Spatio-temporal Evolution and Factors Influencing the Control Efficiency for Soil and Water Loss in the Wei River Catchment, China
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Control Efficiency Calculation
- (1)
- DEA is used to calculate each county’s (k = 1, 2, …,n) efficiency value , and represent the input and output of the kth county respectively.
- (2)
- generate random efficiency , where n represents county, b means iterating b times, represents the kth random value in the bth interaction, where k = 1, …,n;
- (3)
- compute estimated sample , where , k = 1, …,n;
- (4)
- compute each estimated sample’s efficiency based on the DEA method, where k = 1,…, n;
- (5)
- loop over step (2) and (4) for B times. In this paper, 1000 iterations were conducted and the confidence level of 95% was used, thereby generating a 1000 unit dataset to represent the kth random value in the bth iteration. The smooth bootstrap distribution can simulate the original sample estimator and estimate the corrected DEA efficiency deviation:The bias-corrected estimator is presented as follows:
2.3. Spatial Data Analysis of Control Efficiency
2.3.1. Global Moran’s Index
2.3.2. Getis-ord Gi* Index
2.4. Influencing Factors of Control Efficiency based on the Spatial Statistic model
2.4.1. GWR Model
2.4.2. The Selection of Influencing Factors
2.5. Data Collection and Processing
3. Results
3.1. Analysis of Inter-annual Fluctuation Trends of Runoff, Sediment Concentration and Discharge, and Precipitation
3.2. Measuring Control Efficiency
3.3 The Spatial and Temporal Pattern Evolution Characteristics of Control Efficiency
3.3.1. Overall Spatial Pattern Evolution Characteristics
3.3.2. Local Spatial Pattern Evolution Characteristics
3.4. Factors Affecting the Spatio-temporal Changes of Control Efficiency
3.4.1. The Impact of Proportion of Shrub-grass Area Effect on Control Efficiency
3.4.2. The Impact of Slope and Precipitation on Control Efficiency
3.4.3. The Impact of Per Capita GDP on Control Efficiency
3.4.4. The Impact of Per Capita Grain Yield on Control Efficiency
3.4.5. The Impact of Population Density on Control Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgement
Conflicts of Interest
Appendix A
County | 2005 | 2010 | 2015 | ||||
---|---|---|---|---|---|---|---|
DEA | Bootstrap DEA | Bias | Lower Bound | Upper Bound | Bootstrap DEA | Bootstrap DEA | |
Baoji urban area | 0.500 | 0.306 | 0.194 | 0.034 | 0.462 | 0.304 | 0.317 |
Baoji | 0.701 | 0.504 | 0.197 | 0.177 | 0.670 | 0.316 | 0.265 |
Bin | 0.522 | 0.325 | 0.197 | 0.160 | 0.502 | 0.090 | 0.108 |
Chunhua | 0.500 | 0.352 | 0.148 | 0.067 | 0.962 | 0.227 | 0.305 |
Dali | 0.320 | 0.302 | 0.019 | 0.279 | 0.313 | 0.323 | 0.318 |
Feng | 0.400 | 0.293 | 0.107 | 0.037 | 0.387 | 0.298 | 0.527 |
Fengxiang | 0.413 | 0.225 | 0.188 | 0.103 | 0.341 | 0.181 | 0.137 |
Fufeng | 0.394 | 0.228 | 0.167 | 0.076 | 0.383 | 0.159 | 0.174 |
Fuping | 0.203 | 0.189 | 0.014 | 0.171 | 0.197 | 0.201 | 0.190 |
Gaoling | 0.051 | 0.037 | 0.014 | 0.019 | 0.049 | 0.142 | 0.155 |
Hu | 0.400 | 0.298 | 0.102 | 0.035 | 0.462 | 0.303 | 0.335 |
Hua | 0.276 | 0.258 | 0.017 | 0.237 | 0.269 | 0.318 | 0.310 |
Huayin | 0.158 | 0.143 | 0.015 | 0.122 | 0.154 | 0.134 | 0.135 |
Jingyang | 0.373 | 0.333 | 0.040 | 0.273 | 0.363 | 0.281 | 0.246 |
Lantian | 0.284 | 0.183 | 0.101 | 0.083 | 0.265 | 0.207 | 0.235 |
Liquan | 0.304 | 0.209 | 0.095 | 0.105 | 0.264 | 0.109 | 0.216 |
Lintong | 0.131 | 0.099 | 0.032 | 0.057 | 0.127 | 0.443 | 0.366 |
Linyou | 0.232 | 0.151 | 0.081 | 0.073 | 0.206 | 0.159 | 0.213 |
Long | 0.500 | 0.319 | 0.181 | 0.040 | 0.484 | 0.385 | 0.361 |
Mei | 0.348 | 0.240 | 0.108 | 0.120 | 0.337 | 0.156 | 0.254 |
Pucheng | 0.248 | 0.226 | 0.022 | 0.192 | 0.242 | 0.288 | 0.254 |
Qishan | 0.216 | 0.154 | 0.062 | 0.081 | 0.190 | 0.102 | 0.142 |
Qianyang | 0.500 | 0.310 | 0.190 | 0.035 | 0.962 | 0.385 | 0.382 |
Qian | 0.700 | 0.502 | 0.198 | 0.169 | 0.661 | 0.450 | 0.310 |
Sanyuan | 0.152 | 0.127 | 0.025 | 0.091 | 0.148 | 0.110 | 0.098 |
Taibai | 0.500 | 0.306 | 0.194 | 0.039 | 0.474 | 0.318 | 0.338 |
Tongchuan urban area | 0.039 | 0.029 | 0.009 | 0.026 | 0.031 | 0.033 | 0.025 |
Tongguan | 0.079 | 0.074 | 0.005 | 0.068 | 0.077 | 0.078 | 0.087 |
Weinan urban area | 0.019 | 0.018 | 0.001 | 0.016 | 0.019 | 0.021 | 0.021 |
Wugong | 0.087 | 0.051 | 0.036 | 0.019 | 0.085 | 0.306 | 0.315 |
Xi’an urban area | 0.025 | 0.020 | 0.005 | 0.012 | 0.024 | 0.029 | 0.028 |
Xianyang urban area | 0.015 | 0.007 | 0.008 | 0.003 | 0.011 | 0.006 | 0.009 |
Xingping | 0.680 | 0.555 | 0.125 | 0.211 | 0.653 | 0.176 | 0.197 |
Xunyi | 0.160 | 0.136 | 0.024 | 0.093 | 0.154 | 0.134 | 0.172 |
Yao | 0.436 | 0.241 | 0.195 | 0.080 | 0.421 | 0.483 | 0.456 |
Yijun | 0.283 | 0.266 | 0.018 | 0.243 | 0.276 | 0.317 | 0.242 |
Yongshou | 0.500 | 0.370 | 0.130 | 0.062 | 0.477 | 0.353 | 0.305 |
Changan | 0.490 | 0.359 | 0.131 | 0.069 | 0.482 | 0.302 | 0.649 |
Zhouzhi | 0.555 | 0.369 | 0.186 | 0.159 | 0.539 | 0.316 | 0.305 |
Appendix B
References
- Kinzig, A.P.; Perrings, C.; Chapin, F.S.; Polasky, S.; Smith, V.K.; Tilman, D.; Turner, B.L. Paying for Ecosystem Services—Promise and Peril. Science 2011, 334, 603–604. [Google Scholar] [CrossRef] [PubMed]
- Rosewell, C.J. Soil and Water quality: An Agenda for Agriculture; National Academy Press: Washington, DC, USA, 1999. [Google Scholar]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Boulain, N.; Cappelaere, B.; Séguis, L.; Gignoux, J.; Peugeot, J. Hydrologic and land use impacts on vegetation growth and NPP at the watershed scale in a semi-arid environment. Reg. Environ. Chang. 2006, 6, 147–156. [Google Scholar] [CrossRef]
- Li, L.J.; Zhang, L.; Wang, H.; Wang, J.; Yang, J.W.; Jiang, D.J.; Li, J.Y.; Qin, D.Y. Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China. Hydrol. Process. 2007, 21, 3485–3491. [Google Scholar] [CrossRef] [Green Version]
- Patterson, L.A.; Lutz, B.; Doyle, M.W. Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA. Water Resour. Res. 2013, 49, 7278–7291. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Tian, P.; Mu, X.; Jiao, J.Y.; Wang, F.; Gao, P. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. J. Hydrol. 2014, 519, 387–398. [Google Scholar] [CrossRef]
- The Bureau of Hydrology, Yellow River Conservancy Commission. Technical Manual for Flood Control in the Wei River Basin. 2015. Available online: https://www.ears.nl/trelloboard/57b1e4f217fd79caa6bdccc7/attachments/Yellow%20River%20Final%20Report.pdf (accessed on 27 December 2018).
- Dang, X.H.; Wu, Y.B.; Liu, G.B.; Yang, Q.K.; Yu, X.T.; Jia, Y.L. Spatial-temporal changes of ecological footprint in the Loess Plateau after ecological construction between 1995 and 2010. Geogr. Res. 2018, 37, 761–771. (In Chinese) [Google Scholar]
- Xu, J.T.; Yin, R.S.; Li, Z.; Liu, C. China’s ecological rehabilitation: The unprecedented efforts and dramatic impacts of reforestation and slope protection in western China. China Environ. Ser. 2005, 6, 1–32. [Google Scholar]
- Liu, J.; Li, S.; Ouyang, Z.; Tam, C.; Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [Google Scholar] [CrossRef]
- State Forestry Administration (SFA). China Forestry Development Reports; Forestry Press: Beijing, China, 2003. [Google Scholar]
- Shaanxi Provincial Bureau of Statistics, NBS Survey Office in Shaanxi. Shaanxi Statistical Yearbook, 2001–2016; Shaanxi Provincial Bureau of Statistics, NBS Survey Office in Shaanxi: Xi’an, China, 2016. (In Chinese)
- Shaanxi Provincial Department of Water Resources. Shaanxi Provincial Water Statistics Yearbook, 2001–2016; Shaanxi Provincial Department of Water Resources: Xi’an, China, 2016. (In Chinese)
- Feng, X.M.; Cheng, W.; Fu, B.J.; Lv, Y.H. The role of climatic and anthropogenic stresses on long-term runoff reduction from the Loess Plateau, China. Sci. Total Environ. 2016, 571, 688–698. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Fu, B.J.; Piao, S.L.; Lv, Y.H.; Feng, X.M.; Wang, Y.F. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2017, 9, 38–41. [Google Scholar] [CrossRef]
- USDA Soil Conservation Service. Save Soil with Terraces; Des Moines; USDA Soil Conservation Service: Washington, DC, USA, 1980.
- Mu, X.M.; Hu, C.H.; Gao, P.; Wang, F.; Zhao, G.J. Key issues and reflections of research on sediment flux of the Yellow River. Yellow River 2017, 39, 1–3. (In Chinese) [Google Scholar]
- Zhang, G.S.; Chan, K.Y.; Oates, A.; Heenan, D.P.; Huang, G.B. Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Tillage Res. 2007, 92, 122–128. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Novara, A.; Pulido, M.; Kapović-Solomun, M.; Keesstra, S.D. Policies can help to apply successful strategies to control soil and water losses. The case of chipped pruned branches (CPB) in Mediterranean citrus plantations. Land Use Policy 2018, 75, 734–745. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Li, P.F.; Zhao, B.L.; Xu, R.R.; Zhao, G.J. Use of double mass curves in hydrologic benefit evaluations. Hydrol. Process. 2017, 31, 4639–4646. [Google Scholar] [CrossRef]
- Yin, R.S.; Yin, G.P.; Li, L.Y. Assessing China’s ecological restoration programs: What’s been done and what remains to be done? Environ. Manag. 2010, 45, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Jack, B.K.; Kousky, C.; Sims, K.R.E. Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms. Proc. Natl. Acad. Sci. USA 2008, 105, 9465–9470. [Google Scholar] [CrossRef] [Green Version]
- Wunder, S.; Engel, S.; Pagiola, S. Taking stock: A comparative analysis of payments for environmental services programs in developed and developing countries. Ecol. Econ. 2008, 65, 834–852. [Google Scholar] [CrossRef]
- Nicolaus, K.; Jetzkowitz, J. How Does Paying for Ecosystem Services Contribute to Sustainable Development? Evidence from Case Study Research in Germany and the UK. Sustainability 2014, 6, 3019–3042. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Suo, L.M. Innovation of Network Governance Model for China’s Regional Water Sharing Conflict. J. Public Manag. 2010, 7, 107–114. (In Chinese) [Google Scholar]
- Suzuki, S.; Nijkamp, P.; Rietveld, P. Regional efficiency improvement by means of data envelopment analysis through Euclidean distance minimization including fixed input factors: An application to tourist regions in Italy. Pap. Reg. Sci. 2011, 90, 67–89. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, R. Contributions of local agglomeration to productivity: Stochastic frontier estimations from Japanese manufacturing firm data. Pap. Reg. Sci. 2012, 91, 569–597. [Google Scholar]
- Young, D.L.; Walker, D.J.; Kanjo, P.L. Cost Effectiveness and Equity Aspects of Soil Conservation Programs in a Highly Erodible Region. Am. J. Agric. Econ. 1991, 73, 1053–1062. [Google Scholar] [CrossRef]
- Cooper, J.C.; Osborn, C.T. The Effect of Rental Rates on the Extension of Conservation Reserve Program Contracts. Am. J. Agric. Econ. 1998, 80, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Benítez, P.C.; Kuosmanen, T.; Olschewski, R.; Kooten, G.C.V. Conservation Payments under Risk: A Stochastic Dominance Approach. Am. J. Agric. Econ. 2010, 88, 1–15. [Google Scholar]
- Claassen, R.; Cattaneo, A.; Johansson, R. Cost-effective design of agri-environmental payment programs: U.S. experience in theory and practice. Ecol. Econ. 2008, 65, 737–752. [Google Scholar] [CrossRef]
- Dumbrovský, M.; Sobotková, V.; Šarapatka, B.; Chlubna, L.; Váchalová, R. Cost-effectiveness evaluation of model design variants of broad-base terrace in soil erosion control. Ecol. Eng. 2014, 68, 260–269. [Google Scholar] [CrossRef]
- Tenge, A.J.; Graaff, J.D.; Hella, J.P. Financial efficiency of major soil and water conservation measures in West Usambara highlands, Tanzania. Appl. Geogr. 2005, 25, 348–366. [Google Scholar] [CrossRef]
- Wang, L.F.; Sun, P.P. Study on the evaluation index system of regional environmental governance efficiency test. Stat. Decis. 2012, 10, 60–62. [Google Scholar]
- Yin, R.S.; Zhao, M.J. Ecological restoration programs and payments for ecosystem services as integrated biophysical and socioeconomic processes—China’s experience as an example. Ecol. Econ. 2012, 73, 56–65. [Google Scholar] [CrossRef]
- Liu, P.; Yin, R.S.; Zhao, M.J. Reformulating China’s ecological restoration policies: What can be learned from comparing Chinese and American experiences? For. Policy Econ. 2019, 98, 54–61. [Google Scholar] [CrossRef]
- Steffen, W. Interdisciplinary research for managing ecosystem services. Proc. Natl. Acad. Sci. USA 2009, 106, 1301–1302. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.; Gross-Camp, N.; Kebede, B.; McMuire, S. Measuring effectiveness, efficiency and equity in an experimental Payments for Ecosystem Services trial. Glob. Environ. Chang. 2014, 28, 216–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.A. Diversities of administrations and drainage basins and sustainability development in China. J. Beijing Norm. Univ. (Soc. Sci.) 2002, 4, 69–75. (In Chinese) [Google Scholar]
- Fotheringham, A.S.; Charlton, M.; Brunsdon, C. The geography of parameter space: An investigation of spatial non-stationarity. Int. J. Geogr. Inf. Syst. 1996, 10, 605–627. [Google Scholar] [CrossRef]
- The National People’s Congress. The Government Working Report by Premier Keqiang Li. 2018. Available online: http://www.gov.cn/premier/2018-03/22/content_5276608.htm (accessed on 27 December 2018).
- Walling, D.E. Erosion and sediment yield in a changing environment. Geol. Soc. Lond. Spec. Publ. 1996, 115, 43–56. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Li, S.L. Using data envelopment analysis to evaluate efficiency in the economic performance of Chinese cities. Soc.-Econ. Plan. Sci. 1989, 23, 325–344. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Song, M.L.; Zhang, L.L.; Liu, W.; Fisher, R. Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data. Appl. Energy 2013, 112, 1049–1055. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Simar, L.; Wilson, P.W. Of Course We Can Bootstrap DEA Scores! But Does It Mean Anything? Logic Trumps Wishful Thinking. J. Prod. Anal. 1999, 11, 93–97. [Google Scholar] [CrossRef]
- Hawdon, D. Efficiency, performance and regulation of the international gas industry—A bootstrap DEA approach. Energy Policy 2003, 31, 1167–1178. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Qiu, F.; Laliberté, L.; Swallow, B.; Jeffrey, S. Impacts of fragmentation and neighbor influences on farmland conversion: A case study of the Edmonton-Calgary Corridor, Canada. Land Use Policy 2015, 48, 482–494. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M.E. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; Wiley: Chichester, UK, 2002. [Google Scholar]
- Gao, J.; Li, S. Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using Geographically Weighted Regression. Appl. Geogr. 2011, 31, 292–302. [Google Scholar] [CrossRef]
- Su, S.; Xiao, R.; Zhang, Y. Multi-scale analysis of spatially varying relationships between agricultural landscape patterns and urbanization using geographically weighted regression. Appl. Geogr. 2012, 32, 360–375. [Google Scholar] [CrossRef]
- Hu, X.; Hong, W.; Qiu, R.; HONG, T.; Chen, C.; Wu, C.Z. Geographic variations of ecosystem service intensity in Fuzhou City, China. Sci. Total Environ. 2015, 512–513, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Peng, J.; Liu, Y. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecol. Indic. 2017, 82, 50–60. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Simonoff, J.S.; Tsai, C.L. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. R. Stat. Soc. Ser. B 1998, 6, 271–293. [Google Scholar] [CrossRef]
- Liu, S.L.; Dong, Y.H.; Li, D.; Liu, Q.; Wang, J.; Zhang, X.L. Effects of different terrace protection measures in a sloping land consolidation project targeting soil erosion at the slope scale. Ecol. Eng. 2013, 53, 46–53. [Google Scholar] [CrossRef]
- Zhang, L.; Podlasly, C.; Ren, Y.; Feger, K.H.; Wang, Y.H.; Schwärzel, K. Separating the effects of changes in land management and climatic conditions on long-term streamflow trends analyzed for a small catchment in the Loess Plateau region, NW China. Hydrol. Process. 2014, 28, 1284–1293. [Google Scholar] [CrossRef]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, 411. [Google Scholar] [CrossRef]
- Pimentel, D.; Harman, R.; Pacenza, M.; Pecarsky, J.; Pimentel, M. Natural Resources and an Optimum Human Population. Popul. Environ. 1994, 15, 347–369. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, X.; Sun, X.; Wang, F. Landscape effects of environmental impact on bay-area wetlands under rapid urban expansion and development policy: A case study of Lianyungang, China. Landsc. Urban Plan. 2010, 94, 218–227. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.H. Agricultural scale management does not contradict the increase in yields. Econ. Res. J. 1996, 1, 55–58. (In Chinese) [Google Scholar]
- Niu, Z.R.; Zhao, W.Z.; Liu, J.Q.; Chen, X.L. Study on impact from change of land-use and land-cover on runoff in Weihe River Basin in Gansu Province. Water Resour. Hydropower Eng. 2012, 43, 5–10. (In Chinese) [Google Scholar]
- Liu, X.Z.; Kang, S.Z.; Shao, M.A. Hystersis mechanism and model of rainfall-infiltration-runoff on hillslope in Loess Area. Trans. Chin. Soc. Agric. Eng. 1999, 15, 95–99. (In Chinese) [Google Scholar]
- Resource and Environment Data Cloud Platform. Land-Use Type Data in China, 2000–2015. Available online: http://www.resdc.cn (accessed on 27 December 2018).
- Liu, J.Y.; Zhang, Z.X.; Zhuang, D.F.; Wang, Y.M.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Jiang, N.; Wu, S.X. A study on the spatial-temporal dynamic changes of land-use and driving forces analyses of China in the 1990s. Geogr. Res. 2003, 6, 38–42. [Google Scholar]
- National Climatic Center of the China Meteorological Administration. China’s Surface Climate Data of Daily Value Dataset, 2000–2015. Available online: http://cdc.nmic.cn/ (accessed on 27 December 2018).
- National Catalogue Services for Geographic Information. 1:1 Million National Basic Geodatabase. 2015. Available online: http://www.webmap.cn/ (accessed on 27 December 2018).
- Wu, W.; Xu, Z.X.; Li, F.P. Hydrologic Alteration Analysis in the Guanzhong Reach of the Wei River. J. Nat. Resour. 2012, 27, 1124–1137. (In Chinese) [Google Scholar]
- Wang, Y.J.; Fu, X.D.; Wang, G.Q. Precipitation variations in the Yellow River Basin of China. J. Tsinghua Univ. (Sci. Technol.) 2018, 58, 972–978. (In Chinese) [Google Scholar]
- Färe, R.; Grosskopf, S.; Norris, M. Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Reply. Am. Econ. Rev. 1994, 84, 1040–1044. [Google Scholar]
- Hu, A.G.Z.; Gary, H.J.; Guan, X.J.; Qian, J.C. R&D and Technology Transfer: Firm-Level Evidence from Chinese Industry. Rev. Econ. Stat. 2005, 87, 780–786. [Google Scholar]
- Zhang, D.J.; Jia, Q.Q.; Xu, X.; Yao, S.B.; Chen, H.B.; Hou, X.H. Contribution of ecological policies to vegetation restoration: A case study from Wuqi County in Shaanxi Province, China. Land Use Policy 2018, 73, 400–411. [Google Scholar] [CrossRef]
- Tao, R.; Xu, Z.G.; Xu, J.T. Grain for Green Project, Grain policy and sustainability development. Soc. Sci. China 2004, 6, 25–38. (In Chinese) [Google Scholar]
- Uchida, E.; Xu, J.T.; Xu, Z.G.; Rozelle, S. Are the poor benefting from China’s land conservation program? Environ. Dev. Econ. 2007, 12, 593–620. [Google Scholar] [CrossRef]
- Zhang, D.W. Why would so much forestland in China not grow trees? Manag. World 2001, 3, 120–125. (In Chinese) [Google Scholar]
- Zhang, D.W. China’s forest expansion in the last three plus decades: Why and how? For. Policy Econ. 2019, 98, 75–81. [Google Scholar] [CrossRef]
- The State Council. Notice of the State Council on Improving the Policy of Sloping Land Conversion Program (No. 25). 2007. Available online: http://www.forestry.gov.cn/main/3031/content-860180.html (accessed on 27 December 2018).
- Liu, X.Y. Causes of the Yellow River Water and Sediment Reduction in Recent Years; Science Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Yin, R.S.; David, H.N. Long-run timber supply and the economics of timber production. For. Sci. 1997, 43, 113–120. [Google Scholar]
- Bowman, A.W. An alternative method of cross-validation for the smoothing of density estimates. Biometrika 1984, 71, 353–360. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Zhang, D.J.; Cheng, Q.M.; Agterberg, F. Application of spatially weighted technology for mapping intermediate and felsic igneous rocks in Fujian Province, China. J. Geochem. Explor. 2017, 178, 55–66. [Google Scholar] [CrossRef]
- Yin, R.S. An Integrated Assessment of China’s Ecological Restoration Programs; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
Variables Type | Abbr. | Variable Definition |
---|---|---|
Input indicators | I1 | Ratio of restored farmland to forest/grass and terraced fields across the administrative area |
I2 | The amount of investment in SLCP and terraced construction in each sample county | |
Output indicators | O1 | Average annual runoff |
O2 | Average annual sediment concentration | |
O3 | Average annual sediment discharge |
Variable Definition | Abbr. | Unit | Excepted Sign |
---|---|---|---|
Ratio of sum areas of shrubs and grasslands to the administrative area | cover | % | + |
Average slope of each sample county | slope | ° | - |
Average annual precipitation | prep | mm | - |
Per capita GDP | pgdp | Yuan | + |
Per capita grain yield | pgrain | t | + |
Population density of each sample county | density | person/km2 | - |
Index | 2005 | 2010 | 2015 |
---|---|---|---|
Moran’s Index | 0.192 | 0.134 | 0.151 |
z-value | 2.295 | 1.663 | 1.746 |
p-value | 0.022 | 0.094 | 0.081 |
Variables | 2005 | 2010 | 2015 |
---|---|---|---|
lnintercept | −1.91~−1.5207 *** | −1.55~−1.05 *** | −1.39~−1.24 *** |
lncover | 0.17~0.39 ** | 0.050~0.120 | 0.170~0.23 * |
(0.22) | (0.06) | (0.20) | |
lnslope | −0.32~0.01 | −0.42~−0.20 * | −0.32~−0.15 * |
(−0.09) | (−0.26) | (−0.25) | |
lnprep | −0.17~0.01 * | −0.01~0.36 | 0.40~0.55 *** |
(−0.12) | (0.12) | (0.49) | |
lnpgdp | 1.83~13.12 * | −2.45~2.31 | −1.18~1.51 |
(7.14) | (−1.72) | (−0.82) | |
(lnpgdp)2 | −13.48~−2.18 ** | 1.14~2.44 | 0.47~1.48 |
(−7.51) | (1.77) | (0.65) | |
lnpgrain | 0.16~0.33 * | 0.01~0.20 | 0.05~0.68 ** |
(0.25) | (0.10) | (0.43) | |
lndensity | −0.46~−0.24 ** | −0.77~−0.25 *** | −0.90~0.01 ** |
(−0.35) | (−0.53) | (−0.60) | |
bandwidth | 100 | 90 | 90 |
AICc | 104.60 | 118.31 | 104.78 |
R2 | 0.58 | 0.50 | 0.63 |
Adjusted R2 | 0.36 | 0.28 | 0.42 |
GWR Residuals | 15.18 | 16.43 | 11.87 |
Global Residuals | 17.94 | 25.50 | 16.42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, T.; Yao, S.; Deng, Y. Spatio-temporal Evolution and Factors Influencing the Control Efficiency for Soil and Water Loss in the Wei River Catchment, China. Sustainability 2019, 11, 216. https://doi.org/10.3390/su11010216
Wang Y, Zhang T, Yao S, Deng Y. Spatio-temporal Evolution and Factors Influencing the Control Efficiency for Soil and Water Loss in the Wei River Catchment, China. Sustainability. 2019; 11(1):216. https://doi.org/10.3390/su11010216
Chicago/Turabian StyleWang, Yifei, Tingting Zhang, Shunbo Yao, and Yuanjie Deng. 2019. "Spatio-temporal Evolution and Factors Influencing the Control Efficiency for Soil and Water Loss in the Wei River Catchment, China" Sustainability 11, no. 1: 216. https://doi.org/10.3390/su11010216
APA StyleWang, Y., Zhang, T., Yao, S., & Deng, Y. (2019). Spatio-temporal Evolution and Factors Influencing the Control Efficiency for Soil and Water Loss in the Wei River Catchment, China. Sustainability, 11(1), 216. https://doi.org/10.3390/su11010216