Is Seoul Walkable? Assessing a Walkability Score and Examining Its Relationship with Pedestrian Satisfaction in Seoul, Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Calculating the Walkability Score
2.2.1. Applying the Walk Score Methodology
2.2.2. Modifying the Walk Score Methodology
2.2.3. Applying the Walkability Score in Seoul
2.3. Correlating Walkability Scores with Attention to Pedestrian Satisfaction
2.3.1. Data: Perceived Satisfaction of the Walking Environment, Walkability Score, and Other Confounding Factors
2.3.2. Statistical Analysis to Examine the Association between Walkability Score and Pedestrian Satisfaction
3. Results
3.1. Spatial Distribution of the Seoul Walkability Score
3.2. Analyzing the Association between Walkability Score and Pedestrian Satisfaction
3.3. Exploring the Discrepancy between Pedestrian Satisfaction and Walkability Score
3.3.1. Type A: High Walkability Score and Low Pedestrian Satisfaction
3.3.2. Type B: Low Walkability Score and High Pedestrian Satisfaction
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hanibuchi, T.; Kondo, K.; Nakaya, T.; Shirai, K.; Hirai, H.; Kawachi, I. Does walkable mean sociable? Neighborhood determinants of social capital among older adults in japan. Health Place 2012, 18, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Leyden, K.M. Social capital and the built environment: The importance of walkable neighborhoods. Am. J. Public Health 2003, 93, 1546–1551. [Google Scholar] [CrossRef] [PubMed]
- Van Holle, V.; Van Cauwenberg, J.; De Bourdeaudhuij, I.; Deforche, B.; Van de Weghe, N.; Van Dyck, D. Interactions between neighborhood social environment and walkability to explain belgian older adults’ physical activity and sedentary time. Int. J. Environ. Res. Public Health 2016, 13, 569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, L.D.; Engelke, P. Multiple impacts of the built environment on public health: Walkable places and the exposure to air pollution. Int. Reg. Sci. Rev. 2016, 28, 193–216. [Google Scholar] [CrossRef]
- Frank, L.D.; Sallis, J.F.; Conway, T.L.; Chapman, J.E.; Saelens, B.E.; Bachman, W. Many pathways from land use to health: Associations between neighborhood walkability and active transportation, body mass index, and air quality. J. Am. Plan. Assoc. 2006, 72, 75–87. [Google Scholar] [CrossRef]
- Frank, L.D.; Stone, B.; Bachman, W. Linking land use with household vehicle emissions in the central puget sound: Methodological framework and findings. Transp. Res. Part D Transp. Environ. 2000, 5, 173–196. [Google Scholar] [CrossRef]
- Boyle, A.; Barrilleaux, C.; Scheller, D. Does walkability influence housing prices? Soc. Sci. Q. 2014, 95, 852–867. [Google Scholar] [CrossRef]
- Washington, E.; Dourado, E. The premium for walkable development under land use regulations. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
- Rauterkus, S.Y.; Miller, N. Residential land values and walkability. J. Sustain. Real Estate 2011, 3, 23–43. [Google Scholar] [CrossRef]
- Méline, J.; Chaix, B.; Pannier, B.; Ogedegbe, G.; Trasande, L.; Athens, J.; Duncan, D.T. Neighborhood walk score and selected cardiometabolic factors in the french record cohort study. BMC Public Health 2017, 17, 960. [Google Scholar] [CrossRef] [Green Version]
- Coffee, N.T.; Howard, N.; Paquet, C.; Hugo, G.; Daniel, M. Is walkability associated with a lower cardiometabolic risk? Health Place 2013, 21, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Müller-Riemenschneider, F.; Pereira, G.; Villanueva, K.; Christian, H.; Knuiman, M.; Giles-Corti, B.; Bull, F.C. Neighborhood walkability and cardiometabolic risk factors in australian adults: An observational study. BMC Public Health 2013, 13, 755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paquet, C.; Coffee, N.T.; Haren, M.T.; Howard, N.J.; Adams, R.J.; Taylor, A.W.; Daniel, M. Food environment, walkability, and public open spaces are associated with incident development of cardio-metabolic risk factors in a biomedical cohort. Health Place 2014, 28, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Won, J.; Lee, C.; Li, W. Are walkable neighborhoods more resilient to the foreclosure spillover effects? J. Plan. Educ. Res. 2017, 38, 463–476. [Google Scholar] [CrossRef]
- Buck, C.; Pohlabeln, H.; Huybrechts, I.; De Bourdeaudhuij, I.; Pitsiladis, Y.; Reisch, L.; Pigeot, I. Development and application of a moveability index to quantify possibilities for physical activity in the built environment of children. Health Place 2011, 17, 1191–1201. [Google Scholar] [CrossRef]
- Buck, C.; Tkaczick, T.; Pitsiladis, Y.; De Bourdehaudhuij, I.; Reisch, L.; Ahrens, W.; Pigeot, I. Objective measures of the built environment and physical activity in children: From walkability to moveability. J. Urban Health 2014, 92, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Reyer, M.; Fina, S.; Siedentop, S.; Schlicht, W. Walkability is only part of the story: Walking for transportation in stuttgart, germany. Int. J. Environ. Res. Public Health 2014, 11, 5849–5865. [Google Scholar] [CrossRef]
- Frank, L.D.; Sallis, J.F.; Saelens, B.E.; Leary, L.; Cain, K.; Conway, T.L.; Hess, P.M. The development of a walkability index: Application to the neighborhood quality of life study. Br. J. Sports Med. 2009, 44, 924–933. [Google Scholar] [CrossRef]
- Frank, L.D.; Schmid, T.L.; Sallis, J.F.; Chapman, J.; Saelens, B.E. Linking objectively measured physical activity with objectively measured urban form. Am. J. Prev. Med. 2005, 28, 117–125. [Google Scholar] [CrossRef]
- Won, J.; Lee, C.; Forjuoh, S.N.; Ory, M.G. Neighborhood safety factors associated with older adults’ health-related outcomes: A systematic literature review. Soc. Sci. Med. 2016, 165, 177–186. [Google Scholar] [CrossRef]
- Forsyth, A.; Hearst, M.; Oakes, J.M.; Schmitz, K.H. Design and destinations: Factors influencing walking and total physical activity. Urban Stud. 2008, 45, 1973–1996. [Google Scholar] [CrossRef]
- Saelens, B.E.; Handy, S.L. Built environment correlates of walking. Med. Sci. Sports Exerc. 2008, 40, S550–S566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, S.; Giles-Corti, B. The built environment, neighborhood crime and constrained physical activity: An exploration of inconsistent findings. Prev. Med. 2008, 47, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Kuzmyak, J.R.; Baber, C.; Savory, D. Use of walk opportunities index to quantify local accessibility. Transp. Res. Rec. J. Transp. Res. Board 2006, 1977, 145–153. [Google Scholar] [CrossRef]
- Vale, D.S.; Saraiva, M.; Pereira, M. Active accessibility: A review of operational measures of walking and cycling accessibility. J. Transp. Land Use 2016, 9, 209–235. [Google Scholar] [CrossRef]
- Walk Score Methodology. Available online: http://pubs.cedeus.cl/omeka/files/original/b6fa690993d59007784a7a26804d42be.pdf (accessed on 15 December 2017).
- Duncan, D.T.; Aldstadt, J.; Whalen, J.; Melly, S.J.; Gortmaker, S.L. Validation of walk score® for estimating neighborhood walkability: An analysis of four us metropolitan areas. Int. J. Environ. Res. Public Health 2011, 8, 4160–4179. [Google Scholar] [CrossRef]
- Nykiforuk, C.I.J.; McGetrick, J.A.; Crick, K.; Johnson, J.A. Check the score: Field validation of street smart walk score in alberta, canada. Prev. Med. Rep. 2016, 4, 532–539. [Google Scholar] [CrossRef] [Green Version]
- Carr, L.J.; Dunsiger, S.I.; Marcus, B.H. Validation of walk score for estimating access to walkable amenities. Br. J. Sports Med. 2010, 45, 1144–1148. [Google Scholar] [CrossRef]
- Liao, Y.; Lin, C.-Y.; Lai, T.-F.; Chen, Y.-J.; Kim, B.; Park, J.-H. Walk score® and its associations with older adults’ health behaviors and outcomes. Int. J. Environ. Res. Public Health 2019, 16, 622. [Google Scholar] [CrossRef] [Green Version]
- Mazumdar, S.; Learnihan, V.; Cochrane, T.; Phung, H.; O’Connor, B.; Davey, R. Is walk score associated with hospital admissions from chronic diseases? Evidence from a cross-sectional study in a high socioeconomic status australian city-state. BMJ Open 2016, 6, e012548. [Google Scholar] [CrossRef] [Green Version]
- Adebamowo, C.A.; Camhi, S.M.; Troped, P.J.; Garvey, M.; Hayman, L.L.; Must, A.; Lichtenstein, A.H.; Crouter, S.E. Associations between walk score and objective measures of physical activity in urban overweight and obese women. PLoS ONE 2019, 14, e0214092. [Google Scholar] [CrossRef]
- Twardzik, E.; Judd, S.; Bennett, A.; Hooker, S.; Howard, V.; Hutto, B.; Clarke, P.; Colabianchi, N. Walk score and objectively measured physical activity within a national cohort. J. Epidemiol. Community Health 2019, 73, 549–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boisjoly, G.; Wasfi, R.; El-Geneidy, A. How much is enough? Assessing the influence of neighborhood walkability on undertaking 10-minutes walks. J. Transp. Land Use 2018, 11, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Carr, L.J.; Dunsiger, S.I.; Marcus, B.H. Walk score™ as a global estimate of neighborhood walkability. Am. J. Prev. Med. 2010, 39, 460–463. [Google Scholar] [CrossRef] [Green Version]
- Gilderbloom, J.I.; Riggs, W.W.; Meares, W.L. Does walkability matter? An examination of walkability’s impact on housing values, foreclosures and crime. Cities 2015, 42, 13–24. [Google Scholar] [CrossRef]
- Pivo, G. Walk score: The significance of 8 and 80 for mortgage default risk in multifamily properties. J. Sustain. Real Estate 2014, 6, 187–210. [Google Scholar] [CrossRef]
- Walk Score Professional. Available online: https://www.walkscore.com/professional/research.php (accessed on 28 May 2019).
- Koohsari, M.J.; Sugiyama, T.; Hanibuchi, T.; Shibata, A.; Ishii, K.; Liao, Y.; Oka, K. Validity of walk score® as a measure of neighborhood walkability in japan. Prev. Med. Rep. 2018, 9, 114–117. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, P.Y.; Zeng, H.; Zhang, Y. Walkability assessment in a rapidly urbanizing city and its relationship with residential estate value. Sustainability 2019, 11, 2205. [Google Scholar] [CrossRef] [Green Version]
- Kosis. Available online: http://kosis.kr/statisticsList/statisticsListIndex.do?menuId=M_01_01&vwcd=MT_ZTITLE&parmTabId=M_01_01#SelectStatsBoxDiv (accessed on 27 May 2019).
- US Census. Available online: https://www.census.gov/quickfacts/fact/table/newyorkcitynewyork,NY/PST045218 (accessed on 1 September 2019).
- Walk Score. Available online: https://www.walkscore.com/ (accessed on 15 December 2017).
- Seoul Open Data Plaza. Available online: http://data.seoul.go.kr/dataList/datasetList.do (accessed on 10 March 2019).
- Road Name Address. Available online: http://www.juso.go.kr/addrlink/addressBuildDevNew.do?menu=mainJusoLayer (accessed on 1 March 2018).
- National spatial Data Infrastructure Portal. Available online: http://data.nsdi.go.kr/dataset (accessed on 15 March 2018).
- Open Data Portal. Available online: https://www.data.go.kr/search/index.do (accessed on 15 May 2018).
- Cgv. Available online: http://www.cgv.co.kr/ (accessed on 15 December 2017).
- Lotte Cinema. Available online: http://www.lottecinema.co.kr/LCHS/index.aspx (accessed on 15 December 2017).
- Megabox. Available online: http://www.megabox.co.kr/ (accessed on 15 December 2017).
- 2015 Seoul Floating Population Survey. Available online: http://opengov.seoul.go.kr/analysis/11143108 (accessed on 15 May 2019).
- Park, S.-H.; Kim, J.-H.; Choi, Y.-M.; Seo, H.-L. Design elements to improve pleasantness, vitality, safety, and complexity of the pedestrian environment: Evidence from a korean neighbourhood walkability case study. Int. J. Urban Sci. 2013, 17, 142–160. [Google Scholar] [CrossRef]
- Van Cauwenberg, J.; Van Holle, V.; Simons, D.; Deridder, R.; Clarys, P.; Goubert, L.; Nasar, J.; Salmon, J.; De Bourdeaudhuij, I.; Deforche, B. Environmental factors influencing older adults’ walking for transportation: A study using walk-along interviews. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 85. [Google Scholar] [CrossRef] [Green Version]
- James, P.; Banay, R.F.; Hart, J.E.; Laden, F. A review of the health benefits of greenness. Curr. Epidemiol. Rep. 2015, 2, 131–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using green infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Lwin, K.K.; Murayama, Y. Modelling of urban green space walkability: Eco-friendly walk score calculator. Comput. Environ. Urban Syst. 2011, 35, 408–420. [Google Scholar] [CrossRef]
Category | Indicator | Algorithm | Data Source | |
---|---|---|---|---|
Total Count | Weight | |||
Amenity | ||||
Grocery | Grocery store | 1 | 3 | Seoul Open Data Plaza |
Restaurants | Restaurants; cafeteria | 10 | 0.75, 0.45, 0.25, 0.25, 0.225, 0.225, 0.225, 0.225, 0.2, 0.2 | |
Shopping | Department stores; big box retails; shopping malls | 5 | 0.5, 0.45, 0.4, 0.35, 0.3 | Road Name Address |
Coffee | Coffee shops; bakery | 2 | 1.25, 0.75 | Seoul Open Data Plaza |
Banks | Banks | 1 | 1 | National Spatial Data Infrastructure Portal |
Parks | Parks, open green spaces, forests; mountains and hills | 1 | 1 | Road Name Address |
Schools | Elementary/middle/high schools | 1 | 1 | |
Books | Bookstores; libraries | 1 | 1 | |
Entertainment | Movie theatres, museums, gallery, zoos, community gardens | 1 | 1 | Website of three major cinemas, Open Data Portal; Road Name Address |
Pedestrian Friendliness | ||||
Intersection density | Intersections per square miles | >200: no penalty 150–200: 1% penalty 120–150: 2% penalty 90–120: 3% penalty 60–90: 4% penalty <60: 5% penalty | National Spatial Data Infrastructure Portal | |
Average block length | Meters | <120 m: no penalty 120–150 m: 1% penalty 150–165 m: 2% penalty 165–180 m: 3% penalty 180–195 m: 4% penalty >195 m: 5% penalty |
Variable | Measurement | Frequency (%) | Mean (SD) |
---|---|---|---|
Dependent Variable | |||
Pedestrian’s satisfaction | Binary: 0 = dissatisfied 1 = satisfied | 16,589 (83.28%) 3331 (16.72%) | |
Independent Variables | |||
Walkability Score | Continuous: Walkability Score | 73.83 (10.05) | |
Walk Score | Continuous: Walk Score | 89.20 (8.71) | |
Confounding Variables | |||
Gender | Binary: 0 = female 1 = male | 9177 (46.07%) 10,743 (53.93%) | |
Age | Continuous: 1 = 15–19 years old, 2 = 20–24 years old, 3 = 25–29 years old, 4 = 30–34 years old, 5 = 35–39 years old, 6 = 40–44 years old, 7 = 45–49 years old, 8 = 50–54 years old, 9 = 55–59 years old, 10 = 60–64 years old, 11 = 60 + years old | 6.28 (3.05) | |
Walking purpose | Binary: 0 = recreational walking 1 = transportation walking | 0: 4744 (23.82%) 1: 15,176 (76.18%) |
Walkability Score | Description | Frequency | Percentage |
---|---|---|---|
90–100 | Walker’s paradise | 354 | 0.8 |
70–89 | Very walkable | 21,188 | 48.2 |
50–69 | Somewhat walkable | 15,517 | 35.3 |
25–49 | Somewhat car-dependent | 4676 | 10.6 |
0–24 | Car-dependent | 2265 | 5.1 |
Total | 44,000 | 100.0 |
Administrative Unit (Gu) | Mean | SD | Min | Max | Administrative Unit (Gu) | Mean | SD | Min | Max |
---|---|---|---|---|---|---|---|---|---|
Jongno | 66.0 | 16.8 | 0.0 | 97.3 | Mapo | 61.6 | 22.2 | 0.0 | 94.1 |
Jung | 75.2 | 13.1 | 0.0 | 97.5 | Yangcheon | 71.0 | 10.7 | 0.0 | 95.3 |
Yongsan | 57.2 | 20.8 | 0.0 | 87.2 | Gangseo | 59.5 | 22.6 | 0.0 | 92.3 |
Seongdong | 64.5 | 15.9 | 5.0 | 89.9 | Guro | 65.3 | 16.5 | 0.0 | 90.4 |
Gwangjin | 68.4 | 13.8 | 0.0 | 88.4 | Geumcheon | 63.2 | 19.2 | 0.0 | 95.8 |
Dongdaemun | 69.9 | 9.8 | 6.7 | 91.5 | Yeongdeungpo | 69.6 | 13.9 | 0.0 | 91.7 |
Jungnang | 69.5 | 16.5 | 0.0 | 90.3 | Dongjak | 63.0 | 18.5 | 0.0 | 87.1 |
Seongbuk | 65.8 | 13.8 | 0.0 | 87.2 | Gwanak | 52.6 | 27.7 | 0.0 | 86.0 |
Gangbuk | 66.1 | 18.5 | 0.0 | 88.8 | Seocho | 64.6 | 17.3 | 0.0 | 91.5 |
Dobong | 73.5 | 16.2 | 0.0 | 95.3 | Gangnam | 65.0 | 14.9 | 0.0 | 88.7 |
Nowon | 56.0 | 14.0 | 0.0 | 87.0 | Songpa | 60.0 | 20.3 | 0.0 | 88.4 |
Eunpyeong | 71.0 | 14.9 | 0.0 | 96.6 | Gangdong | 64.4 | 17.9 | 0.0 | 92.6 |
Seodaemun | 68.0 | 13.2 | 0.0 | 95.8 | Seoul (All) | 64.4 | 18.4 | 0.0 | 97.5 |
Walkability Score | Walk Score | |||||
---|---|---|---|---|---|---|
Variables | OR (SE) | Z | p-Value | OR (SE) | Z | p-Value |
Gender | 1.038 (0.040) | 0.98 | 0.326 | 1.038 (0.040) | 0.98 | 0.326 |
Age | 1.028 (0.007) | 4.43 | <0.001 | 1.028 (0.007) | 4.40 | <0.001 |
Walking Purpose | 1.132 (0.052) | 2.70 | 0.007 | 1.131 (0.052) | 2.68 | 0.007 |
Walkability Score | 1.008 (0.002) | 3.97 | <0.001 | NA | ||
Walk Score | NA | 0.997 (0.002) | −1.37 | 0.170 | ||
Constant | 0.084 (0.013) | −15.57 | <0.001 | 0.195 (0.039) | −8.09 | <0.001 |
N | 19,920 | 19,920 | ||||
LR-Chi2 | 41.97 | 27.68 | ||||
Log likelihood | −8971.875 | −8979.019 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.J.; Won, J.; Kim, J. Is Seoul Walkable? Assessing a Walkability Score and Examining Its Relationship with Pedestrian Satisfaction in Seoul, Korea. Sustainability 2019, 11, 6915. https://doi.org/10.3390/su11246915
Kim EJ, Won J, Kim J. Is Seoul Walkable? Assessing a Walkability Score and Examining Its Relationship with Pedestrian Satisfaction in Seoul, Korea. Sustainability. 2019; 11(24):6915. https://doi.org/10.3390/su11246915
Chicago/Turabian StyleKim, Eun Jung, Jaewoong Won, and Jiyeong Kim. 2019. "Is Seoul Walkable? Assessing a Walkability Score and Examining Its Relationship with Pedestrian Satisfaction in Seoul, Korea" Sustainability 11, no. 24: 6915. https://doi.org/10.3390/su11246915