Network Analysis on Green Technology in National Research and Development Projects in Korea
Abstract
1. Introduction
2. Literature Review of Green Technology
3. Research Method
3.1. Data
3.2. Social Network Analysis
4. Results and Policy Implications
4.1. Keyword Trends in GT R&D
4.2. Technical Cluster Trends in GT R&D
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhu, J.; Hua, W. Visualizing the knowledge domain of sustainable development research between 1987 and 2015: A bibliometric analysis. Scientometrics 2017, 110, 893–914. [Google Scholar] [CrossRef]
- Jang, E.K.; Park, M.S.; Roh, T.W.; Han, K.J. Policy Instruments for Eco-Innovation in Asian Countries. Sustainability 2015, 7, 12586–12614. [Google Scholar] [CrossRef]
- Christen, M.; Schmidt, S. A formal framework for conceptions of sustainability—A theoretical contribution to the discourse in sustainable development. Sustain. Dev. 2012, 20, 400–410. [Google Scholar] [CrossRef]
- Smith, A.; Voß, J.; Grin, J. Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. Res. Policy 2010, 39, 435–448. [Google Scholar] [CrossRef]
- Yun, S. The Ideological Basis and the Reality of Low Carbon Green Growth. ECO 2009, 13, 219–266. [Google Scholar]
- Harris, J. Sustainability and sustainable development. Int. Soc. Ecol. Econ. 2003, 1, 1–12. [Google Scholar]
- Calza, F.; Parmentola, A.; Tutore, I. Types of Green Innovations: Ways of Implementation in a Non-Green Industry. Sustainability 2017, 9, 1301. [Google Scholar] [CrossRef]
- Ma, Y.; Hou, G.; Xin, B. Green Process Innovation and Innovation Benefit: The Mediating Effect of Firm Image. Sustainability 2017, 9, 1778. [Google Scholar] [CrossRef]
- Albort-Morant, G.; Henseler, J.; Leal-Millán, A.; Cepeda-Carrión, G. Mapping the Field: A Bibliometric Analysis of Green Innovation. Sustainability 2017, 9, 1011. [Google Scholar] [CrossRef]
- Schiederig, T.; Tietze, F.; Herstatt, C. Green innovation in technology and innovation management—An exploratory literature review. R&D Manag. 2012, 42, 180–192. [Google Scholar]
- Oltra, V.; Saint Jean, M. Sectoral systems of environmental innovation: An application to the French automotive industry. Technol. Forecast. Soc. Chang. 2009, 76, 567–583. [Google Scholar] [CrossRef]
- Horbach, J. Determinants of environmental innovation—New evidence from German panel data sources. Res. Policy 2008, 37, 163–173. [Google Scholar] [CrossRef]
- Driessen, P.; Hillebrand, B. Adoption and Diffusion of Green Innovations. In Marketing for Sustainability: Towards Transactional Policy-Making; Bartels, G., Nelissen, W., Eds.; IOS Press: Amsterdam, The Netherland, 2002; pp. 343–355. [Google Scholar]
- Hermanns, H. Green Growth-Ecological Modernization Korean-Style? J. 21 Century Political Sci. Assoc. 2015, 25, 263–286. [Google Scholar] [CrossRef]
- Lee, S.; Go, I.; Jeong, S. Issue Paper: Concept of Green Technology and Direction of Policy Development; KISTEP: Seoul, Korea, 2012. [Google Scholar]
- Han, S. Green Tech Review: The Role of Green Technology in Creative Economy; Green Technology Center: Seoul, Korea, 2013. [Google Scholar]
- Heng, X.; Zou, C. How Can Green Technology Be Possible? Asian Soc. Sci. 2010, 6, 110–114. [Google Scholar] [CrossRef][Green Version]
- Leenders, M.; Chandra, Y. Antecedents and consequences of green innovation in the wine industry: The role of channel structure. Technol. Anal. Strateg. Manag. 2013, 25, 203–218. [Google Scholar] [CrossRef]
- Marra, A.; Antonelli, P.; Pozzi, C. Emerging green-tech specializations and clusters—A network analysis on technological innovation at the metropolitan level. Renew. Sustain. Energy Rev. 2017, 67, 1037–1046. [Google Scholar] [CrossRef]
- Marra, A.; Antonelli, P.; Dell’Anna, L.; Pozzi, C. A network analysis using metadata to investigate innovation in clean-tech–Implications for energy policy. Energy Policy 2015, 86, 17–26. [Google Scholar] [CrossRef]
- Cooke, P. Clean tech and an analysis of the platform nature of life sciences: Further reflections upon platform policies. Eur. Plan. Stud. 2008, 16, 375–393. [Google Scholar] [CrossRef]
- Schumacher, E.F. Small Is Beautiful: Economics as If People Mattered; Harper and Row: New York, NY, USA, 1973. [Google Scholar]
- Mittlefehldt, S. From appropriate technology to the clean energy economy: Renewable energy and environmental politics since the 1970s. J. Environ. Stud. Sci. 2018, 1–8. [Google Scholar] [CrossRef]
- Bulavskaya, T.; Reynès, F. Job creation and economic impact of renewable energy in the Netherlands. Renew. Energy 2018, 119, 528–538. [Google Scholar] [CrossRef]
- Pehnt, M. Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew. Energy 2006, 31, 55–71. [Google Scholar] [CrossRef]
- Reddy, S.; Painuly, J. Diffusion of renewable energy technologies—Barriers and stakeholders’ perspectives. Renew. Energy 2004, 29, 1431–1447. [Google Scholar] [CrossRef]
- Rand, B.P.; Ekins-Daukes, N.; Haug, F. Editorial for ‘Special Issue on Advanced Solar Cell Technology’. Available online: http://iopscience.iop.org/article/10.1088/2040-8986/aa98b7/pdf (accessed on 30 March 2018).
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Han, G.; Zhang, S.; Boix, P.; Wong, L.; Sun, L.; Lien, S. Towards high efficiency thin film solar cells. Prog. Mater. Sci. 2017, 87, 246–291. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, S. Prospects of fuel cell technologies. Natl. Sci. Rev. 2017, 4, 163–166. [Google Scholar] [CrossRef]
- Sharaf, O.; Orhan, M. An overview of fuel cell technology: Fundamentals and applications. Renew. Sustain. Energy Rev. 2014, 32, 810–853. [Google Scholar] [CrossRef]
- Eggimann, S.; Mutzner, L.; Wani, O.; Schneider, M.; Spuhler, D.; Moy de Vitry, M.; Beutler, P.; Maurer, M. The Potential of Knowing More: A Review of Data-Driven Urban Water Management. Environ. Sci. Technol. 2017, 51, 2538–2553. [Google Scholar] [CrossRef] [PubMed]
- Richter, B.; Mathews, R.; Harrison, D.; Wigington, R. Ecologically sustainable water management: Managing river flows for ecological integrity. Ecol. Appl. 2003, 13, 206–224. [Google Scholar] [CrossRef]
- Park, J.; Kim, S. An Analysis on the Costs and Outcomes of Green Technology Innovation: Focusing on Production Innovation Activities in Manufacturing SMEs in Korea. J. Technol. Innov. 2010, 18, 199–218. [Google Scholar]
- Krass, D.; Nedorezov, T.; Ovchinnikov, A. Environmental taxes and the choice of green technology. Prod. Oper. Manag. 2013, 22, 1035–1055. [Google Scholar] [CrossRef]
- Porter, M.; van der Linde, C. Green and Competitiveness: Ending the Stalemate. Harvard Business Review, September–October 1995; 120–134. [Google Scholar]
- Ambec, S.; Cohen, M.; Elgie, S.; Lanoie, P. The Porter hypothesis at 20: Can environmental regulation enhance innovation and competitiveness? Rev. Environ. Econ. Policy 2013, 7, 2–22. [Google Scholar] [CrossRef]
- Eyraud, L.; Clements, B.; Wane, A. Green investment: Trends and determinants. Energy Policy 2013, 60, 852–865. [Google Scholar] [CrossRef]
- Jaffe, A.; Newell, R.; Stavins, R. A tale of two market failures: Technology and environmental policy. Ecol. Econ. 2005, 54, 164–174. [Google Scholar] [CrossRef]
- Rennings, K. Redefining innovation—Eco-innovation research and the contribution from ecological economics. Ecol. Econ. 2000, 32, 319–332. [Google Scholar] [CrossRef]
- NTIS. Available online: http://www.ntis.go.kr/en/GpIntroduction.do (accessed on 18 September 2017).
- Jeong, D.; Koo, Y. Analysis of Research Trends in Water Resource Management Using Network Analysis. Appl. Mech. Mater. 2015, 752, 1430–1440. [Google Scholar] [CrossRef]
- Lee, S. Network Analysis Methodology; Nonhyung: Seoul, Korea, 2012. [Google Scholar]
- Borgatti, S.; Mehra, A.; Brass, D.; Labianca, G. Network analysis in the social sciences. Science 2009, 323, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L. Centrality in social networks conceptual clarification. Soc. Netw. 1979, 1, 215–239. [Google Scholar] [CrossRef]
- Jeong, D.; Kwon, O.; Kwon, Y. Network Analysis of Green Technology using Keyword of Green Field. Korean J. Contents 2012, 12, 511–518. [Google Scholar] [CrossRef]
- He, Q. Knowledge discovery through co-word analysis. Libr. Trends 1999, 48, 133–159. [Google Scholar]
- Butts, C. Social network analysis: A methodological introduction. Asian J. Soc. Psychol. 2008, 11, 13–41. [Google Scholar] [CrossRef]
- Hong, M.; Hwang, K.; Hong, J.; Lee, K. The Survey and Analysis of Technology Level on Korea’s Key Green Technologies and its Implications. J. Korea Technol. Innov. Soc. 2013, 16, 476–505. [Google Scholar]
- Seo, L. A study on the Development Directions and Situations of the Green Growth Policy in Korea. Korean Bus. Rev. 2012, 5, 93–113. [Google Scholar]
- Zehner, O. Unintended Consequences of Green Technologies. In Green Technology; Robbins, P., Mulvaney, D., Golson, J., Eds.; Sage: London, UK, 2011; pp. 427–432. [Google Scholar]
2011–2012 | 2013–2014 | 2015–2016 | |
---|---|---|---|
GT R&D projects | 13,430 | 24,901 | 15,565 |
Standardized keywords | 31,754 | 62,925 | 40,830 |
Rank | Degree Centrality | Closeness Centrality | Betweenness Centrality | |||
---|---|---|---|---|---|---|
Keyword | Value | Keyword | Value | Keyword | Value | |
1 | solar cell | 0.323 | solar cell | 0.564 | fuel cell | 0.100 |
2 | fuel cell | 0.311 | fuel cell | 0.560 | solar cell | 0.094 |
3 | biomass | 0.226 | renewable energy | 0.536 | biomass | 0.081 |
4 | renewable energy | 0.226 | biomass | 0.522 | renewable energy | 0.069 |
5 | high efficiency | 0.220 | high efficiency | 0.519 | high efficiency | 0.062 |
6 | catalyst | 0.189 | catalyst | 0.511 | polymer | 0.051 |
7 | LED | 0.165 | nanoparticle | 0.498 | LED | 0.049 |
8 | polymer | 0.165 | polymer | 0.492 | catalyst | 0.041 |
9 | nanoparticle | 0.152 | optimization | 0.487 | nanoparticle | 0.030 |
10 | thin film | 0.152 | thin film | 0.485 | climate change | 0.028 |
Rank | Degree Centrality | Closeness Centrality | Betweenness Centrality | |||
---|---|---|---|---|---|---|
Keyword | Value | Keyword | Value | Keyword | Value | |
1 | LED | 0.344 | LED | 0.580 | LED | 0.049 |
2 | solar cell | 0.336 | solar cell | 0.575 | monitoring | 0.042 |
3 | hybrid | 0.308 | energy | 0.566 | energy | 0.038 |
4 | fuel cell | 0.280 | hybrid | 0.561 | solar cell | 0.035 |
5 | energy | 0.272 | monitoring | 0.559 | hybrid | 0.032 |
6 | graphene | 0.264 | fuel cell | 0.552 | climate change | 0.029 |
7 | high efficiency | 0.260 | high efficiency | 0.549 | renewable energy | 0.027 |
8 | monitoring | 0.260 | renewable energy | 0.542 | sensor | 0.026 |
9 | renewable energy | 0.240 | catalyst | 0.534 | high efficiency | 0.026 |
10 | sensor | 0.224 | sensor | 0.534 | fuel cell | 0.026 |
Rank | Degree Centrality | Closeness Centrality | Betweenness Centrality | |||
---|---|---|---|---|---|---|
Keyword | Value | Keyword | Value | Keyword | Value | |
1 | solar cell | 0.272 | solar cell | 0.537 | climate change | 0.061 |
2 | LED | 0.264 | fuel cell | 0.534 | monitoring | 0.058 |
3 | fuel cell | 0.259 | LED | 0.533 | LED | 0.046 |
4 | renewable energy | 0.243 | renewable energy | 0.531 | IoT | 0.042 |
5 | graphene | 0.226 | monitoring | 0.530 | eco-friendly | 0.042 |
6 | IoT | 0.226 | module | 0.527 | renewable energy | 0.040 |
7 | high efficiency | 0.222 | eco-friendly | 0.520 | fuel cell | 0.038 |
8 | eco-friendly | 0.218 | energy | 0.520 | module | 0.028 |
9 | monitoring | 0.213 | IoT | 0.519 | energy | 0.026 |
10 | catalyst | 0.201 | high efficiency | 0.511 | solar cell | 0.026 |
Rank | 2011–2012 | 2013–2014 | 2015–2016 |
---|---|---|---|
1 | solar cell | LED | LED |
2 | fuel cell | solar cell | solar cell |
3 | renewable energy | hybrid | fuel cell |
4 | biomass | energy | renewable energy |
5 | high efficiency | monitoring | IoT |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.Y.; Kang, I.; Choi, K.S.; Lee, B.-H. Network Analysis on Green Technology in National Research and Development Projects in Korea. Sustainability 2018, 10, 1043. https://doi.org/10.3390/su10041043
Jeong JY, Kang I, Choi KS, Lee B-H. Network Analysis on Green Technology in National Research and Development Projects in Korea. Sustainability. 2018; 10(4):1043. https://doi.org/10.3390/su10041043
Chicago/Turabian StyleJeong, Jae Yun, Inje Kang, Ki Seok Choi, and Byeong-Hee Lee. 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea" Sustainability 10, no. 4: 1043. https://doi.org/10.3390/su10041043
APA StyleJeong, J. Y., Kang, I., Choi, K. S., & Lee, B.-H. (2018). Network Analysis on Green Technology in National Research and Development Projects in Korea. Sustainability, 10(4), 1043. https://doi.org/10.3390/su10041043