]
- Anas, A.; Arnott, R.; Small, K.A. Urban spatial structure. J. Econ. Lit. 1998, 36, 1426–1464. [Google Scholar]
- Glaeser, E.L.; Kahn, M.E. Chapter 56 sprawl and urban growth. Handb. Reg. Urban Econ. 2004, 4, 2481–2527. [Google Scholar] [CrossRef]
- Parr, J. The polycentric urban region: A closer inspection. Reg. Stud. 2004, 38, 231–240. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M. How polycentric is urban China and why? A case study of 318 cities. Landsc. Urban Plan. 2016, 151, 10–20. [Google Scholar] [CrossRef]
- Green, N. Functional Polycentricity: A formal definition in terms of social network analysis. Urban Stud. 2007, 44, 2077–2103. [Google Scholar] [CrossRef]
- Goei, B.D.; Burger, M.J.; Oort, F.G.V.; Kitson, M. Functional polycentrism and urban network development in the greater south east, United Kingdom: Evidence from commuting patterns, 1981–2001. Reg. Stud. 2010, 44, 1149–1170. [Google Scholar] [CrossRef]
- Soo, K.T. Zipf’s law for cities: A cross-country investigation. Reg. Sci. Urban Econ. 2005, 35, 239–263. [Google Scholar] [CrossRef]
- Melo, P.C.; Graham, D.J.; Noland, R.B. A meta-analysis of estimates of urban agglomeration economies. Reg. Sci. Urban Econ. 2009, 39, 332–342. [Google Scholar] [CrossRef] [Green Version]
- Henderson, V. The urbanization process and economic growth: The so-what question. J. Econ. Growth 2003, 8, 47–71. [Google Scholar] [CrossRef]
- Duranton, G. Urban Evolutions: The fast, the slow, and the still. Am. Econ. Rev. 2007, 97, 197–221. [Google Scholar] [CrossRef]
- Aljoufie, M.; Zuidgeest, M.; Brussel, M.; Maarseveen, M.V. Spatial–temporal analysis of urban growth and transportation in Jeddah City, Saudi Arabia. Cities 2013, 31, 57–68. [Google Scholar] [CrossRef]
- Wacziarg, R.T.; Spolaore, E.; Alesina, A.F. Trade, Growth and the size of countries. Harv. Inst. Econ. Res. Work. Pap. 2003, 1, 1499–1542. [Google Scholar] [CrossRef]
- Krugman, P.; Elizondo, R.L. Trade policy and the third world metropolis. J. Dev. Econ. 1996, 49, 137–150. [Google Scholar] [CrossRef]
- Zheng, D.; Kuroda, T. The role of public infrastructure in China’s regional inequality and growth: A simultaneous equations approach. Dev. Econ. 2013, 51, 79–109. [Google Scholar] [CrossRef]
- Yu, N.; de Roo, G.; de Jong, M.; Storm, S. Does the expansion of a motorway network lead to economic agglomeration? Evidence from China. Transp. Policy 2016, 45, 218–227. [Google Scholar] [CrossRef]
- Cao, S.; Hu, D.; Zhao, W.; Mo, Y.; Chen, S. Monitoring spatial patterns and changes of ecology, production, and living land in Chinese urban agglomerations: 35 years after reform and opening up, where, how and why? Sustainability 2017, 9, 766. [Google Scholar] [CrossRef]
- Ma, Q.; He, C.; Wu, J. Behind the rapid expansion of urban impervious surfaces in China: Major influencing factors revealed by a hierarchical multiscale analysis. Land Use Policy 2016, 59, 434–445. [Google Scholar] [CrossRef]
- Chauvin, J.P.; Glaeser, E.; Ma, Y.; Tobio, K. What is different about urbanization in rich and poor countries? Cities in Brazil, China, India and the United States. J. Urban Econ. 2017, 98, 17–49. [Google Scholar] [CrossRef]
- Rauch, J.E. Productivity gains from geographic concentration of human capital: Evidence from the cities. J. Urban Econ. 1993, 34, 380–400. [Google Scholar] [CrossRef]
- Moretti, E. Estimating the social return to higher education: Evidence from longitudinal and repeated cross-sectional data. J. Econ. 2004, 121, 175–212. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Fang, C.; Yao, S.; Liu, S. 2010 China Urban Agglomeration Development Report; Science Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Duffy-Deno, K.T.; Dalenberg, D.R. The municipal wage and employment effects of public infrastructure. Urban Stud. 1993, 30, 1577–1589. [Google Scholar] [CrossRef]
- Calderón, C.; Servén, L. Infrastructure, Growth, and Inequality: An Overview. Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/20365/WPS7034.pdf (accessed on 24 January 2019).
- Liu, X.; Li, S.; Qin, M. Urban spatial structure and regional economic efficiency and discussion for the mode selection of China’s urbanization development road. Manag. World 2017, 51–64. (In Chinese) [Google Scholar] [CrossRef]
- Stathakis, D.; Tsilimigkas, G. Measuring the compactness of European medium-sized cities by spatial metrics based on fused data sets. Int. J. Image Data Fusion 2015, 6, 42–64. [Google Scholar] [CrossRef]
- Tsilimigkas, G.; Stathakis, D.; Pafi, M. Evaluating the land use patterns of medium-sized Hellenic cities. Urban Res. Pract. 2015, 9, 181–203. [Google Scholar] [CrossRef]
- Kizos, T.; Tsilimigkas, G.; Karampela, S. What drives built-up area expansion on islands? Using soil sealing indicators to estimate built-up area patterns on Aegean Islands, Greece. Tijdschrift voor Economische en Sociale Geografie 2017, 12, 35–52. [Google Scholar] [CrossRef]
ID | Urban Agglomerations | Abbreviations | Core Cities | Number of Cities |
---|---|---|---|---|
1 | Yangtze River Delta | YRD | Shanghai, Nanjing, Hangzhou | 45 |
2 | Pearl River Delta | PRD | Guangzhou, Shenzhen | 14 |
3 | Beijing-Tianjin-Hebei | BTH | Beijing, Tianjin | 27 |
4 | Middle Yangtze | MYZ | Wuhan, Changsha, Nanchang | 61 |
5 | Chengdu-Chongqing | CHC | Chengdu, Chongqing | 29 |
6 | Harbin-Changchun | HAC | Harbin, Changchun | 30 |
7 | Shandong Peninsula | SDP | Jinan, Qingdao | 38 |
8 | Central Plain | CPL | Zhengzhou | 23 |
9 | Guanzhong Plain | GZP | Xi’an | 10 |
10 | Central and Southern Liaoning | CSLN | Shenyang, Dalian | 27 |
11 | Western Taiwan Straits | WTS | Fuzhou, Xiamen | 23 |
12 | Jianghuai | JIH | Hefei | 15 |
13 | Northern Tianshan Mountains | NTSM | Urumqi | 9 |
14 | Hohhot-Baotou-Erdos-Yulin | HBEY | Hohhot | 8 |
15 | Lanzhou-Xining | LAX | Lanzhou | 6 |
16 | Central Shanxi | CSX | Taiyuan | 14 |
17 | Southern Guangxi | SGX | Nanning | 9 |
18 | Ningxia Yellow River | NXYR | Yinchuan | 6 |
19 | Central Guizhou | CGZ | Guiyang | 10 |
20 | Central Yunnan | CYN | Kunming | 6 |
Variables | Description | Obs | Mean | Std.Dev | Min | Max |
---|---|---|---|---|---|---|
Spatial structure (STRUC) | The extent of monocentric-polycentric structure | 380 | −0.095 | 0.328 | −0.557 | 0.653 |
Transport infrastructure (INF) | Total road mileage in an UA divided by population | 380 | 4.417 | 0.479 | 3.836 | 13.270 |
Foreign direction investment (FDI) | Share of the FDI in GDP | 380 | −5.924 | 1.048 | −9.433 | −4.236 |
Population size (POP) | The total population in an UA | 380 | 7.776 | 1.059 | 5.077 | 9.388 |
Government expenditure (GOV) | Share of the government expenditure in GDP | 380 | −2.748 | 1.200 | −5.696 | 0.034 |
Economic level (ECM) | Share of the non-agricultural industry production in GDP | 380 | −0.116 | 1.032 | −0.225 | −0.072 |
Human capital (CAP) | Share of the university students in the total population | 380 | 5.666 | 1.028 | 0.378 | 6.930 |
Independent Variables | Zipf’s Law Exponent a | ||
---|---|---|---|
Model 1 | Model 2 b | Model 3 | |
FE | FE | RE | |
INF | −0.1619 *** (0.0608) | −0.1499 *** (0.0571) | −0.1759 ** (0.0590) |
FDI | −0.0445 * (0.0259) | −0.0484 ** (0.0251) | −0.0426 * (0.0260) |
POP | −0.0287 * (0.0152) | −0.0357** (0.0143) | −0.0279 ** (0.0153) |
GOV | 0.0450 *** (0.0149) | 0.0437 *** (0.0149) | 0.0422 *** (0.0150) |
ECM | −0.0693 *** (0.0134) | −0.0614 *** (0.0136) | −0.0681 *** (0.0135) |
CAP | −0.0350 ** (0.0119) | −0.0223 *** (0.0113) | −0.0339 *** (0.0119) |
Adjusted R-squared | 0.9723 | 0.9760 | - |
Prob (F) | 0.0000 | 0.0000 | - |
Time fixed effects | Yes | Yes | - |
Number of obs. | 367 | 347 | 367 |
Independent Variables | Zipf’s Law Exponent | Primacy | ||||
---|---|---|---|---|---|---|
Model 1 a | Model 2 b | Model 3 | Model 4 c | Model 5 | ||
FE | FE | FE | FE | RE | ||
INF | −0.1228 ** (0.0528) | −0.09017 * (0.0490) | −0.1286 ** (0.0500) | −0.1158 ** (0.0471) | −0.1382 *** (0.0488) | |
FDI | −0.0651 *** (0.0528) | −0.0791 *** (0.0224) | −0.0520 ** (0.0213) | −0.0561 *** (0.0207) | −0.0510 ** (0.0214) | |
POP | −0.0403 *** (0.0136) | −0.0495 *** (0.0126) | −0.0286 ** (0.0125) | −0.0314 *** (0.0118) | −0.0279 ** (0.0125) | |
GOV | 0.0465 *** (0.0147) | 0.0557 *** (0.0146) | 0.0297 ** (0.0123) | 0.0310 ** (0.0123) | 0.0280 ** (0.0123) | |
ECM | −0.0598 *** (0.0147) | −0.0507 *** (0.0153) | −0.0275 ** (0.0111) | −0.0241 ** (0.0112) | −0.0268 ** (0.0111) | |
CAP | −0.0100 * (0.0109) | 0.0006 (0.0105) | −0.0260 *** (0.0098) | −0.0147 * (0.0094) | −0.0253 *** (0.0098) | |
Adjusted R-squared | 0.9795 | 0.9827 | 0.9766 | 0.9797 | - | |
Prob(F) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | - | |
Time fixed effects | Yes | Yes | Yes | Yes | - | |
Number of obs. | 327 | 307 | 367 | 347 | 367 |
Independent Variables | The Mature UAs | The Emerging UAs | |||
---|---|---|---|---|---|
Model 1 | Model 2 a | Model 3 | Model 4 a | ||
FE | FE | FE | FE | ||
INF | −0.2112 *** (0.0713) | −0.1972 *** (0.0664) | 0.3173 ** (0.1238) | 0.3115 ** (0.1203) | |
FDI | −0.0679 ** (0.0299) | −0.0668 ** (0.0289) | 0.1916 *** (0.0542) | 0.1497 ** (0.0541) | |
POP | −0.0040 (0.0181) | −0.0151 (0.0170) | −0.2092 *** (0.0280) | −0.1950 *** (0.0271) | |
GOV | 0.0503 ** (0.0228) | 0.0565 ** (0.0222) | 0.0342 ** (0.0147) | 0.0272 * (0.0152) | |
ECM | −0.0711 *** (0.0175) | −0.0642 *** (0.0171) | −0.0429 ** (0.0200) | −0.0386 ** (0.0224) | |
CAP | −0.0496 *** (0.0160) | −0.0381 ** (0.0154) | −0.0425 *** (0.0139) | −0.0245 * (0.0136) | |
Adjusted R-squared | 0.9664 | 0.9709 | 0.9881 | 0.9893 | |
Prob (F) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
Time fixed effects | YES | YES | YES | YES | |
Number of obs. | 237 | 224 | 130 | 123 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, F.; Da, H.; Wen, H.; Wang, Y. Spatial Structure Evolution of Urban Agglomerations and Its Driving Factors in Mainland China: From the Monocentric to the Polycentric Dimension. Sustainability 2019, 11, 610. https://doi.org/10.3390/su11030610
Lan F, Da H, Wen H, Wang Y. Spatial Structure Evolution of Urban Agglomerations and Its Driving Factors in Mainland China: From the Monocentric to the Polycentric Dimension. Sustainability. 2019; 11(3):610. https://doi.org/10.3390/su11030610
Chicago/Turabian StyleLan, Feng, Huili Da, Haizhen Wen, and Ying Wang. 2019. "Spatial Structure Evolution of Urban Agglomerations and Its Driving Factors in Mainland China: From the Monocentric to the Polycentric Dimension" Sustainability 11, no. 3: 610. https://doi.org/10.3390/su11030610
APA StyleLan, F., Da, H., Wen, H., & Wang, Y. (2019). Spatial Structure Evolution of Urban Agglomerations and Its Driving Factors in Mainland China: From the Monocentric to the Polycentric Dimension. Sustainability, 11(3), 610. https://doi.org/10.3390/su11030610