A Self-Predictable Crop Yield Platform (SCYP) Based On Crop Diseases Using Deep Learning
Abstract
1. Introduction
1.1. Related Works
1.1.1. Smart Farm
1.1.2. Disease Prediction
2. Material and Methods
2.1. Design of a Self-Predictable Crop Yield Platform Based on Crop Diseases Using Deep Learning
2.2. Design of Image Preprocessing Module
Algorithm 1 Image preprocessing of the IPM |
//Image Preprocessing Algorithm Image Preprocess(Image img){ from google.cloud import vision; Image crop, resize, image; SET hint_params by using image SET image_context by using hint_params SET response by using image and image_context SET hints by using response FOR(n = 1 to hint in enumerate(hints)){ print hint COMPUTE vertices FOR(1 to vertex) print vertices bounds END FOR END FOR IF(size(vertices)==size(image) or hints==null) return null; ELSEIF crop=image.crop(hints); resize=image.resize(crop, 128,128); return resize; END IF } //Image storage algorithm int saveImage(Image img, String imageName, String path, String cropsName, String disease, boolean isTraining){ IF(isTraining) Image preImg = Preprocess(img); IF(preImg != null) saveFile(preImg, path+”\”+cropsName+”\Training\”+disease+”\”+imageName+”.jpg”); return 1; ELSE IF return 0; END IF END IF ELSE saveFile(img, path+”\”+cropsName+”\Test\”+imageName+”.jpg”); return 1; END IF } |
2.3. Design of Crop Disease Diagnosis Module
2.4. Design of Crop Yield Prediction Module
Algorithm 2 Operation of LearningCYPM and UsingCYPM functions |
//learning algorithm void LearningCYPM(double dX[][13], double dY[], double a, double w[6][][], Emax, int training_size_n){ SET Initial eSignal[6][], output y, hidden layer node value to 0 and e value to 9999; WHILE (e is greater than Emax) FOR (i= 1 to the number of input layer nodes) y=UsingCYPM(dX[i], w[6][][], 12); END FOR //e computation using loss function e= (dY[i]-y)2; //the computation of error signal eSignal[5][0] = dY[i]-y; FOR(j = 1 to the number of hidden layer nodes) eSignal[4][j] = a*eSignal[5][0]*w[5][j][0]; END FOR FOR(p = 1 to the number of hidden layer) FOR(k = 1 to the number of hidden layer nodes) FOR(j = 1 to the number of hidden layer nodes) eSignal[p][k]=a*eSignal[p+1][j]*w[p+1][k][j]; END FOR END FOR END FOR // weight modification FOR(j = 1 to the number of last hidden layer nodes) w[5][j][0] = w[5][j][0] + a*h[4][j]*eSignal[5][0]; END FOR FOR(p = 4 to 1) FOR(k = 1 to the number of hidden layer nodes) FOR(j = 1 to the number of hidden layer nodes) w[p][j][k] = w[p][j][k] + a*h[p-1][j]*eSignal[p][k] END FOR END FOR END FOR FOR(j = 1 to the number of input layer nodes) FOR(p = 1 to the number of hidden layer nodes) w[0][j][p] = w[0][j][p] + a*x[j]*eSignal[0][p] END FOR END FOR END WHILE } // CYPM computation algorithm double UsingCYPM(double X[], double w[][][]){ SET h[5][size_x+16], NET =0; FOR(p = 1 to the number of hidden layer nodes) FOR(j = 1 to the number of input layer nodes) NET = NET+(x[j]*w[0][j][i]); END FOR h[0][i] = Max(0, NET); NET=0; END FOR FOR(p = 1 to the number of hidden layer) FOR(p = 1 to the number of hidden layer nodes) FOR(j = 1 to the number of hidden layer nodes) NET = NET+(x[j]*w[k][j][i]); END FOR h[k][i] = Max(0, NET); NET=0; END FOR END FOR FOR(j = 1 to the number of hidden layer nodes) NET=h[4][i]*w[5][i][0] END FOR y=Max(0, NET); RETURN y; } |
3. Results and Discussion
3.1. CDDM Performance Analysis
3.2. CYPM Performance Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Use Case: Precision Agriculture, the Internet of Things, and Big Data Management. Available online: https://helioswire.com/case-study-precision-agriculture-the-internet-of-things-and-big-data-management/ (accessed on 18 April 2019).
- Precision Ag & Big Data Learning. Available online: https://www.precisionag.com/systems-management/data/precision-ag-big-data-learning/ (accessed on 20 April 2019).
- Plant Village: A Deep-Learning App Diagnoses Crop Diseases. Available online: https://actu.epfl.ch/news/plantvillage-a-deep-learning-app-diagnoses-crop-di/ (accessed on 16 April 2019).
- Jirapond, M.; Nathaphon, B.; Siriwan, K.; Narongsak, L.; Apirat, W.; Pichetwut, N. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar]
- Chae, C.-J.; Cho, H.-J. Enhanced secure device authentication algorithm in P2P-based smart farm system. Peer-To-Peer Netw. Appl. 2018, 11, 1230–1239. [Google Scholar] [CrossRef]
- Hwang, S.I.; Joo, J.-M.; Joo, S.-Y. ICT-based smart farm factory systems through the case of hydroponic ginseng plant factory. J. Korean Inst. Commun. Inf. Sci. 2015, 40, 780–790. [Google Scholar]
- Jo, H.-K.; Choi, H.-H.; Kim, D.-S.; Lee, J.-M. Design and implementation of smart farm wireless network: LoRa and IEEE 802.11 wireless backhaul network. J. Korean Inst. Commun. Inf. Sci. 2018, 43, 850–862. [Google Scholar] [CrossRef]
- Gan, H.; Lee, W.S. Development of a navigation system for a smart farm. IFAC-PapersOnLine 2018, 51, 1–4. [Google Scholar] [CrossRef]
- Kim, J.M.; Moon, S.J.; Hwang, D.-Y. A Study on greenhouse smart farm system based on wireless sensor. Adv. Sci. Lett. 2018, 24, 2041–2045. [Google Scholar] [CrossRef]
- Choi, W.H.; Jie, M.S. Study on the development of wireless sensor network using smart farm system. J. Korea Entertain. Ind. Assoc. 2014, 8, 387–393. [Google Scholar] [CrossRef]
- Liu, B.L.; Yuan, M.H.; Chen, G.R.; Peng, J. The design and simulation of a smart farm system based on ultra-narrow band communication. Science 2013, 427, 1398–1401. [Google Scholar]
- Suk, C.M. Development of serious game system for cultivating using smart farm technology. KSCG 2016, 29, 35–41. [Google Scholar]
- Jeong, Y.N.; Son, S.; Lee, S.S.; Lee, B.K. A total crop-diagnosis platform based on deep learning models in a natural nutrient environment. Appl. Sci. 2018, 8, 1992. [Google Scholar] [CrossRef]
- Feng, S.J.; Gang, W.; Yong, W. The dynamic model prediction study of the forest disease, insect pest and rat based on BP neural networks. J. Agric. Sci. 2012, 4, 221–224. [Google Scholar]
- Alves, D.P.; Tomaz, R.S.; Laurindo, B.S.; Laurindo, R.D.S.; Silva, F.F.E.; Cruz, C.D.; Nick, C.; da Silva, D.J.H. Artificial neural network for prediction of the area under the disease progress curve of tomato late blight. Sci. Agric. 2017, 74, 51–59. [Google Scholar] [CrossRef]
- Igarashi, W.T.; de França, J.A.; Silva, M.A.; de Igarashi, S.; Saab, O.J.G.A. Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr. Semina Ciências Agrárias 2016, 37, 2881–2890. [Google Scholar] [CrossRef][Green Version]
- Etebu, E.; Osborn, A.M. Molecular prediction of pea footrot disease. Asian J. Agric. Sci. 2011, 3, 417–426. [Google Scholar]
- Goldstein, A.; Fink, L.; Meitin, A.; Bohadana, S.; Lutenberg, O.; Ravid, G. Applying machine learning on sensor data for irrigation recommendations: Revealing the agronomist’s tacit knowledge. Precis. Agric. 2017, 19, 421–444. [Google Scholar] [CrossRef]
- Tanaka, K. A java framework for developing a plant growth and disease prediction model. Agric. Inf. Res. 2006, 15, 183–193. [Google Scholar]
- Amar, D.; Vizel, A.; Levy, C.; Shamir, R. ADEPTUS: A discovery tool for disease prediction, enrichment and network analysis based on profiles from many diseases. Bioinformatics 2018, 34, 1959–1961. [Google Scholar] [CrossRef]
- Okonya, J.S.; Ocimati, W.; Nduwayezu, A.; Kantungeko, D.; Niko, N.; Blomme, G.; Legg, J.P.; Kroschel, J. Farmer reported pest and disease impacts on root, tuber, and banana crops and livelihoods in Rwanda and Burundi. Sustainability 2019, 11, 1592. [Google Scholar] [CrossRef]
- Abdipour, M.; Younessi-Hmazekhanlu, M.; RezaRamazani, S.H.; Omidi, A.H. Artificial neural networks and multiple linear regression as potential methods for modeling seed yield of safflower (Carthamus tinctorius L.). Ind. Crops Prod. 2019, 127, 185–194. [Google Scholar] [CrossRef]
- Niedbała, G. Application of artificial neural networks for multi-criteria yield prediction of winter rapeseed. Sustainability 2019, 11, 533. [Google Scholar] [CrossRef]
- Kerkech, M.; Hafiane, A.; Canals, R. Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Comput. Electron. Agric. 2018, 155, 237–243. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. Plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 2019, 180, 96–107. [Google Scholar] [CrossRef]
- Gabryel, M.; Damaševičius, R. The image classification with different types of image features. Int. Conf. Artif. Intell. Soft Comput. 2017, 10245, 497–506. [Google Scholar]
- Improve Your Model Performance Using Cross Validation (in Python and R). Available online: https://www.analyticsvidhya.com/blog/2018/05/improve-model-performance-cross-validation-in-python-r/ (accessed on 10 June 2019).
Layer | Input Channel | Filter | Output Channel | Stride | Max Pooling | Activation Function |
---|---|---|---|---|---|---|
Convolution layer 1 | 3 | (4, 4) | 20 | 1 | – | ReLU |
Max pooling layer 1 | 20 | – | 20 | 2 | (2, 2) | – |
Convolution layer 2 | 20 | (4, 4) | 40 | 1 | – | ReLU |
Max pooling layer 2 | 40 | – | 40 | 2 | (2, 2) | – |
Convolution layer 3 | 40 | (4, 4) | 60 | 1 | 1 | ReLU |
Max pooling layer 3 | 60 | – | 60 | 2 | (2, 2) | – |
Flatten | – | – | – | - | – | – |
Fully connected layer | – | – | – | - | – | Softmax |
Input Node | Description | Source |
---|---|---|
Disease 1 | CDDM | |
Disease 1′ infectious | ||
Disease 2 | ||
Disease 2′ infectious | ||
Disease 3 | ||
Disease 3′ infectious | ||
… | … | |
Normal | ||
Precipitation | meteorologicaladministration | |
Humidity | ||
Sunshine | ||
Temperature | ||
Ground temperature | ||
Evaporation | ||
Atmospheric pressure | ||
Crop name | server | |
Date remaining (daily) to harvest | ||
Water pH | ||
Water quality | ||
Soil pH |
The Number of Total Datasets | R-CNN | YOLO | CNN | |||
---|---|---|---|---|---|---|
Disease Name Failure | Disease Count Failure | Disease Name Failure | Disease Count Failure | Disease Name Failure | Disease Count Failure | |
5500 | 0 | 0 | 1 | 0 | 0 | 0 |
6000 | 9 | 1 | 1 | 0 | 0 | 0 |
6500 | 6 | 0 | 2 | 1 | 2 | 1 |
8000 | 6 | 1 | 31 | 5 | 2 | 1 |
8500 | 15 | 1 | 35 | 7 | 3 | 2 |
10,000 | 29 | 2 | 96 | 10 | 10 | 3 |
10,500 | 34 | 2 | 101 | 12 | 11 | 3 |
12,000 | 115 | 10 | 306 | 28 | 21 | 8 |
12,500 | 152 | 17 | 344 | 29 | 22 | 9 |
14,000 | 244 | 21 | 478 | 53 | 33 | 10 |
14,500 | 223 | 25 | 528 | 51 | 30 | 8 |
16,000 | 371 | 39 | 682 | 89 | 39 | 12 |
16,500 | 426 | 34 | 691 | 98 | 46 | 8 |
18,000 | 599 | 81 | 802 | 100 | 52 | 9 |
18,500 | 622 | 75 | 841 | 93 | 64 | 8 |
20,000 | 712 | 86 | 930 | 120 | 82 | 10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Jeong, Y.; Son, S.; Lee, B. A Self-Predictable Crop Yield Platform (SCYP) Based On Crop Diseases Using Deep Learning. Sustainability 2019, 11, 3637. https://doi.org/10.3390/su11133637
Lee S, Jeong Y, Son S, Lee B. A Self-Predictable Crop Yield Platform (SCYP) Based On Crop Diseases Using Deep Learning. Sustainability. 2019; 11(13):3637. https://doi.org/10.3390/su11133637
Chicago/Turabian StyleLee, SangSik, YiNa Jeong, SuRak Son, and ByungKwan Lee. 2019. "A Self-Predictable Crop Yield Platform (SCYP) Based On Crop Diseases Using Deep Learning" Sustainability 11, no. 13: 3637. https://doi.org/10.3390/su11133637
APA StyleLee, S., Jeong, Y., Son, S., & Lee, B. (2019). A Self-Predictable Crop Yield Platform (SCYP) Based On Crop Diseases Using Deep Learning. Sustainability, 11(13), 3637. https://doi.org/10.3390/su11133637