Technical Efficiency in the Agricultural Business—The Case of Slovakia
Abstract
:1. Introduction
2. Literature Overview
3. Data and Methods
- subject to:
- H—Kruskal–Wallis test characteristics
- N—total number of agricultural holdings (all regions combined)
- Rj—rank total for each region
- Nj—number of agricultural holdings in each region
- k—number of regions
4. Results
4.1. Technical Efficiency of Agricultural Holdings
- maize production area (up to 200 m above sea level; south-west and south-east of Slovakia where most of the lowlands are situated);
- sugar beet production area (200–300 m a.s.l.; north parts of the lowlands mentioned above);
- potato production area (300–500 m a.s.l.; lower parts of the highlands in Middle and North Slovakia);
- potato–oat production area (500–600 m a.s.l.; lower parts of the mountains in Middle and North Slovakia);
- mountain production area (over 600 m a.s.l.; mountains region in North Slovakia).
4.2. Factors Influencing the Technical Efficiency of the Agricultural Holdings
- -
- natural, production, and geographical conditions such as region, production area, distance from the city, soil quality, and agricultural production diversity expressed by the Shannon’s equitability index;
- -
- social conditions such as the education of managers, membership in the farmers’ associations, number of members in an agricultural holding, number of new jobs, share of employees with the university education to all employees in an agricultural holding;
- -
- legal and economic conditions such as legal form, acreage of agricultural land, average number of employees, CAP subsidies per 1 ha of land (SAPS, greening, ANC, agri-environmental scheme payments, payments for ecological agriculture, WELFARE, state subsidies, payments for the common organization of the markets, investment subsidies), share of revenues from the agricultural production in total revenues, share of revenues from the agricultural production in total costs, share of revenues from the animal production in revenues from the agricultural production, share of total revenues in total costs, share of costs for material, services, and energy in total costs, share of costs for material, services, and energy in total revenues, rent payments for 1 ha of land, share of labor costs in total costs, share of property taxes in total costs, land tax for one hectare of agricultural land, share of ANC land in the total agricultural land, and share of irrigated land in the total agricultural.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Bank. Agriculture for Development. World Development Report; The World Bank: Washington, DC, USA, 2008; 32p. [Google Scholar]
- Talukder, B.; Blay-Palmer, A. Comparison of methods to assess agricultural sustainability. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2017; Volume 25, pp. 149–168. [Google Scholar]
- Food and Agriculture Organisation of the United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution adopted by the General Assembly on 25 September 2015, No. A/RES/70/1. Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 13 August 2019).
- Karley, A. Utilising Diversity for Sustainable Agriculture; The James Hutton Institute: Dundee, UK, 2016; 24p. [Google Scholar]
- Palšová, L.; Schwarcz, P. Legal regulation of direct payments in EU and Slovak Republic in programming period 2014–2020. EU Agrar. Law 2015, 4, 33–38. [Google Scholar] [CrossRef]
- Pe’er, G.; Zinngrebe, Y.; Moreira, F.; Sirami, S.; Schindler, S.; Müller, R.; Bontzorlos, V.; Clough, D.; Bezák, P.; Bonn, A.; et al. A greener path for the EU Common Agricultural Policy. Science 2019, 365, 449–451. [Google Scholar] [CrossRef] [PubMed]
- Roháčiková, O. Direct payments as an important tool of Common agricultural policy. In Význam a Úlohy účtovníctva a Financií v Riadenímalých a Stredných Podnikov v Poľnohospodárstve; Slovenská poľnohospodárska univerzita: Nitra, Slovakia, 2007; pp. 158–162. [Google Scholar]
- European Commission. A Framework for Indicators for the Economic and Social Dimensions of Sustainable Agriculture and Rural Development; European Commission: Brussels, Belgium, 2001; 39p, Available online: https://ec.europa.eu/agriculture/publi/reports/sustain/index_en.pdf (accessed on 11 August 2019).
- Astier, M.; García-Barrios, L.; Galván-Miyoshi, Y.; González-Esquivel, C.E.; Masera, O.R. Assessing the sustainability of small farmer natural resource management systems. A critical analysis of the MESMIS program (1995–2010). Ecol. Soc. 2012, 17, 25. [Google Scholar] [CrossRef]
- Dong, F.X.; Mitchell, P.D.; Colquhoun, J. Measuring farm sustainability using data envelope analysis with principal components: The case of Wisconsin cranberry. J. Environ. Manag. 2015, 147, 175–183. [Google Scholar] [CrossRef] [PubMed]
- De Koeijer, T.J.; Wossink, G.A.A.; Struik, P.C.; Renkema, J.A. Measuring agricultural sustainability in terms of efficiency: The case of Dutch sugar beet growers. J. Environ. Manag. 2002, 66, 9–17. [Google Scholar] [CrossRef]
- Daly, H. Toward some operational principles of sustainable development. Ecol. Econ. 1990, 2, 1–6. [Google Scholar] [CrossRef]
- Ruth, M. A quest for the economics of sustainability and the sustainability of economics. Ecol. Econ. 2006, 56, 332–342. [Google Scholar] [CrossRef]
- Bishop, R.C. Economic Efficiency, Sustainability and Biodiversity. Ambio 1993, 22, 69–73. [Google Scholar]
- Chebeň, J.; Lančarič, D.; Savov, R.; Tóth, M.; Tlučhoř, J. Towards Sustainable Marketing: Strategy in Slovak Companies. Amfiteatru Econ. 2015, 17, 855–871. [Google Scholar]
- Perman, R.; Ma, Y.; McGilvray, J.; Common, M. Natural Resource and Environmental Economics; Pearson Education Limited: London, UK, 2003. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Galluzzo, N. A non-parametric analysis of technical efficiency in Bulgarian farms using the FADN Dataset. Eur. Countrys. 2018, 10, 58–73. [Google Scholar] [CrossRef]
- Kočišová, K. Application of the DEA on the measurement of efficiency in the EU countries. Agric. Econ. 2015, 61, 51–62. [Google Scholar] [CrossRef]
- Laurinavičius, E.; Rimkuvienė, D. The Comparative Efficiency Analysis of EU Members Agriculture Sectors. Rural Sustain. Res. 2017, 37, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Nowak, A.; Kijek, T.; Domanska, K. Technical efficiency and its determinants in the European Union agriculture. Agric. Econ. 2015, 61, 275–283. [Google Scholar]
- Záhorský, T.; Pokrivčák, J. Determinants of Efficiency in Agriculture in CEE Countries. In International Scientific Days 2016, The Agri-Food Value Chain: Challenges for Natural Resources Management and Society; SPU: Nitra, Slovakia, 2016; pp. 994–1001. [Google Scholar]
- Zbranek, P.; Fandel, P. Inputové deformácie technickej zmeny v slovenskom poľnohospodárstve v rokoch 2000–2012: Aplikácia Malmquistových indexov. Ekonomika Poľnohospodárstva 2016, 16, 63–82. [Google Scholar]
- Chang, C.W.; Kun-Shan, W.; Bao-Guang, C.; Kuo-Ren, L. Measuring Technical Efficiency and Returns to Scale in Taiwan’s Baking Industry—A Case Study of the 85 °C Company. Sustainability 2019, 11, 1268. [Google Scholar] [CrossRef]
- Liu, J.S.; Lu, L.Y.; Lu, W.M.; Lin, B.J. Data envelopment analysis 1978–2010: A citationbased literature survey. Omega 2013, 41, 3–15. [Google Scholar] [CrossRef]
- Liu, J.S.; Lu, L.Y.; Lu, W.M. Research fronts in data envelopment analysis. Omega 2016, 58, 33–45. [Google Scholar] [CrossRef]
- Banerjee, A.; Kuri, P.K. Agricultural Growth and Regional Disparity in India: A Convergence Analysis. Sri Lankan J. Agric. Econ. 2014, 61–77. [Google Scholar] [CrossRef]
- Barik, P. Regional Disparity in Agriculture Development and Foodavailability Status—An inter-district study of West Bengal. IOSR J. Humanit. Soc. Sci. (IOSR-JHSS) 2017, 22, 36–48. [Google Scholar]
- Shafiqullah, D. Impact of Regional Disparities on Agricultural Development in Uttar Pradesh—A Geographical Analysis. Glob. J. Hum. Soc. Sci. Geogr. Geo-Sci. Environ. Disaster Manag. 2013, 13, 11. [Google Scholar]
- Sharma, R. Regional Disparities in the Levels of Agricultural Development in Aligarh District of Western Uttar Pradesh. Int. J. Sci. Res. Publ. 2014, 4, 1–8. [Google Scholar]
- Burja, V. Regional disparities of agricultural performance in Romania. Ann. Univ. Apulensis Ser. Oecon. 2011, 13, 115–121. [Google Scholar]
- Baráth, L.; Fertő, I. Productivity and convergence in European agriculture. J. Agric. Econ. 2017, 68, 228–248. [Google Scholar] [CrossRef]
- Cuerva, M.C. Evolution of the agricultural productivity in the European regions: A convergence analysis with dynamic data panel methods. Economía Agraria y Recursos Naturales 2012, 12, 33–70. [Google Scholar]
- Ezcurra, R.; Iráizoz, B.; Pascual, P.; Rapún, M. Agricultural productivity in the European regions: Trends and explanatory factors. Eur. Urban Reg. Stud. 2011, 18, 113–135. [Google Scholar] [CrossRef]
- Marogiu, S.; Cesaro, L.; Latruffe, L.; Desjeux, Y. L’Efficienza Tecnica delle Aziende Agricole di Montagna: Analisi dei dati RICA e Confronto fra Montagna Italiana e Francese. In XXXI Conferenza Italiana di Scienze Regionali. 2010. Available online: https://aisre.it/images/old_papers/Marongiu.pdf (accessed on 28 August 2019).
- Munroe, D. Economic Efficiency in Polish Peasant Farming: An International Perspective. Reg. Stud. 2001, 35, 461–471. [Google Scholar] [CrossRef]
- Bielik, P.; Rajčániová, M. Efektívnosť z rozsahu poľnohospodárskych podnikov na Slovensku. Agric. Econ. 2004, 50, 331–335. [Google Scholar]
- Fandel, P. Technical and scale efficiency of corporate farms in Slovakia. Agric. Econ. 2003, 49, 375–383. [Google Scholar] [CrossRef]
- Kollár, B.; Sojková, Z. Impact of the Investment Subsidies on the Efficiency of Slovak Farms. In 9th International Scientific Conference for Ph.D. Students and Young Scientists; Slezská Univerzita: Opava, Czech Republic, 2016; pp. 220–229. [Google Scholar]
- Sojková, Z.; Kropková, Z.; Benda, V. Slovak agricultural farms in different regions—Comparison of efficiency. Agric. Econ. 2008, 54, 158–165. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Models for estimation of technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef]
- Lazíková, J.; Bandlerová, A.; Rumanovská, Ľ.; Takáč, I.; Lazíková, Z. Crop diversity and Common Agricultural Policy—The Case of Slovakia. Sustainability 2019, 11, 1416. [Google Scholar] [CrossRef]
- Mandalová, K.; Kotrla, M.; Prčík, M. Market analysis of selected agriculture commodities cultivated on agricultural land in Slovakia regions from the perspective of sustainable development. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2017, 17, 199–205. [Google Scholar]
- Némethová, J.; Hudáková, M. Dynamics Of Livestock Production Developement in the Slovak Republic between the years 2004 and 2017 and Potential Impact of The Changes on The Agricultural Sector And Landscape. Appl. Ecol. Environ. Res. 2019, 17, 7649–7666. [Google Scholar]
- Bartová, Ľ.; Fandel, P.; Košařová, J. Regional Differences in the Slovak dairy farm performance. In International Scientific Days 2018; Wolters Kluwer ČR: Praha, Czech Republic, 2018; pp. 2390–2405. [Google Scholar]
- Čechura, L.; Hockmann, H.; Malá, Z.; Malý, M. Productivity and efficiency differences between Czech and Slovak Milk Producers. Rev. Agric. Appl. Econ. 2014, 17, 17–21. [Google Scholar]
- Madau, F.; Furesi, R.; Pulina, P. Technical efficiency and total factor productivity changes in European dairy farm sectors. Agric. Food Econ. 2017, 5, 1–14. [Google Scholar] [CrossRef]
- Pechrová, M. Impact of the Rural Development Programme Subsidies on the farms´ inefficiency and efficiency. Agric. Econ. 2015, 61, 197–204. [Google Scholar] [CrossRef]
- Adamišin, P.; Kotulič, R.; Vozárová Kravčáková, I. Legal form of agricultural entities as a factor in ensuring the sustainability of the economic performance of agriculture. Agric. Econ. 2017, 63, 80–92. [Google Scholar] [Green Version]
- Sojková, Z.; Covaci, Š. Analýza technickej efektívnosti poľnohospodárskych podnikov Slovenska. Acta Oeconomica Informatica 2005, 10, 1–6. [Google Scholar]
- Dauber, J.; Miyake, S. To integrate or to segregate food crop and energy crop cultivation at the landscape scale? Perspectives on biodiversity conservation in agriculture in Europe. Energy Sustain. Soc. 2016, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Demo, M.; Bako, A.; Húska, D.; Hauptvogl, M. Biomass production potential of different willow varieties (Salix spp.) grown in soil-climatic conditions of South-Western Slovakia. Wood Res. 2013, 58, 651–662. [Google Scholar]
- Demo, M.; Hauptvogl, M.; Prčík, M.; Húska, D. Comparison of production parameters of willow (Salix spp.) and poplar (Populus spp.) varieties in the last year of the first four-year harvest cycle. Wood Res. 2014, 59, 705–715. [Google Scholar]
- Food and Agriculture Organisation of the United Nations. Biodiversity for Sustainable Agriculture. 2018. Available online: http://www.fao.org/3/CA2227EN/ca2227en.pdf (accessed on 28 August 2019).
- Galluzzo, N. An analysis of the efficiency in a sample of small Italian farms part of the FADN dataset. Agric. Econ. 2016, 62, 62–70. [Google Scholar] [CrossRef] [Green Version]
Average | Standard Deviation | Minimum | Maximum | |
---|---|---|---|---|
Input | ||||
capital assets (€) | 1,328,276.44 | 3,388,517.80 | 180.00 | 64,146,334.00 |
land (ha) | 693.33 | 862.88 | 2.35 | 5834.20 |
average number of employees | 15.37 | 26.45 | 0.00 | 236.00 |
costs for materials. energy and services (€) | 659,207.97 | 1,160,747.17 | 33.00 | 16,911,140.00 |
Output | ||||
revenues for goods and services (€) | 803,329.20 | 1,556,413.55 | 280.00 | 25,915,578.00 |
Variable | Description | Unit | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
Shannon´s equitability index | - | - | 0.37 | 0.27 | 0.00 | 1.00 |
SAPS | Single area payments 2015 per ha | EUR | 110.55 | 83.84 | 0.00 | 629.11 |
Greening | Payments for sustainability and care for natural resources 2015 per ha | EUR | 38.51 | 44.93 | 0.00 | 695.37 |
ANC | Less favored areas scheme payments 2015 per ha | EUR | 22.87 | 36.10 | 0.00 | 354.51 |
AES | Agri-environmental schemes 2015 per ha | EUR | 11.00 | 50.91 | 0.00 | 516.76 |
WELFARE | Payments for animal welfare 2015 per ha | EUR | 0.89 | 6.78 | 0.00 | 121.70 |
Distance from the city | Distance of the agricultural holdings from the district city (LAU 1) | km | 11.40 | 13.33 | 1.00 | 67.30 |
Labor costs | Share of labor costs in total costs | - | 0.08 | 0.09 | 0.00 | 0.80 |
Total revenues share in total costs | Share of total revenues in total costs | - | 1.05 | 0.21 | 0.06 | 2.47 |
Revenues from the animal production share in revenues of the agricultural production | Share of revenues from animal production in revenues from agricultural production | - | 0.23 | 0.36 | 0.00 | 1.00 |
Number of members in an agricultural holding | Number of members who doing business together within an agricultural holding | - | 11.10 | 74.15 | 1.00 | 1403.00 |
Number of new jobs | Number of new jobs in 2016 | - | 0.29 | 1.80 | 0.00 | 35.00 |
Rent for land | Rent payment for one hectare of agricultural land | EUR | 44.40 | 56.27 | 0.00 | 480.38 |
Land taxes | Land tax for one hectare of agricultural land | EUR | 19.16 | 19.62 | 0.00 | 227.67 |
Property taxes in total costs | Share of property taxes in total costs | 0.01 | 0.01 | 0.00 | 0.12 | |
ANC land | Share of ANC land in the total agricultural land | 0.34 | 0.45 | 0.00 | 1.00 | |
Irrigated agricultural land | Share of irrigated land in the total agricultural land | 0.03 | 0.14 | 0.00 | 1.00 | |
Region | Dummy variable: | |||||
Banská Bystrica region (BB)—benchmark | ||||||
Bratislava region (BA) | ||||||
Košice region (KE) | ||||||
Nitra region (NR) | ||||||
Prešov region (PO) | ||||||
Trenčín region (TN) | ||||||
Trnava region (TT) | ||||||
Žilina region (ZA) | ||||||
Production area | Dummy variable: | |||||
Maize production area—benchmark legal form | ||||||
Sugar beet production area | ||||||
Potato production area | ||||||
Potato–oat production area | ||||||
Mountain production area | ||||||
Membership in the farmers´ associations | Dummy variable: | |||||
Non-member—benchmark membership | ||||||
Member |
Region | Geomean TE VRS | Max TE VRS | Min TE VRS | District | Geomean TE VRS | Max TE VRS | Min TE VRS |
---|---|---|---|---|---|---|---|
Banská Bystrica region | 30.59% | 100.00% | 2.29% | Žiar nad Hronom (ZH) | 16.18% | 63.16% | 5.52% |
Krupina (KA) | 19.97% | 61.30% | 6.04% | ||||
Žarnovica (ZC) | 9.27% | 100.00% | 2.29% | ||||
Banská Bystrica (BB) | 25.98% | 60.37% | 13.83% | ||||
Revúca (RA) | 28.15% | 43.20% | 12.36% | ||||
Banská Štiavnica (BS) | 33.79% | 59.71% | 22.22% | ||||
Poltár (PT) | 28.48% | 72.83% | 7.02% | ||||
Rimavská Sobota (RS) | 33.55% | 100.00% | 7.96% | ||||
Brezno (BR) | 32.41% | 91.59% | 7.34% | ||||
Lučenec (LC) | 34.15% | 100.00% | 2.54% | ||||
Zvolen (ZV) | 44.62% | 87.97% | 22.54% | ||||
Veľký Krtíš (VK) | 42.18% | 82.98% | 5.68% | ||||
Detva (DT) | 49.78% | 62.42% | 39.50% | ||||
Bratislava region | 49.01% | 100.00% | 1.39% | Pezinok (PK) | 45.89% | 74.75% | 25.12% |
Bratislava (BA) | 40.68% | 100.00% | 1.39% | ||||
Malacky (MA) | 67.69% | 100.00% | 34.25% | ||||
Senec (SC) | 68.64% | 100.00% | 21.43% | ||||
Košice region | 36.04% | 100.00% | 5.36% | Gelnica (GL) | 13.21% | 43.21% | 5.64% |
Sobrance (SO) | 31.92% | 70.25% | 8.64% | ||||
Spišská Nová Ves (SN) | 28.29% | 100.00% | 5.36% | ||||
Rožňava (RV) | 36.03% | 100.00% | 10.77% | ||||
Košice (KE) | 36.93% | 100.00% | 5.97% | ||||
Trebišov (TV) | 39.63% | 100.00% | 5.48% | ||||
Michalovce (MI) | 43.05% | 100.00% | 8.05% | ||||
Nitra region | 53.33% | 100.00% | 14.95% | Zlaté Moravce (ZM) | 41.10% | 71.07% | 19.29% |
Nové Zámky (NZ) | 51.55% | 100.00% | 14.95% | ||||
Komárno (KN) | 53.87% | 100.00% | 22.49% | ||||
Topoľčany (TO) | 53.14% | 100.00% | 28.46% | ||||
Šaľa (SA) | 55.55% | 100.00% | 33.43% | ||||
Leivce (LV) | 56.30% | 100.00% | 25.10% | ||||
Nitra (NR) | 59.50% | 100.00% | 21.71% | ||||
Prešov region | 24.41% | 100.00% | 2.00% | Medzilaborce (ML) | 16.85% | 52.08% | 7.60% |
Poprad (PP) | 18.46% | 46.34% | 5.77% | ||||
Stropkov (SP) | 16.75% | 81.01% | 3.63% | ||||
Sabinov (SB) | 21.03% | 55.20% | 3.81% | ||||
Vranov nad Topľou (VT) | 26.40% | 68.28% | 6.49% | ||||
Stará Ľubovňa (SL) | 23.55% | 69.58% | 5.06% | ||||
Levoča (LE) | 27.29% | 69.26% | 8.04% | ||||
Humenné (HE) | 15.91% | 100.00% | 2.00% | ||||
Prešov (PO) | 25.79% | 100.00% | 6.19% | ||||
Bardejov (BJ) | 29.73% | 82.89% | 6.89% | ||||
Snina (SV) | 30.67% | 100.00% | 8.17% | ||||
Svidník (SK) | 35.83% | 97.66% | 6.56% | ||||
Kežmarok (KK) | 46.84% | 100.00% | 19.76% | ||||
Trenčín region | 38.63% | 100.00% | 5.98% | Púchov (PU) | 20.82% | 65.66% | 5.98% |
Myjava (MY) | 28.01% | 62.34% | 11.44% | ||||
Ilava (IL) | 30.37% | 40.41% | 17.91% | ||||
Považská Bystrica (PB) | 32.43% | 100.00% | 8.42% | ||||
Nové Mesto nad Váhom (NM) | 42.24% | 100.00% | 20.37% | ||||
Bánovce nad Bebravou (BN) | 40.90% | 100.00% | 14.05% | ||||
Prievidza (PD) | 47.67% | 89.44% | 17.66% | ||||
Partizánske (PE) | 62.98% | 100.00% | 28.24% | ||||
Trenčín (TN) | 61.24% | 100.00% | 32.12% | ||||
Trnava region | 54.20% | 100.00% | 3.49% | Senica (SE) | 29.25% | 100.00% | 10.77% |
Piešťany (PN) | 48.58% | 70.36% | 21.68% | ||||
Hlohovec (HC) | 50.72% | 88.23% | 32.42% | ||||
Dunajská Streda (DS) | 52.68% | 100.00% | 3.49% | ||||
Skalica (SI) | 58.41% | 88.38% | 42.52% | ||||
Trnava (TT) | 61.08% | 100.00% | 28.03% | ||||
Galanta (GA) | 59.04% | 100.00% | 20.13% | ||||
Žilina region | 23.98% | 100.00% | 2.65% | Žilina (ZA) | 13.03% | 46.08% | 2.65% |
Bytča (BY) | 17.09% | 33.06% | 9.71% | ||||
Dolný Kubín (DK) | 22.17% | 48.13% | 7.75% | ||||
Námestovo (NO) | 23.50% | 38.94% | 10.48% | ||||
Liptovský Mikuláš (LM) | 22.41% | 41.71% | 10.40% | ||||
Martin (MT) | 27.38% | 49.48% | 11.50% | ||||
Kysucké Nové Mesto (KM) | 17.25% | 88.64% | 4.29% | ||||
Čadca (CA) | 27.07% | 100.00% | 4.32% | ||||
Tvrdošín (TS) | 27.68% | 100.00% | 3.51% | ||||
Ružomberok (RK) | 28.39% | 100.00% | 12.51% | ||||
Turčianske Teplice (TR) | 45.52% | 83.44% | 23.82% |
Region | Geomean TE VRS | Higher Values | Lower Values | ||
---|---|---|---|---|---|
District | Geomean TE VRS | Districts | Geomean TE VRS | ||
The Banská Bystrica region | 30.59% | DT | 49.78% | ZC | 9.27% |
x | x | ZH | 16.18% | ||
The Bratislava region | 49.01% | x | x | x | x |
The Košice region | 36.04% | x | x | GL | 13.21% |
The Nitra region | 53.33% | x | x | x | x |
The Prešov region | 24.41% | KK | 46.84% | x | x |
The Trenčín region | 38.63% | PE | 62.98% | x | x |
TN | 61.24% | x | x | ||
The Trnava region | 54.20% | x | x | SE | 29.25% |
The Žilina region | 23.98% | TR | 45.52% | x | x |
Production Areas | Number of Agricultural Holdings | Geomean TE VRS | Standard Deviation TE VRS |
---|---|---|---|
1—maize | 610 | 47.33% | 0.2319 |
2—sugar beet | 157 | 34.12% | 0.2614 |
3—potato | 165 | 24.79% | 0.2436 |
4—potato–oat | 59 | 27.43% | 0.2189 |
5—mountain | 118 | 27.61% | 0.2502 |
Variable | Model OLS | Model TOBIT |
---|---|---|
Shannon’s equitability index | 0.0691 *** | 0.0665 *** |
SAPS | 0.0001 | - |
Greening | 0.0001 | 0.0002 |
ANC | −0.0007 *** | −0.0007 *** |
AES | 0.0001 | 0.0001 |
WELFARE | 0.0016 | 0.0017 * |
Distance from the city | −0.0004 | −0.0003 |
Labor costs | −0.2644 *** | −0.2663 *** |
Total revenues share in total costs | 0.3185 *** | 0.3209 *** |
Share of revenues from the animal production in revenues of the agricultural production | −0.0899 *** | −0.0964 *** |
Number of members in an agricultural holding | 0.000006 | 0.000008 |
Number of new jobs | −0.0007 | −0.0009 |
Rent for land | 0.00005 | - |
Land taxes | 0.0025 *** | 0.0026 *** |
Property taxes in total costs | −3.9346 *** | −4.0138 *** |
ANC land | −0.0104 | - |
Irrigated agricultural land | 0.0806 | - |
Membership in the farmers´ associations | 0.0369 * | 0.0386 ** |
Region | ||
The Banská Bystrica region | benchmark | |
The Bratislava region | 0.0746 ** | 0.0867 *** |
The Košice region | −0.0152 | −0.0188 |
The Nitra region | 0.0292 | 0.0363 |
The Prešov region | −0.0299 | −0.0315 |
The Trenčín region | 0.0169 | 0.0141 |
The Trnava region | 0.0513 * | 0.0587 ** |
The Žilina region | −0.0490 | −0.0497 |
Production areas | ||
1—maize | Benchmark | |
2—sugar beet | −0.0346 | −0.0347 |
3—potato | −0.0676 ** | −0.0673 ** |
4—potato–oat | −0.0168 | −0.0178 |
5—mountain | −0.0383 | −0.0394 |
Intercept | 0.1533 *** | 0.1599 *** |
R-squared | 0.3896 | - |
adjusted R-squared | 0.3625 | - |
Test of normality | 5.5722 (p-value = 0.0617) | 5.7556 (p-value = 0.0563) |
LM statistics | 39.0934 (p-value = 0.0999) | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazíková, J.; Lazíková, Z.; Takáč, I.; Rumanovská, Ľ.; Bandlerová, A. Technical Efficiency in the Agricultural Business—The Case of Slovakia. Sustainability 2019, 11, 5589. https://doi.org/10.3390/su11205589
Lazíková J, Lazíková Z, Takáč I, Rumanovská Ľ, Bandlerová A. Technical Efficiency in the Agricultural Business—The Case of Slovakia. Sustainability. 2019; 11(20):5589. https://doi.org/10.3390/su11205589
Chicago/Turabian StyleLazíková, Jarmila, Zuzana Lazíková, Ivan Takáč, Ľubica Rumanovská, and Anna Bandlerová. 2019. "Technical Efficiency in the Agricultural Business—The Case of Slovakia" Sustainability 11, no. 20: 5589. https://doi.org/10.3390/su11205589
APA StyleLazíková, J., Lazíková, Z., Takáč, I., Rumanovská, Ľ., & Bandlerová, A. (2019). Technical Efficiency in the Agricultural Business—The Case of Slovakia. Sustainability, 11(20), 5589. https://doi.org/10.3390/su11205589