Emergy-Based Evaluation of Changes in Agrochemical Residues on the Qinghai–Tibet Plateau, China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Data Sources
2.3. Methodology
3. Results and Analysis
3.1. Change in TR for Crop Production
3.2. Contribution of Individual Agrochemical Residue to TR
3.3. LMDI Decomposition of Total Agrochemical Residue
4. Discussion
4.1. Changes in TR and TR Intensities in the Study Area and China
4.2. Contribution of Individual Agrochemical Residue to TR in the Study Area and China
4.3. Changes in Factors Affecting TR in the Study Area and China
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, L.; Wang, G.; Zhong, Y.; Shen, Z. Evaluating the impacts of soil data on hydrological and nonpoint source pollution prediction. Sci. Total Environ. 2016, 563–564, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Duncan, R. Regulating agricultural land use to manage water quality: The challenges for science and policy in enforcing limits on non-point source pollution in New Zealand. Land Use Policy 2014, 41, 378–387. [Google Scholar] [CrossRef] [Green Version]
- Li, J.K.; Li, H.E.; Shen, B.; Li, Y.J. Effect of non-point source pollution on water quality of the Weihe River. Int. J. Sediment Res. 2011, 26, 50–61. [Google Scholar] [CrossRef]
- Hua, L.; Li, W.; Zhai, L.; Yen, H.; Lei, Q.; Liu, H.; Ren, T.; Xia, Y.; Zhang, F.; Fan, X. An innovative approach to identifying agricultural pollution sources and loads by using nutrient export coefficients in watershed modeling. J. Hydrol. 2019, 571, 322–331. [Google Scholar] [CrossRef]
- Rong, Q.Q.; Cai, Y.P.; Chen, B.; Yue, W.C.; Yin, X.A.; Qian, T.Q. An enhanced export coefficient based optimization model for supporting agricultural nonpoint source pollution mitigation under uncertainty. Sci. Total Environ. 2017, 580, 1351–1362. [Google Scholar] [CrossRef] [PubMed]
- Volk, M.; Bosch, D.; Nangia, V.; Narasimhan, B. SWAT: Agricultural water and nonpoint source pollution management at a watershed scale. Agric. Water Manag. 2016, 175, 1–3. [Google Scholar] [CrossRef]
- Bhandari, G.; Zomer, P.; Atreya, K.; Mol, H.G.J.; Yang, X.; Geissen, V. Pesticide residues in Nepalese vegetables and potential health risks. Environ. Res. 2019, 172, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Yang, W.X.; Tysklind, M.; Xu, Y.X.; Lin, C.Y.; Gao, X.; Hao, Z.C. Using river sediments to analyze the driving force difference for nonpoint source pollution dynamics between two scales of watersheds. Water Res. 2018, 139, 311–320. [Google Scholar] [CrossRef]
- Ongley, E.D.; Zhang, X.L.; Yu, T. Current status of agricultural and rural nonpointsource pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef]
- Song, J.Y.; Li, Y.T.; Song, Y.; Yan, J.J.; Zhou, L. Research and prospect on non-point pollution from agriculture. Chin. Agric. Sci. Bull. 2010, 26, 362–365. [Google Scholar]
- Volk, M.; Liersch, S.; Schmidt, G. Towards the implementation of the European Water Framework Directive? Lessons learned from water quality simulations in an agricultural watershed. Land Use Policy 2009, 26, 580–588. [Google Scholar] [CrossRef]
- Mao, C.; Zhai, N.; Yang, J.; Feng, Y.; Cao, Y.; Han, X.; Ren, G.; Yang, G.; Meng, Q.X. Environmental Kuznets curve analysis of the economic development and nonpoint source pollution in the Ningxia Yellow River irrigation districts in China. BioMed Res. Int. 2013, 2, 67–68. [Google Scholar] [CrossRef]
- Koirala, P.; Khadka, D.B.; Mishra, A. Pesticide residues as environmental contaminants in foods in Nepal. J. Agric. Environ. 2007, 8, 96–100. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, Y.; Hu, R.; Huang, J.; Huang, X.; Li, Y.; Yin, Y.; Chen, Z. A comparison of the effects of agricultural pesticide uses on peripheral nerve conduction in China. Sci. Rep. 2018, 8, 9621. [Google Scholar] [CrossRef]
- Sarah, P.; Anna, L.; Martin, G.J.L.; Rachid, D.; Christina, B.; Christian, L. Identification and quantification of macro- and microplastics on an agricultural farmland. Sci. Rep. 2018, 8, 17950. [Google Scholar]
- Wang, Z.; Li, X.; Shi, H.; Ding, Z.; Zhang, J.; Guo, Y.; Wang, M. Effects of mulching years and irrigation methods on residual plastic film in Hetao Irrigation District. Trans. Chin. Soc. Agric. Eng. 2017, 33, 159–165. [Google Scholar]
- Odum, H. EMERGY in Ecosystem: Ecosystem Theory and Amplication; Willey: New York, NY, USA, 1986. [Google Scholar]
- Odum, H. Environmental Accounting, Emergy and Decision Making: Emergy Evaluation; Willey: New York, NY, USA, 1996. [Google Scholar]
- Ali, M.; Marvuglia, A.; Geng, Y.; Robins, D.; Pan, H.; Song, X.; Yu, Z.; Sun, H. Accounting emergy-based sustainability of crops production in India and Pakistan over first decade of the 21st century. J. Clean. Prod. 2019, 207, 111–122. [Google Scholar] [CrossRef]
- La Rosa, A.; Siracusa, G.; Cavallaro, R. Emergy evaluation of Sicilian red orange production. A comparison between organic and conventional farming. J. Clean. Prod. 2008, 16, 1907–1914. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Long, P.; Yan, L.; Gao, W.; Chen, Y.; Sui, P. Sustainability evaluation of recycling in agricultural systems by emergy accounting. Resour. Conserv. Recycl. 2017, 117, 114–124. [Google Scholar] [CrossRef]
- Tao, J.; Fu, M.; Zheng, X.; Zhang, J.; Zhang, D. Provincial level-based emergy evaluation of crop production system and development modes in China. Ecol. Indicat. 2013, 29, 325–338. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Wu, J.; Zhang, Y.; Lin, L.; Deng, S.; Li, L.; Yang, G.; Yu, X.; Qi, H. An emergy evaluation of the sustainability of Chinese crop production system during 2000–2010. Ecol. Indicat. 2016, 60, 622–633. [Google Scholar] [CrossRef]
- Cavalett, O.; Ortega, E. Emergy, nutrients balance, and economic assessment of soybean production and industrialization in Brazil. J. Clean. Prod. 2009, 17, 762–771. [Google Scholar] [CrossRef]
- Rydberg, T.; Haden, A.C. Emergy evaluations of Denmark and Danish agriculture: Assessing the influence of changing resource availability on the organization of agriculture and society. Agric. Ecosyst. Environ. 2006, 117, 145–158. [Google Scholar] [CrossRef]
- Lan, S.F.; Qin, P.; Lu, H.F. Emergy Analysis of Ecological Economic System; Chemical Industry Press: Beijing, China, 2002. [Google Scholar]
- Ang, B.W.; Liu, F.L. A new energy decomposition method: Perfect in decomposition and consistent in aggregation. Energy 2001, 26, 537–548. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Xiong, C.; Yang, D.; Xia, F.; Huo, J. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China. Sci. Rep. 2016, 6, 36912. [Google Scholar] [CrossRef] [Green Version]
- Hammond, G.P.; Norman, J.B. Decomposition analysis of energy-related carbon emissions from UK manufacturing. Energy 2011, 41, 220–227. [Google Scholar] [CrossRef]
- Jeong, K.; Kim, S. LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector. Energy Policy 2013, 62, 1245–1253. [Google Scholar] [CrossRef]
- Si, H.; Yuan, C.; Zhou, W. Effect of land-use on ecosystem service values in Qinghai province. Agric. Res. Arid Areas 2016, 34, 254–260. [Google Scholar]
- Chu, D.; Basanta, S.; Wang, W.; Zhang, Y.; Liu, L.; Shushil, P. Land Cover Mapping in the Tibet Plateau Using MODIS Imagery. Resour. Sci. 2010, 32, 2152–2159. [Google Scholar]
- Zhang, Y.; Li, B.; Zheng, D. Datasets of the boundary and area of the Tibetan Plateau. Acta Geogr. Sinica 2014, 69, 65–68. [Google Scholar]
- Zhang, X.; Ge, Q. The structure, characteristics of land use in the Tibetan plateau and its rationed development strategy. Chin. J. Agric. Resour. Reg. Plan. 2002, 1, 17–22. [Google Scholar]
- National Data, 1995–2016. Available online: http://data.stats.gov.cn (accessed on 20 May 2019).
- Qinghai Data, 1995–2017. Available online: http://tongji.cnki.net/kns55/ (accessed on 20 May 2019).
- Tibet Data, 1995–2017. Available online: http://tongji.cnki.net/kns55/ (accessed on 20 May 2019).
- Chen, T.; Chen, S.; Xu, H.; Huang, S.; Chen, Y. Simulation study on ratios of nitrogen, phosphorus and potassium fertilizers required in the crop production in China. Acta Geogr. Sinica 1998, 53, 32–41. [Google Scholar]
- China Green Agriculture Development Report 2018 was Released. Available online: http://www.cnfood.cn/toutiao137213.html (accessed on 25 May 2019).
- Feng, Z.; Yang, Y.; Zhang, Y.; Zhang, P.; Li, Y. Grain-for-green policy and its impacts on grain supply in West China. Land Use Policy 2005, 22, 301–312. [Google Scholar] [CrossRef]
- Liu, H. Evolution of Chinese agricultural supporting policies and rural development. China Agric. Inf. 2012, 15, 24–25. [Google Scholar]
- Wang, X. Sustainable development in Tibet requires control of agricultural nonpoint pollution. Environ. Sci. Technol. 2014, 48, 8944–8945. [Google Scholar] [CrossRef]
- FAOSTAT. 2016. Available online: http://www.fao.org/faostat/en/#data/RL (accessed on 20 May 2019).
- FAOSTAT. 2016. Available online: http://www.fao.org/faostat/en/#data/RFN (accessed on 20 May 2019).
- FAOSTAT. 2016. Available online: http://www.fao.org/faostat/en/#data/RP (accessed on 20 May 2019).
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
Agrochemicals | Utilization Coefficient (%) | References | Solar Transformity (109sej/g) | References |
---|---|---|---|---|
Nitrogen fertilizer | 35.0 | [39] | 3.80 | [26] |
Phosphorus fertilizer | 19.5 | [39] | 3.90 | [26] |
Potassium fertilizer | 47.5 | [39] | 1.10 | [26] |
Compound fertilizer | 38.8 | [40] | 1.60 | [26] |
Pesticides | 60.0 | [40] | 0.380 | [26] |
Plastic film | 35.0 | [40] | 3.80 | [26] |
Period | TR-Qinghai–Tibet Mean (1020 sej) | TR-Qinghai–Tibet Growth Rate (%) | TR-China Growth Rate (%) | TRA-Qinghai–Tibet Growth Rate (%) | TRA-China Growth Rate (%) | TRP-Qinghai–Tibet Growth Rate (%) | TRP-China Growth Rate (%) |
---|---|---|---|---|---|---|---|
1995–1998 | 2.25 | 12.09 | 3.98 | 11.52 | 3.74 | 4.79 | −1.76 |
1999–2004 | 2.34 | 0.42 | 1.81 | 1.69 | 2.99 | −1.11 | −1.68 |
2005–2011 | 2.82 | 1.40 | 2.76 | 0.25 | 3.22 | −4.04 | −1.75 |
2012–2017 | 3.35 | 0.38 | −0.23 | 0.10 | −2.17 | −1.53 | −4.30 |
1995–2017 | 2.74 | 3.26 | 2.16 | 2.93 | 1.91 | −0.95 | −1.98 |
Residue | Qinghai–Tibet Mean (1014 sej/ha) | Qinghai–Tibet Growth Rate (%) | China Mean (1014 sej/ha) | China Growth Rate (%) |
---|---|---|---|---|
N fertilizer | 1.52 | 1.27 | 4.42 | 0.27 |
P fertilizer | 0.85 | 2.71 | 1.88 | 0.98 |
K fertilizer | 0.04 | 3.15 | 0.23 | 5.57 |
Compound fertilizer | 0.85 | 7.55 | 1.99 | 9.95 |
Pesticides | 0.03 | 2.61 | 0.12 | 2.14 |
Plastic film | 0.01 | 90.19 | 0.02 | 7.55 |
TRA | 3.31 | 2.93 | 8.66 | 1.91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, Y. Emergy-Based Evaluation of Changes in Agrochemical Residues on the Qinghai–Tibet Plateau, China. Sustainability 2019, 11, 3652. https://doi.org/10.3390/su11133652
Wang X, Zhang Y. Emergy-Based Evaluation of Changes in Agrochemical Residues on the Qinghai–Tibet Plateau, China. Sustainability. 2019; 11(13):3652. https://doi.org/10.3390/su11133652
Chicago/Turabian StyleWang, Xiuhong, and Yili Zhang. 2019. "Emergy-Based Evaluation of Changes in Agrochemical Residues on the Qinghai–Tibet Plateau, China" Sustainability 11, no. 13: 3652. https://doi.org/10.3390/su11133652
APA StyleWang, X., & Zhang, Y. (2019). Emergy-Based Evaluation of Changes in Agrochemical Residues on the Qinghai–Tibet Plateau, China. Sustainability, 11(13), 3652. https://doi.org/10.3390/su11133652