Free Trade Agreements and Environment for Sustainable Development: A Gravity Model Analysis
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Empirical Strategy
3.1. Methodology
3.2. Model and Database
3.3. Econometric Strategy
4. Results and Discussion
4.1. Income-Wise Analysis:
4.1.1. High Income Countries
4.1.2. Upper Middle Income Countries
4.1.3. Lower Middle Income Countries
4.2. Robustness Analysis
4.2.1. PPML for Panel
4.2.2. PPML for High Income Countries
4.2.3. PPML for Upper Middle Income Countries
4.2.4. PPML for Lower Middle Income Countries
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cooper, W.H. Free Trade Agreements: Impact on US Trade and Implications for US Trade Policy; 2014; Available online: https://fas.org/sgp/crs/row/RL31356.pdf (accessed on 31 October 2018).
- Chomo, G.V. Free Trade Agreements between Developing and Industrialized Countries Comparing the US-Jordan FTA with Mexico’s Experience under NAFTA; United States International Trade Commission: Washington, DC, USA, 2002.
- Grether, J.M.; Mathys, N.; de Melo, J. A Gravity Analysis of the Pollution Content of Trade; WORK, 2005; Available online: http://www.etsg.org/ETSG2005/papers/mathys.pdf (accessed on 31 October 2018).
- Stevens, C.; Irfan, M.; Massa, I.; Kennan, J. The Impact of Free Trade Agreements between Developed and Developing Countries on Economic Development in Developing Countries: A Rapid Evidence Assessment; Overseas Development Institute: London, UK, 2015. Available online: www.gov.uk/government/uploads/system/uploads/attachment_data/file/448862/REA_FreeTradeAgreements.Pdf (accessed on 18 January 2016).
- Yasmeen, R.; Li, Y.; Hafeez, M.; Ahmad, H. The trade-environment nexus in light of governance: A global potential. Environ. Sci. Pollut. Res. 2018, 25, 34360–34379. [Google Scholar] [CrossRef] [PubMed]
- Gozgor, G. Does trade matter for carbon emissions in OECD countries? Evidence from a new trade openness measure. Environ. Sci. Pollut. Res. 2017, 24, 27813–27821. [Google Scholar] [CrossRef] [PubMed]
- Zerbo, E. Income-environment relationship in Sub-Saharan African countries: Further evidence with trade openness. Environ. Sci. Pollut. Res. 2017, 24, 16488–16502. [Google Scholar] [CrossRef] [PubMed]
- Dogan, E.; Turkekul, B. CO2 emissions, real output, energy consumption, trade, urbanization and financial development: Testing the EKC hypothesis for the USA. Environ. Sci. Pollut. Res. 2016, 23, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Jebli, M.B.; Youssef, S.B.; Ozturk, I. Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. Ecol. Indic. 2016, 60, 824–831. [Google Scholar] [CrossRef]
- Kasman, A.; Duman, Y.S. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. Econ. Model. 2015, 44, 97–103. [Google Scholar] [CrossRef]
- Jaunky, V.C. The CO2 emissions-income nexus: Evidence from rich countries. Energy Policy 2011, 39, 1228–1240. [Google Scholar] [CrossRef]
- Managi, S.; Hibiki, A.; Tsurumi, T. Does Trade Liberalization Reduce Pollution Emissions; Discussion Papers; 2008; Volume 08-E-013, Available online: https://econpapers.repec.org/paper/etidpaper/08013.htm (accessed on 30 September 2018).
- Dinda, S. Environmental Kuznets curve hypothesis: A survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef]
- Hasson, A.; Masih, M. Energy Consumption, Trade Openness, Economic Growth, Carbon Dioxide Emissions and Electricity Consumption: Evidence from South Africa Based on ARDL; 2017; Available online: https://mpra.ub.uni-muenchen.de/79424/ (accessed on 30 September 2018).
- Kohler, M. CO2 emissions, energy consumption, income and foreign trade: A South African perspective. Energy Policy 2013, 63, 1042–1050. [Google Scholar] [CrossRef]
- Frankel, J.A.; Rose, A.K. Is trade good or bad for the environment? Sorting out the causality. Rev. Econ. Stat. 2005, 87, 85–91. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Law, S.H. Institutional Quality and CO2 Emission–Trade Relations: Evidence from Sub-Saharan Africa. S. Afr. J. Econ. 2016, 84, 323–340. [Google Scholar] [CrossRef]
- Farhani, S.; Ozturk, I. Causal relationship between CO2 emissions, real GDP, energy consumption, financial development, trade openness, and urbanization in Tunisia. Environ. Sci. Pollut. Res. 2015, 22, 15663–15676. [Google Scholar] [CrossRef]
- Ling, C.H.; Ahmed, K.; Muhamad, R.B.; Shahbaz, M. Decomposing the trade-environment nexus for Malaysia: What do the technique, scale, composition, and comparative advantage effect indicate? Environ. Sci. Pollut. Res. 2015, 22, 20131–20142. [Google Scholar] [CrossRef] [PubMed]
- Sbia, R.; Shahbaz, M.; Hamdi, H. A contribution of foreign direct investment, clean energy, trade openness, carbon emissions and economic growth to energy demand in UAE. Econ. Model. 2014, 36, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Al-Mulali, U.; Tang, C.F. Investigating the validity of pollution haven hypothesis in the gulf cooperation council (GCC) countries. Energy Policy 2013, 60, 813–819. [Google Scholar] [CrossRef]
- Kheder, S.B.; Zugravu-Soilita, N. The Pollution Haven Hypothesis: A Geographic Economy Model in a Comparative Study. SSRN Electron. J. 2008. [Google Scholar] [CrossRef] [Green Version]
- Conrad, K. Locational competition under environmental regulation when input prices and productivity differ. Ann. Reg. Sci. 2005, 39, 273–295. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.; Beaulieu, A. The Environment and NAFTA: Understanding and Implementing the New Continental Law; 1998; Available online: https://lawdigitalcommons.bc.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1305&context=ealr (accessed on 30 September 2018).
- Nemati, M.; Hu, W.; Reed, M.R. Are Free Trade Agreements Good for the Environment? A Panel Data Analysis; 2016; Available online: https://ageconsearch.umn.edu/bitstream/235631/2/Nemati_AAEA_Are_Free_Trade_Agreements_Good_for_the_Environment.pdf (accessed on 31 October 2018).
- Korves, N.; Martínez-Zarzoso, I.; Voicu, A.M. Is free trade good or bad for the environment? new empirical evidence. In Climate Change-Socioeconomic Effects; InTech: London, UK, 2011. [Google Scholar]
- Mangee, N.; Elmslie, B. Environmental Standards and Trade Volume. Mod. Econ. 2010, 1, 100. [Google Scholar] [CrossRef]
- Yu, T.H.; Kim, M.K.; Cho, S.H. Does Trade Liberalization Induce More Greenhouse Gas Emissions? The Case of Mexico and the United States Under NAFTA. Am. J. Agric. Econ. 2010, 93, 545–552. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, K.; Hewings, G.J. A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation. Energy Econ. 2017, 64, 13–23. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; No. w3914; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar]
- Antweiler, W.; Copeland, B.R.; Taylor, M.S. Is free trade good for the environment? Am. Econ. Rev. 2001, 91, 877–908. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J. Determining the trade–environment composition effect: The role of capital, labor and environmental regulations. J. Environ. Econ. Manag. 2003, 46, 363–383. [Google Scholar] [CrossRef]
- Hafeez, M.; Chunhui, Y.; Strohmaier, D.; Ahmad, M.; Jie, L. Does finance affect environmental degradation: Evidence from One Belt and One Road Initiative region? Environ. Sci. Pollut. Res. 2018, 25, 9579–9592. [Google Scholar] [CrossRef]
- Yasmeen, R.; Li, Y.; Hafeez, M. Tracing the trade–pollution nexus in global value chains: Evidence from air pollution indicators. Environ. Sci. Pollut. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.K. Energy consumption, CO2 emissions and economic growth: Evidence from India. J. Int. Bus. Econ. 2011, 12, 85–122. [Google Scholar] [CrossRef]
- Andersson, F.N.; Karpestam, P. CO2 emissions and economic activity: Short- and long-run economic determinants of scale, energy intensity and carbon intensity. Energy Policy 2013, 61, 1285–1294. [Google Scholar] [CrossRef]
- Reppelin-Hill, V. Trade and environment: An empirical analysis of the technology effect in the steel industry. J. Environ. Econ. Manag. 1999, 38, 283–301. [Google Scholar] [CrossRef]
- Wheeler, D.; Martin, P. Prices, Policies, and the International Diffusion of Clean Technology: The Case of Wood Pulp Production; World Bank Discussion Papers; 1992; Available online: http://documents.worldbank.org/curated/en/673921468765926548/pdf/multi-page.pdf (accessed on 31 October 2018).
- Cherniwchan, J.; Copeland, B.R.; Taylor, M.S. Trade and the environment: New methods, measurements, and results. Annu. Rev. Econ. 2017, 9, 59–85. [Google Scholar] [CrossRef]
- Reinert, K.A.; Roland-Holst, D.W. NAFTA and industrial pollution: Some general equilibrium results. J. Econ. Integr. 2001, 16, 165–179. [Google Scholar] [CrossRef]
- Leontief, W. The Structure of the American Economy 1919–1929: An Empirical. Application of Equilibrium Analysis; Harvard University Press: Cambridge, UK, 1941. [Google Scholar]
- Anderson, J.E.; Van Wincoop, E. Gravity with gravitas: A solution to the border puzzle. Am. Econ. Rev. 2003, 93, 170–192. [Google Scholar] [CrossRef]
- WIOD Data. Available online: http://www.wiod.org/home (accessed on 30 November 2018).
- World Bank. World Development Indicator, 2016. Available online: http://data.worldbank.org/ (accessed on 30 November 2018).
- Gravity Data Set. Available online: http://www.cepii.fr/cepii/en/bdd_modele/bdd.asp (accessed on 30 November 2018).
- Yotov, Y.V.; Piermartini, R.; Monteiro, J.-A.; Larch, M. An Advanced Guide to Trade Policy Analysis: The Structural Gravity Model; UNCTAD and WTO: Geneva, Switzerland, 2016. [Google Scholar]
- Abid, M. Impact of economic, financial, and institutional factors on CO2 emissions: Evidence from Sub-Saharan Africa economies. Util. Policy 2016, 41, 85–94. [Google Scholar] [CrossRef]
- Sharma, S.S. Determinants of carbon dioxide emissions: Empirical evidence from 69 countries. Appl. Energy 2011, 88, 376–382. [Google Scholar] [CrossRef]
- Chebbi, H.E.; Olarreaga, M.; Zitouna, H. Trade openness and CO2 emissions in Tunisia. Middle East Dev. J. 2011, 3, 29–53. [Google Scholar] [CrossRef]
- Mercan, M.; Karakaya, E. Energy consumption, economic growth and carbon emission: Dynamic panel cointegration analysis for selected OECD countries. Procedia Econ. Financ. 2015, 23, 587–592. [Google Scholar] [CrossRef]
Variables | Symbol | Unit Definition | Source | Time-Span |
---|---|---|---|---|
Carbon emissions | CO2 | Bilateral CO2 emission | WIOD (2013) | 1995–2009 |
GDP per capita | G_O & G_d | constant 2010 US$ | WDI (2016) | 1995–2009 |
Internet use | Int_o & Int_d | Individuals using the internet % of the population | WDI (2016) | 1995–2009 |
Gravity data | CEPII | |||
Free trade agreement | FTAs | Dummy = 0 if not dummy = 1 if yes | CEPII | 1995–2009 |
Distance | Dist. | Time invariant | CEPII | 1995–2009 |
language | lan | Time invariant | CEPII | 1995–2009 |
Adjacent | Adj | Time invariant | CEPII | 1995–2009 |
Australia x,y | Estonia y | Japan x,y | Romania x,y |
---|---|---|---|
Austria x | Finland x,y | Korea, Rep. | Russia x,y |
Belgium x,y | France x,y | Lithuania x,y | Spain x,y |
Bulgaria x,y | Germany x,y | Luxembourg x,y | Slovak x,y |
Brazil y | Greece x,y | Latvia x,y | Slovenia x,y |
Canada x,y | Hungary x | Mexico x,y | Sweden x,y |
China y | Indonesia x,y | Malta x,y | Turkey |
Cyprus x | India | Netherlands x,y | United States x |
Czech Republic x,y | Ireland x,y | Poland x,y | United Kingdom x,y |
Denmark x,y | Italy x,y | Portugal x,y |
Variables | CO2 | G_O | G_d | FTA | Dist. | Lan | Adj | Int_o | Int_d |
---|---|---|---|---|---|---|---|---|---|
CO2 | 1.0000 | ||||||||
G_O | 0.0722 | 1.0000 | |||||||
G_d | 0.1518 | −0.0080 | 1.0000 | ||||||
FTA | −0.0511 | 0.2403 | 0.2403 | 1.0000 | |||||
Dist. | −0.0495 | −0.1529 | −0.1529 | −0.7142 | 1.0000 | ||||
Lan | 0.1000 | 0.1003 | 0.1004 | 0.0339 | −0.0127 | 1.0000 | |||
Adj | 0.2317 | 0.0114 | 0.0114 | 0.1633 | −0.3928 | 0.1971 | 1.0000 | ||
Int_o | 0.0064 | 0.6156 | 0.0824 | 0.2523 | −0.1247 | 0.0357 | 0.0112 | 1.0000 | |
Int_d | 0.1089 | 0.0822 | 0.6156 | 0.2523 | −0.1247 | 0.0357 | 0.0112 | 0.5670 | 1.0000 |
Variables | POLS | FE | RE |
---|---|---|---|
G_O | −0.210 *** | −0.185 | −0.210 *** |
(0.05) | (0.13) | (0.05) | |
G_d | 0.464 * | 0.464 * | 0.464 * |
(0.000) | (0.000) | (0.000) | |
FTA | 0.030 | 0.030 | 0.030 |
(0.388) | (0.38) | (0.38) | |
Dist. | −0.089 * | −0.088 * | −0.089 * |
(0.000) | (0.000) | (0.000) | |
Lan | 0.5001 * | 0.5005 * | 0.5001 * |
(0.000) | (0.000) | (0.000) | |
Adj | 1.895 * | 1.893 * | 1.895 * |
(0.000) | (0.000) | (0.000) | |
Int_o | 0.1170 * | 0.1167893 * | 0.1170 * |
(0.000) | (0.000) | (0.000) | |
Int_d | −0.167 * | −0.167 * | −0.167 * |
(0.000) | (0.000) | (0.000) | |
Year effect | Yes | Yes | Yes |
No. obs | 22,230 | 22,230 | 22,230 |
R-squared | 0.98 | 0.97 | 0.94 |
Fixed or random | |||
Hausman | Prob > chi2 = 0.9417 | ||
Group | 39 | 39 | 39 |
constant | −93.899 * | −92.781 * | −93.899 * |
(0.000) | (0.000) | (0.000) |
Variables | POLS | FE | RE |
---|---|---|---|
G_O | −0.0241 | −0.1601 | −0.0241 |
(0.86) | (0.299) | (0.86) | |
G_d | 0.4351 * | 0.4347 * | 0.4351 * |
(0.000) | (0.000) | (0.000) | |
FTA | −0.0887 ** | −0.0874 ** | −0.0887 ** |
(0.021) | (0.023) | (0.021) | |
Dist. | −0.0476 ** | −0.0470 ** | −0.0476 ** |
(0.014) | (0.015) | (0.014) | |
Lan | 0.4799 * | 0.4801 * | 0.4799 * |
(0.000) | (0.000) | (0.000) | |
Adj | 1.926 * | 1.924 * | 1.926 * |
(0.000) | (0.000) | (0.000) | |
Int_o | 0.0661 * | 0.0694 * | 0.0661 * |
(0.002) | (0.001) | (0.002) | |
Int_d | −0.1300 * | −0.1297 * | −0.1300 * |
(0.000) | (0.000) | (0.000) | |
Year effect | Yes | yes | Yes |
No. obs | 17,100 | 17,100 | 17,100 |
R-squared | 0.104 | 0.87 | 0.104 |
Fixed or random | |||
Hausman-test | Prob > chi2 = 0.0000 | ||
Group | 30 | 30 | 30 |
constant | −91.568 * | −96.178 * | −91.568 * |
(0.000) | (0.000) | (0.000) |
Variables | POLS | FE | RE |
---|---|---|---|
G_O | 1.059 * | 0.2177 | 1.059 * |
(0.000) | (0.355) | (0.000) | |
G_d | 0.633 * | 0.5057 * | 0.6336 * |
(0.000) | (0.000) | (0.000) | |
FTA | 1.394 * | 0.598 * | 1.394 * |
(0.000) | (0.000) | (0.000) | |
Dist. | −0.1671 * | −0.298 * | −0.1671 * |
(0.000) | (0.000) | (0.000) | |
Lan | −0.666 ** | 0.0251 | −0.666 ** |
(0.029) | (0.921) | (0.029) | |
Adj | 2.222 * | 1.612 * | 2.222 * |
(0.000) | (0.000) | (0.000) | |
Int_o | 0.204 * | 0.226 * | 0.204 * |
(0.000) | (0.000) | (0.000) | |
Int_d | −0.1672962 * | −0.276 * | −0.167 * |
(0.000) | (0.000) | (0.000) | |
Year effect | Yes | Yes | Yes |
No. obs | 3990 | 3990 | 3990 |
R-squared | 0.22 | 0.70 | 0.22 |
Fixed or random | |||
Hausman-test | Prob > chi2 = 0.0000 | ||
Group | 7 | 7 | 7 |
constant | −473.789 * | −0.93545 | −473.789 * |
(0.000) | (0.981) | (0.000) |
Variables | POLS | FE | RE |
---|---|---|---|
G_O | −0.733 * | −0.799 | −0.7339 * |
(0.000) | (0.305) | (0.000) | |
G_d | 0.751 * | 0.751 * | 0.7515 * |
(0.000) | (0.000) | (0.000) | |
FTA | 3.721 * | 3.715 * | 3.721 * |
(0.000) | (0.000) | (0.000) | |
Dist. | −0.4630 ** | −0.4652 ** | −0.4630 ** |
(0.023) | (0.024) | (0.023) | |
Lan | 0.984 * | 0.9859 * | 0.9844 * |
(0.000) | (0.000) | (0.000) | |
Adj | 3.450 * | 3.450 * | 3.450 * |
(0.000) | (0.000) | (0.000) | |
Int_o | 0.4263 * | 0.4205 * | 0.4263 * |
(0.001) | (0.003) | (0.001) | |
Int_d | −0.352 * | −0.3522 * | −0.352 * |
(0.000) | (0.000) | (0.000) | |
Year effect | No | No | No |
No. obs | 1140 | 1140 | 1140 |
R-squared | 0.197 | 0.196 | 0.197 |
Fixed or random | |||
Hausman-test | Prob > chi2 = 1.0000 | ||
Group | 2 | 2 | 2 |
constant | −33.20131 | −41.57933 | −33.20131 |
(0.696) | (0.749) | (0.696) |
Variables | Panel | High Income | Upper Middle Income | Lower Middle Income |
---|---|---|---|---|
G_O | −0.213 * | −0.369 * | 0.758 * | 0.228 |
(0.000) | (0.000) | (0.000) | (0.229) | |
G_d | 0.336 * | 0.212 * | 0.495 * | 0.300 * |
(0.000) | (0.000) | (0.000) | (0.000) | |
FTA | 0.908 * | −0.107 | 2.37 * | 1.929 * |
(0.000) | (0.385) | (0.000) | (0.000) | |
Dist. | −0.1248 * | −0.484 * | −0.468 * | −0.680 ** |
(0.000) | (0.000) | (0.000) | (0.049) | |
Lan | 0.493 * | 0.420 * | 1.628 * | 1.518 * |
(0.000) | (0.000) | (0.000) | (0.000) | |
Adj | 1.958 * | 2.406 * | 1.003 * | 2.778 * |
(0.000) | (0.000) | (0.000) | (0.000) | |
Int_o | 0.040 | 0.308 * | 0.181 * | 0.0740 |
(0.241) | (0.000) | (0.000) | (0.255) | |
Int_d | −0.116 * | −0.056 * | −0.119 * | −0.1966 * |
(0.000) | (0.05) | (0.033) | (0.000) | |
Year effect | yes | Yes | Yes | No |
No. obs | 22,230 | 17,100 | 3990 | 1140 |
R-squared | 0.68 | 0.271 | 0.15 | 0.26 |
Group | 39 | 30 | 7 | 2 |
constant | −46.82 * | 160.33 * | −304.77 * | 60.275 |
(0.049) | (0.000) | (0.000) | (0.490) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, X.; Yasmeen, R.; Li, Y.; Hafeez, M.; Padda, I.U.H. Free Trade Agreements and Environment for Sustainable Development: A Gravity Model Analysis. Sustainability 2019, 11, 597. https://doi.org/10.3390/su11030597
Yao X, Yasmeen R, Li Y, Hafeez M, Padda IUH. Free Trade Agreements and Environment for Sustainable Development: A Gravity Model Analysis. Sustainability. 2019; 11(3):597. https://doi.org/10.3390/su11030597
Chicago/Turabian StyleYao, Xing, Rizwana Yasmeen, Yunong Li, Muhammad Hafeez, and Ihtsham Ul Haq Padda. 2019. "Free Trade Agreements and Environment for Sustainable Development: A Gravity Model Analysis" Sustainability 11, no. 3: 597. https://doi.org/10.3390/su11030597