Spatial Structure Evolution of Urban Agglomerations and Its Driving Factors in Mainland China: From the Monocentric to the Polycentric Dimension
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources
3. Defining and Measuring the Spatial Structure of the UAs from Polycentric/Monocentric Dimensions
4. Regression Analysis
4.1. Model Settings
4.2. Variable Selection and Description
4.3. Estimation Methods and Robustness Test
5. Results
5.1. The Spatial Structure Measures
5.2. Socio-Economic Factors Influencing the Evolution of Spatial Structure
5.3. Typology Differences of the Influencing Factors on Polycentric UAs
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
UAs | 1992 | 1997 | 2002 | 2007 | 2012 | UAs | 1992 | 1997 | 2002 | 2007 | 2012 |
---|---|---|---|---|---|---|---|---|---|---|---|
YRD | 0.9946 | 0.8300 | 0.7724 | 0.7462 | 0.7020 | WTS | 0.7092 | 0.6800 | 0.6685 | 0.6769 | 0.6715 |
PRD | 0.6557 | 0.6665 | 0.6480 | 0.6082 | 0.5970 | JIH | 0.8582 | 0.7718 | 0.7188 | 0.6375 | 0.6374 |
BTH | 1.1312 | 0.9425 | 0.9299 | 0.8775 | 0.8116 | SGX | 1.3133 | 1.1572 | 1.1454 | 0.9642 | 0.7977 |
MYZ | 0.8438 | 0.8098 | 0.7662 | 0.7482 | 0.7350 | NTSM | 1.6828 | 1.4778 | 1.4142 | 1.3845 | 1.2499 |
CHC | 1.4144 | 1.3353 | 1.2280 | 1.2378 | 1.2057 | HBEY | 0.8288 | 0.7282 | 0.7100 | 0.6858 | 0.6495 |
HAC | 1.0587 | 1.0491 | 1.0348 | 0.9981 | 0.9647 | NXYR | 1.2117 | 0.8260 | 0.8086 | 0.7664 | 0.7209 |
CPL | 0.8929 | 0.7843 | 0.7690 | 0.8217 | 0.8140 | LAX | 1.9140 | 1.7449 | 1.6266 | 1.5746 | 1.3953 |
GZP | 1.4787 | 1.1231 | 1.0424 | 1.0167 | 0.9915 | CSX | 0.8224 | 0.7823 | 0.8151 | 0.7491 | 0.6981 |
SDP | 0.6943 | 0.6025 | 0.6035 | 0.5891 | 0.5806 | CGZ | 1.7009 | 1.4879 | 1.2722 | 1.2147 | 1.2009 |
CSLN | 0.6193 | 0.6078 | 0.5870 | 0.6005 | 0.5731 | CYN | 2.1319 | 1.8009 | 1.7103 | 1.7027 | 1.6685 |
References
- Yue, W.; Zhang, L.; Liu, Y. Measuring sprawl in large Chinese cities along the Yangtze River via combined single and multidimensional metrics. Habitat Int. 2016, 57, 43–52. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Wang, L.; Lin, Z. Assessing urbanization quality using structure and function analyses: A case study of the urban agglomeration around Hangzhou Bay (UAHB), China. Habitat Int. 2015, 49, 165–176. [Google Scholar] [CrossRef]
- Mu, X.; Yeh, A.G.O. Measuring polycentricity of mega-city regions in China based on the intercity migration flows. ISPRS-international archives of the photogrammetry. Remote Sens. Spat. Inf. Sci. 2016, XLI-B6, 275–281. [Google Scholar] [CrossRef]
- Shen, J.; Wu, F. Restless urban landscapes in China: A case study of three projects in Shanghai. J. Urban Aff. 2012, 34, 255–277. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Hay, I. Polycentric city-regions in the state-scalar politics of land development: The case of China. Land Use Policy 2016, 59, 168–175. [Google Scholar] [CrossRef]
- Meijers, E.J.; Burger, M.J. Spatial structure and productivity in US metropolitan areas. Environ. Plan. A 2010, 42, 1383–1402. [Google Scholar] [CrossRef]
- Hall, P.; Pain, K. The polycentric metropolis: Learning from mega-city regions in Europe. J. Am. Plan. Assoc. 2008, 74, 384–385. [Google Scholar] [CrossRef]
- Hall, P. Looking Backward, Looking forward: The city region of the Mid-21st Century. Reg. Stud. 2009, 43, 803–817. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, J.; Liu, Y.; Wu, J. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing-Tianjin-Hebei region, China. Urban Ecosyst. 2016, 20, 701–714. [Google Scholar] [CrossRef]
- Kloosterman, R.C.; Musterd, S. The polycentric urban region: Towards a research agenda. Urban Stud. 2001, 38, 623–633. [Google Scholar] [CrossRef]
- Bertolini, P.; Giovannetti, E.; Pagliacci, F. Regional patterns in the achievement of the Lisbon strategy: A comparison between polycentric regions and monocentric ones. Cent. Anal. Public Policies 2011, 19, 2967–2972. [Google Scholar]
- Garrison, W.L. Spatial structure of the economy. Ann. Assoc. Am. Geogr. 1959, 49, 232–239. [Google Scholar] [CrossRef]
- Berry, B.J.L. Central places in southern Germany. Econ. Geogr. 1966, 43, 275–276. [Google Scholar] [CrossRef]
- Berry, B.J.L.; Garrison, W.L. The functional bases of the central place hierarchy. Econ. Geogr. 1958, 34, 145–154. [Google Scholar] [CrossRef]
- Li, Y.; Wu, F. The emergence of centrally initiated regional plan in China: A case study of Yangtze River Delta regional plan. Habitat Int. 2013, 39, 137–147. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, C. Polycentric network organization of mega-city regions in Yangtze River Delta. Procedia Earth Planet. Sci. 2011, 2, 309–314. [Google Scholar] [CrossRef]
- Zhao, M.; Derudder, B.; Huang, J. Examining the transition processes in the Pearl River Delta polycentric mega-city region through the lens of corporate networks. Cities 2017, 60, 147–155. [Google Scholar] [CrossRef]
- Zhao, M.; Derudder, B.; Huang, J. Polycentric development in China’s mega-city regions, 2001–08: A comparison of the Yangtze and Pearl River Deltas. Die Erde 2017, 148, 1–13. [Google Scholar] [CrossRef]
- Wei, C.; Taubenböck, H.; Blaschke, T. Measuring urban agglomeration using a city-scale dasymetric population map: A study in the Pearl River Delta, China. Habitat Int. 2017, 59, 32–43. [Google Scholar] [CrossRef]
- Yang, J.; Song, G.; Lin, J. Measuring spatial structure of China’s megaregions. J. Urban Plan. Dev. 2014, 141, 04014021. [Google Scholar] [CrossRef]
- Liu, X.; Derudder, B.; Wang, M. Polycentric urban development in China: A multi-scale analysis. Environ. Plan. B Urban Anal. City Sci. 2017, 45, 953–972. [Google Scholar] [CrossRef]
- Liu, X.; Derudder, B.; Wu, K. Measuring polycentric urban development in China: An intercity transportation network perspective. Reg. Stud. 2015, 50, 1302–1315. [Google Scholar] [CrossRef]
- Sun, B.; Hua, J.; Li, W.; Zhang, T. Spatial structure change and influencing factors of city clusters in China: From monocentric to polycentric based on population distribution. Prog. Geogr. 2017, 36, 1294–1303. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, J.; Dang, X.; Wang, X. The evolution of spatial structure of urban agglomerations: Empirical evidence from western China. Econ. Rev. 2009, 4, 27–34. (In Chinese) [Google Scholar] [CrossRef]
- Fang, C. Important progress and future direction of studies on China’s urban agglomerations. J. Geogr. Sci. 2015, 25, 1003–1024. [Google Scholar] [CrossRef]
- Hale, J.D.; Davies, G.; Fairbrass, A.J.; Matthews, T.J.; Rogers, C.D.; Sadler, J.P. Mapping lightscapes: Spatial patterning of artificial lighting in an urban landscape. PLoS ONE 2013, 8, e61460. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ge, L.; Chen, X. Detecting Zimbabwe’s decadal economic decline using nighttime light imagery. Remote Sens. 2013, 5, 4551–4570. [Google Scholar] [CrossRef]
- Propastin, P.; Kappas, M. Assessing satellite-observed nighttime lights for monitoring socioeconomic parameters in the republic of Kazakhstan. GISci. Remote Sens. 2013, 49, 538–557. [Google Scholar] [CrossRef]
- Nordhaus, W.; Chen, X. A sharper image? Estimates of the precision of nighttime lights as a proxy for economic statistics. J. Econ. Geogr. 2015, 15, 217–246. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Anderson, S.J.; Sutton, P.C.; Ghosh, T. The Lumen Gini Coefficient: A satellite imagery derived human development index. Soc. Geogr. Discuss. 2012, 8, 27–59. [Google Scholar] [CrossRef]
- Tang, L.; Cheng, H.; Qu, G. Estimating provincial economic development level of China using DMSP/OLS nighttime light satellite imagery. Adv. Mater. Res. 2013, 807–809, 1903–1908. [Google Scholar] [CrossRef]
- Levin, N.; Duke, Y. High spatial resolution night-time light images for demographic and socio-economic studies. Remote Sens. Environ. 2012, 119, 1–10. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, Y.; Li, Y.; Gao, B. A simulation study on the urban population of China based on nighttime light data acquired from DMSP/OLS. Sustainability 2016, 8, 521. [Google Scholar] [CrossRef]
- Zhou, N.; Hubacek, K.; Roberts, M. Analysis of spatial patterns of urban growth across South Asia using DMSP-OLS nighttime lights data. Appl. Geogr. 2015, 63, 292–303. [Google Scholar] [CrossRef]
- Xu, H.; Yang, H.; Li, X.; Jin, H.; Li, D. Multi-scale measurement of regional inequality in mainland China during 2005–2010 Using DMSP/OLS night light imagery and population density grid data. Sustainability 2015, 7, 13469–13499. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Baugh, K.; Elvidge, C.; Ghosh, T.; Ziskin, D. Development of a 2009 stable lights product using DMSP-OLS data. Proc. Asia-Pac. Adv. Netw. 2010, 30, 114–130. [Google Scholar] [CrossRef]
- Elvidge, C.; Ziskin, D.; Baugh, K.; Tuttle, B.; Ghosh, T.; Pack, D.; Erwin, E.; Zhizhin, M. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Cao, Z.; Wu, Z.; Kuang, Y.; Huang, N. Correction of DMSP/OLS night-time light images and its application in China. J. Geo-Inf. Sci. 2015, 17, 1092–1102. (In Chinese) [Google Scholar] [CrossRef]
- Li, W.; Sun, B.; Zhao, J.; Zhang, T. Economic performance of spatial structure in Chinese prefecture regions: Evidence from night-time satellite imagery. Habitat Int. 2018, 76, 29–39. [Google Scholar] [CrossRef]
- Anas, A.; Arnott, R.; Small, K.A. Urban spatial structure. J. Econ. Lit. 1998, 36, 1426–1464. [Google Scholar]
- Glaeser, E.L.; Kahn, M.E. Chapter 56 sprawl and urban growth. Handb. Reg. Urban Econ. 2004, 4, 2481–2527. [Google Scholar] [CrossRef]
- Parr, J. The polycentric urban region: A closer inspection. Reg. Stud. 2004, 38, 231–240. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M. How polycentric is urban China and why? A case study of 318 cities. Landsc. Urban Plan. 2016, 151, 10–20. [Google Scholar] [CrossRef]
- Green, N. Functional Polycentricity: A formal definition in terms of social network analysis. Urban Stud. 2007, 44, 2077–2103. [Google Scholar] [CrossRef]
- Goei, B.D.; Burger, M.J.; Oort, F.G.V.; Kitson, M. Functional polycentrism and urban network development in the greater south east, United Kingdom: Evidence from commuting patterns, 1981–2001. Reg. Stud. 2010, 44, 1149–1170. [Google Scholar] [CrossRef]
- Soo, K.T. Zipf’s law for cities: A cross-country investigation. Reg. Sci. Urban Econ. 2005, 35, 239–263. [Google Scholar] [CrossRef]
- Melo, P.C.; Graham, D.J.; Noland, R.B. A meta-analysis of estimates of urban agglomeration economies. Reg. Sci. Urban Econ. 2009, 39, 332–342. [Google Scholar] [CrossRef]
- Henderson, V. The urbanization process and economic growth: The so-what question. J. Econ. Growth 2003, 8, 47–71. [Google Scholar] [CrossRef]
- Duranton, G. Urban Evolutions: The fast, the slow, and the still. Am. Econ. Rev. 2007, 97, 197–221. [Google Scholar] [CrossRef]
- Aljoufie, M.; Zuidgeest, M.; Brussel, M.; Maarseveen, M.V. Spatial–temporal analysis of urban growth and transportation in Jeddah City, Saudi Arabia. Cities 2013, 31, 57–68. [Google Scholar] [CrossRef]
- Wacziarg, R.T.; Spolaore, E.; Alesina, A.F. Trade, Growth and the size of countries. Harv. Inst. Econ. Res. Work. Pap. 2003, 1, 1499–1542. [Google Scholar] [CrossRef]
- Krugman, P.; Elizondo, R.L. Trade policy and the third world metropolis. J. Dev. Econ. 1996, 49, 137–150. [Google Scholar] [CrossRef]
- Zheng, D.; Kuroda, T. The role of public infrastructure in China’s regional inequality and growth: A simultaneous equations approach. Dev. Econ. 2013, 51, 79–109. [Google Scholar] [CrossRef]
- Yu, N.; de Roo, G.; de Jong, M.; Storm, S. Does the expansion of a motorway network lead to economic agglomeration? Evidence from China. Transp. Policy 2016, 45, 218–227. [Google Scholar] [CrossRef]
- Cao, S.; Hu, D.; Zhao, W.; Mo, Y.; Chen, S. Monitoring spatial patterns and changes of ecology, production, and living land in Chinese urban agglomerations: 35 years after reform and opening up, where, how and why? Sustainability 2017, 9, 766. [Google Scholar] [CrossRef]
- Ma, Q.; He, C.; Wu, J. Behind the rapid expansion of urban impervious surfaces in China: Major influencing factors revealed by a hierarchical multiscale analysis. Land Use Policy 2016, 59, 434–445. [Google Scholar] [CrossRef]
- Chauvin, J.P.; Glaeser, E.; Ma, Y.; Tobio, K. What is different about urbanization in rich and poor countries? Cities in Brazil, China, India and the United States. J. Urban Econ. 2017, 98, 17–49. [Google Scholar] [CrossRef]
- Rauch, J.E. Productivity gains from geographic concentration of human capital: Evidence from the cities. J. Urban Econ. 1993, 34, 380–400. [Google Scholar] [CrossRef]
- Moretti, E. Estimating the social return to higher education: Evidence from longitudinal and repeated cross-sectional data. J. Econ. 2004, 121, 175–212. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Fang, C.; Yao, S.; Liu, S. 2010 China Urban Agglomeration Development Report; Science Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Duffy-Deno, K.T.; Dalenberg, D.R. The municipal wage and employment effects of public infrastructure. Urban Stud. 1993, 30, 1577–1589. [Google Scholar] [CrossRef]
- Calderón, C.; Servén, L. Infrastructure, Growth, and Inequality: An Overview. Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/20365/WPS7034.pdf (accessed on 24 January 2019).
- Liu, X.; Li, S.; Qin, M. Urban spatial structure and regional economic efficiency and discussion for the mode selection of China’s urbanization development road. Manag. World 2017, 51–64. (In Chinese) [Google Scholar] [CrossRef]
- Stathakis, D.; Tsilimigkas, G. Measuring the compactness of European medium-sized cities by spatial metrics based on fused data sets. Int. J. Image Data Fusion 2015, 6, 42–64. [Google Scholar] [CrossRef]
- Tsilimigkas, G.; Stathakis, D.; Pafi, M. Evaluating the land use patterns of medium-sized Hellenic cities. Urban Res. Pract. 2015, 9, 181–203. [Google Scholar] [CrossRef]
- Kizos, T.; Tsilimigkas, G.; Karampela, S. What drives built-up area expansion on islands? Using soil sealing indicators to estimate built-up area patterns on Aegean Islands, Greece. Tijdschrift voor Economische en Sociale Geografie 2017, 12, 35–52. [Google Scholar] [CrossRef]
ID | Urban Agglomerations | Abbreviations | Core Cities | Number of Cities |
---|---|---|---|---|
1 | Yangtze River Delta | YRD | Shanghai, Nanjing, Hangzhou | 45 |
2 | Pearl River Delta | PRD | Guangzhou, Shenzhen | 14 |
3 | Beijing-Tianjin-Hebei | BTH | Beijing, Tianjin | 27 |
4 | Middle Yangtze | MYZ | Wuhan, Changsha, Nanchang | 61 |
5 | Chengdu-Chongqing | CHC | Chengdu, Chongqing | 29 |
6 | Harbin-Changchun | HAC | Harbin, Changchun | 30 |
7 | Shandong Peninsula | SDP | Jinan, Qingdao | 38 |
8 | Central Plain | CPL | Zhengzhou | 23 |
9 | Guanzhong Plain | GZP | Xi’an | 10 |
10 | Central and Southern Liaoning | CSLN | Shenyang, Dalian | 27 |
11 | Western Taiwan Straits | WTS | Fuzhou, Xiamen | 23 |
12 | Jianghuai | JIH | Hefei | 15 |
13 | Northern Tianshan Mountains | NTSM | Urumqi | 9 |
14 | Hohhot-Baotou-Erdos-Yulin | HBEY | Hohhot | 8 |
15 | Lanzhou-Xining | LAX | Lanzhou | 6 |
16 | Central Shanxi | CSX | Taiyuan | 14 |
17 | Southern Guangxi | SGX | Nanning | 9 |
18 | Ningxia Yellow River | NXYR | Yinchuan | 6 |
19 | Central Guizhou | CGZ | Guiyang | 10 |
20 | Central Yunnan | CYN | Kunming | 6 |
Variables | Description | Obs | Mean | Std.Dev | Min | Max |
---|---|---|---|---|---|---|
Spatial structure (STRUC) | The extent of monocentric-polycentric structure | 380 | −0.095 | 0.328 | −0.557 | 0.653 |
Transport infrastructure (INF) | Total road mileage in an UA divided by population | 380 | 4.417 | 0.479 | 3.836 | 13.270 |
Foreign direction investment (FDI) | Share of the FDI in GDP | 380 | −5.924 | 1.048 | −9.433 | −4.236 |
Population size (POP) | The total population in an UA | 380 | 7.776 | 1.059 | 5.077 | 9.388 |
Government expenditure (GOV) | Share of the government expenditure in GDP | 380 | −2.748 | 1.200 | −5.696 | 0.034 |
Economic level (ECM) | Share of the non-agricultural industry production in GDP | 380 | −0.116 | 1.032 | −0.225 | −0.072 |
Human capital (CAP) | Share of the university students in the total population | 380 | 5.666 | 1.028 | 0.378 | 6.930 |
Independent Variables | Zipf’s Law Exponent a | ||
---|---|---|---|
Model 1 | Model 2 b | Model 3 | |
FE | FE | RE | |
INF | −0.1619 *** (0.0608) | −0.1499 *** (0.0571) | −0.1759 ** (0.0590) |
FDI | −0.0445 * (0.0259) | −0.0484 ** (0.0251) | −0.0426 * (0.0260) |
POP | −0.0287 * (0.0152) | −0.0357** (0.0143) | −0.0279 ** (0.0153) |
GOV | 0.0450 *** (0.0149) | 0.0437 *** (0.0149) | 0.0422 *** (0.0150) |
ECM | −0.0693 *** (0.0134) | −0.0614 *** (0.0136) | −0.0681 *** (0.0135) |
CAP | −0.0350 ** (0.0119) | −0.0223 *** (0.0113) | −0.0339 *** (0.0119) |
Adjusted R-squared | 0.9723 | 0.9760 | - |
Prob (F) | 0.0000 | 0.0000 | - |
Time fixed effects | Yes | Yes | - |
Number of obs. | 367 | 347 | 367 |
Independent Variables | Zipf’s Law Exponent | Primacy | ||||
---|---|---|---|---|---|---|
Model 1 a | Model 2 b | Model 3 | Model 4 c | Model 5 | ||
FE | FE | FE | FE | RE | ||
INF | −0.1228 ** (0.0528) | −0.09017 * (0.0490) | −0.1286 ** (0.0500) | −0.1158 ** (0.0471) | −0.1382 *** (0.0488) | |
FDI | −0.0651 *** (0.0528) | −0.0791 *** (0.0224) | −0.0520 ** (0.0213) | −0.0561 *** (0.0207) | −0.0510 ** (0.0214) | |
POP | −0.0403 *** (0.0136) | −0.0495 *** (0.0126) | −0.0286 ** (0.0125) | −0.0314 *** (0.0118) | −0.0279 ** (0.0125) | |
GOV | 0.0465 *** (0.0147) | 0.0557 *** (0.0146) | 0.0297 ** (0.0123) | 0.0310 ** (0.0123) | 0.0280 ** (0.0123) | |
ECM | −0.0598 *** (0.0147) | −0.0507 *** (0.0153) | −0.0275 ** (0.0111) | −0.0241 ** (0.0112) | −0.0268 ** (0.0111) | |
CAP | −0.0100 * (0.0109) | 0.0006 (0.0105) | −0.0260 *** (0.0098) | −0.0147 * (0.0094) | −0.0253 *** (0.0098) | |
Adjusted R-squared | 0.9795 | 0.9827 | 0.9766 | 0.9797 | - | |
Prob(F) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | - | |
Time fixed effects | Yes | Yes | Yes | Yes | - | |
Number of obs. | 327 | 307 | 367 | 347 | 367 |
Independent Variables | The Mature UAs | The Emerging UAs | |||
---|---|---|---|---|---|
Model 1 | Model 2 a | Model 3 | Model 4 a | ||
FE | FE | FE | FE | ||
INF | −0.2112 *** (0.0713) | −0.1972 *** (0.0664) | 0.3173 ** (0.1238) | 0.3115 ** (0.1203) | |
FDI | −0.0679 ** (0.0299) | −0.0668 ** (0.0289) | 0.1916 *** (0.0542) | 0.1497 ** (0.0541) | |
POP | −0.0040 (0.0181) | −0.0151 (0.0170) | −0.2092 *** (0.0280) | −0.1950 *** (0.0271) | |
GOV | 0.0503 ** (0.0228) | 0.0565 ** (0.0222) | 0.0342 ** (0.0147) | 0.0272 * (0.0152) | |
ECM | −0.0711 *** (0.0175) | −0.0642 *** (0.0171) | −0.0429 ** (0.0200) | −0.0386 ** (0.0224) | |
CAP | −0.0496 *** (0.0160) | −0.0381 ** (0.0154) | −0.0425 *** (0.0139) | −0.0245 * (0.0136) | |
Adjusted R-squared | 0.9664 | 0.9709 | 0.9881 | 0.9893 | |
Prob (F) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
Time fixed effects | YES | YES | YES | YES | |
Number of obs. | 237 | 224 | 130 | 123 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, F.; Da, H.; Wen, H.; Wang, Y. Spatial Structure Evolution of Urban Agglomerations and Its Driving Factors in Mainland China: From the Monocentric to the Polycentric Dimension. Sustainability 2019, 11, 610. https://doi.org/10.3390/su11030610
Lan F, Da H, Wen H, Wang Y. Spatial Structure Evolution of Urban Agglomerations and Its Driving Factors in Mainland China: From the Monocentric to the Polycentric Dimension. Sustainability. 2019; 11(3):610. https://doi.org/10.3390/su11030610
Chicago/Turabian StyleLan, Feng, Huili Da, Haizhen Wen, and Ying Wang. 2019. "Spatial Structure Evolution of Urban Agglomerations and Its Driving Factors in Mainland China: From the Monocentric to the Polycentric Dimension" Sustainability 11, no. 3: 610. https://doi.org/10.3390/su11030610
APA StyleLan, F., Da, H., Wen, H., & Wang, Y. (2019). Spatial Structure Evolution of Urban Agglomerations and Its Driving Factors in Mainland China: From the Monocentric to the Polycentric Dimension. Sustainability, 11(3), 610. https://doi.org/10.3390/su11030610