Total-Factor Energy Efficiency in BRI Countries: An Estimation Based on Three-Stage DEA Model
Abstract
:1. Introduction
- (1)
- The method based on Ref. [23] is a radial and linear subsection measurement theory, and the effect of relaxation quantity is not considered. Hence, the deviation of efficiency evaluation may be produced;
- (2)
- The influence of external environment and random error of decision-making units (DMUs) is not considered;
- (3)
- The effect of environment and error could not be eliminated with two-stage Tobit regression model or least squares regression model analysis.
2. Data Description and Econometric Methodology
2.1. Three-Stage DEA Model
2.2. Data and Index
- (1)
- Energy structure: it is represented by the proportion of fossil energy consumption in primary energy consumption;
- (2)
- Degree of international trade: it is represented by the proportion of total import and export trade in GDP;
- (3)
- Industrialization degree: it is represented by the proportion of industrial added value in GDP of countries.
3. Empirical Results
3.1. The DEA Result of the 1st Stage
3.2. SFA Regression Result
- (1)
- Energy resource structure: only the coefficient of the proportion of fossil energy consumption to energy investment is positive, while the other coefficients are negative. It shows that the increase of proportion of fossil energy consumption leads to the decrease of input redundancy in carbon emissions, energy input, capital investment and labor input. But it will increase the redundancy of energy input and aggravate the waste of energy. The reason of this result is likely to lie in the fact that the energy structure of most of BRI countries has reached a certain degree of saturation. The increase of the proportion of fossil energy will not greatly promote the growth of carbon emissions, energy input, capital investment and labor input. But the stagnancy of energy utilization technology level may aggravate the waste of fossil energy.
- (2)
- Industrialization degree: the coefficients of the proportion of industrial additional value is positive to each input slack variables, which indicates that the improvement of industrialization will lead to the increase of input redundancy of factors like carbon emissions and energy input. The reason is likely to be that industrial development will inevitably lead to a large amount of energy consumption. There will be large amount of carbon emissions in the industry-oriented country. What’ more, energy industry is a capital-intensive industry and needs a huge amount of capital and a small amount of labor input are needed.
- (3)
- Degree of international trade: all coefficients of the proportion of total import and export trade in GDP are negative. But the effects of total import and export trade are not obvious, which shows that expanding the opening to the outside world is conducive to improving the TFEE of energy. Most of BRI countries are developing countries whose export products are mainly oil, gas, coal, wood and other raw materials to increase foreign exchange, and imported goods are mostly finished product. With the revolution of the global economic pattern, these countries have become emerging economies that popularly attract investment following a large amount of capital and labor input.
3.3. The Results of 3rd DEA Stage
3.4. Projection Analysis
4. Conclusions and Policy Implications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- New Enterprise Associates (NEA). Vision and Action of Energy Cooperation on Jointly Building Silk Road Economic Belt and 21st-Century Maritime Silk Road; NEA: Beijing, China, 2017. [Google Scholar]
- Rakhimov, M. Internal and external dynamics of regional cooperation in Central Asia. J. Eurasian Stud. 2010, 1, 95–101. [Google Scholar] [CrossRef]
- Kirkham, K. The formation of the Eurasian Economic Union: How successful is the Russian regional hegemony? J. Eurasian Stud. 2016, 7, 111–128. [Google Scholar] [CrossRef]
- Naterer, A.; Žižek, A.; Lavrič, M. The quality of integrated urban strategies in light of the Europe 2020 strategy: The case of Slovenia. Cities 2018, 72, 369–378. [Google Scholar] [CrossRef]
- Huang, Y. Understanding China’s Belt & Road Initiative: Motivation, framework and assessment. China Econ. Rev. 2016, 40, 314–321. [Google Scholar]
- Howard, K.W.; Howard, K.K. The new “Silk Road Economic Belt” as a threat to the sustainable management of Central Asia’s transboundary water resources. Environ. Earth 2016, 75, 976–987. [Google Scholar]
- Berardi, U. A cross-country comparison of the building energy consumptions and their trends. Resour. Conserv. Recycl. 2017, 123, 230–241. [Google Scholar]
- BP. BP World Energy Statistics; BP: Paris, France, 2017. [Google Scholar]
- United Nations Framework Convention on Climate Change (UNFCCC). FCCC/CP/2015/L.9/Rev.1: Adoption of the Paris Agreement; UNFCCC: Paris, France, 2015; pp. 1–32. [Google Scholar]
- United Nations Framework Convention on Climate Change (UNFCCC). Intended Nationally Determined Contributions (INDCs). 2015. Available online: http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx (accessed on 4 November 2017).
- Hof, A.F.; den Elzen, M.G.; Admiraal, A.; Roelfsema, M.; Gernaat, D.E.; van Vuuren, D.P. Global and regional abatement costs of Nationally Determined Contributions (NDCs) and of enhanced action to levels well below 2 °C and 1.5 °C. Environ. Sci. Policy 2017, 71, 30–40. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Barros, C.P.; Leach, S. Performance evaluation of the English premier football league with data envelopment analysis. Appl. Econ. 2006, 38, 1449–1458. [Google Scholar]
- Lin, Y.L. The Impact of the Implementation of the Global Budget Payment System in Taiwan’s Educational Hospitals Performance—Application for DEA Three Stage. Master’s Thesis, National Technology University, Taiwan, 2010. [Google Scholar]
- Liu, J.S.; Lu, L.Y.; Lu, W.M. Research fronts in data envelopment analysis. Omega 2016, 58, 33–45. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Streimikiene, D.; Jusoh, A.; Khoshnoudi, M. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renew. Sustain. Energy Rev. 2017, 70, 1298–1322. [Google Scholar] [CrossRef]
- Hu, J.L.; Wang, S.C. Total Factor Energy Efficiency of Regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Honma, S.; Hu, J.L. Total factor energy efficiency of regions in Japan. Energy Policy 2008, 36, 824–833. [Google Scholar] [CrossRef]
- Boyd, G.A.; Pang, J.X. Estimating the linkage between energy efficiency and productivity. Energy Policy 2000, 28, 289–296. [Google Scholar] [CrossRef]
- Wei, C.; Shen, M. Energy efficiency and energy produce efficiency—Inter provincial data comparison based on the DEA method. Quant. Econ. Technol. 2007, 9, 110–121. [Google Scholar]
- Hu, G.; Qin, S. The comparative study of BRICs total energy—Based on DEA-Tobit model. Resour. Sci. 2012, 34, 109–115. [Google Scholar]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Fried, H.O.; Lovell, C.K.; Schmidt, S.S.; Yaisawarng, S. Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis. J. Product. Anal. 2002, 17, 121–136. [Google Scholar] [CrossRef]
- Shang, J.K.; Hung, W.T.; Lo, C.F.; Wang, F.C. Ecommerce and hotel performance: Three-stage DEA analysis. Serv. Ind. J. 2008, 28, 529–540. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R. Research on efficiency of cultural industry in 31 provinces of China based on three-stage DEA model. China Soft Sci. 2009, 45, 75–82. [Google Scholar]
- Guo, J.H.; Ni, M.; Li, B. Research on agricultural production efficiency based on three-stage DEA model. J. Quant. Tech. Econ. 2010, 27, 27–38. [Google Scholar]
- Deng, B.; Zhang, X.J.; Guo, J.H. Research on ecological efficiency based on three-stage DEA model. China Soft Sci. 2011, 1, 92–99. [Google Scholar]
- Shyu, J.; Chiang, T. Measuring the true managerial efficiency of bank branches in Taiwan: A three-stage DEA analysis. Expert Syst. Appl. 2012, 39, 11494–11502. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, L. Structural evolution of multicompetent micelles self-assembled from linear ABC triblock copolymer in selective solvents. Langmuir 2011, 27, 6440–6448. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Lin, B. Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model. Appl. Energy 2016, 168, 351–363. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Chang, Y.; Zhang, L. Industrial eco-efficiency in China: A provincial quantification using three-stage data envelopment analysis. J. Clean. Prod. 2017, 143, 238–249. [Google Scholar] [CrossRef]
- Jia, S.; Wang, C.; Li, Y.; Zhang, F.; Liu, W. The urbanization efficiency in Chengdu City: An estimation based on a three-stage DEA model. Phys. Chem. Earth 2017, 101, 59–69. [Google Scholar] [CrossRef]
- Wang, W.; Fan, D. Study on total factors energy efficiency of Chinese provinces based on three-stage method. Pract. Underst. Math. 2012, 42, 51–59. [Google Scholar]
- Xu, Z.; Lv, B.; Dai, Y. Evaluation of regional energy efficiency in China based on three-stage DEA method. China Min. Ind. 2013, 22, 44–48. [Google Scholar]
- Shen, N.; Wang, Q. Spatial pattern of energy efficiency in China and differential energy saving method—Based on the analysis of DEA three-stage method. Syst. Sci. Math. 2013, 33, 457–467. [Google Scholar]
- Toloo, M.; Allahyar, M.; Hanclová, J. A non-radial directional distance method on classifying inputs and outputs in DEA: Application to banking industry. Expert Syst. Appl. 2018, 92, 495–506. [Google Scholar] [CrossRef]
- Hu, J.L.; Kao, C.H. Efficient energy-saving targets for APEC economies. Energy Policy 2007, 35, e373–e382. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Yuan, Y.; Li, A.; Wang, D. Methodological comparison among radial, non-radial and intermediate approaches for DEA environmental assessment. Energy Econ. 2017, 67, 439–453. [Google Scholar] [CrossRef]
- Dyckhoff, H.; Allen, K. Measuring ecological efficiency with data envelopment analysis (DEA). Eur. J. Oper. Res. 2001, 132, 312–325. [Google Scholar] [CrossRef]
- Korhonen, P.J.; Luptacik, M. Eco-efficiency analysis of power plants: An extension of data envelopment analysis. Eur. J. Oper. Res. 2004, 154, e437–e446. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Zhang, X.-P.; Cheng, X.-M.; Yuan, J.-H.; Gao, X.-J. Total-factor energy efficiency in developing countries. Energy Policy 2011, 39, 644–650. [Google Scholar] [CrossRef]
- Song, M.-L.; Zhang, L.-L.; Liu, W.; Fisher, R. Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data. Appl. Energy 2013, 112, 1049–1055. [Google Scholar] [CrossRef]
- Apergis, N.; Aye, G.C.; Barros, C.P.; Gupta, R.; Wanke, P. Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs. Energy Econ. 2015, 51, 45–53. [Google Scholar] [CrossRef]
- Cheng, W. Energy efficiency analysis of electric power industry in China based on DEA model. Econ. Res. Guide 2015, 7, 45–46. [Google Scholar]
- Wang, K.; Wei, Y.-M. China’s regional industrial energy efficiency and carbon emissions abatement costs. Appl. Energy 2014, 130, 617–631. [Google Scholar] [CrossRef]
Countries | GDP Energy Intensity (kg Oil Equivalent/Dollar) | GDP Carbon Intensity (kg/Dollar) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | 2012 | 2013 | 2014 | 2015 | 2016 | |
China | 0.39 | 0.37 | 0.36 | 0.34 | 0.32 | 1.25 | 1.19 | 1.11 | 1.03 | 0.96 |
Russia | 0.42 | 0.41 | 0.41 | 0.42 | 0.41 | 0.96 | 0.92 | 0.92 | 0.93 | 0.92 |
Korea | 0.23 | 0.23 | 0.22 | 0.22 | 0.22 | 0.55 | 0.54 | 0.52 | 0.52 | 0.48 |
Indonesia | 0.20 | 0.19 | 0.17 | 0.17 | 0.17 | 0.60 | 0.58 | 0.51 | 0.50 | 0.51 |
Thailand | 0.31 | 0.31 | 0.31 | 0.31 | 0.30 | 0.74 | 0.73 | 0.74 | 0.73 | 0.72 |
Malaysia | 0.29 | 0.30 | 0.29 | 0.28 | 0.29 | 0.77 | 0.77 | 0.76 | 0.75 | 0.77 |
Vietnam | 0.41 | 0.40 | 0.41 | 0.41 | 0.39 | 1.01 | 0.99 | 1.04 | 1.08 | 1.02 |
Singapore | 0.28 | 0.27 | 0.27 | 0.28 | 0.29 | 0.74 | 0.71 | 0.69 | 0.71 | 0.75 |
Philippines | 0.14 | 0.14 | 0.14 | 0.14 | 0.15 | 0.38 | 0.39 | 0.39 | 0.40 | 0.42 |
New Zealand | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 | 0.23 | 0.22 | 0.22 | 0.21 | 0.20 |
India | 0.71 | 0.70 | 0.71 | 0.69 | 0.70 | 2.20 | 2.15 | 2.21 | 2.18 | 2.19 |
Pakistan | 0.38 | 0.36 | 0.36 | 0.36 | 0.36 | 0.86 | 0.82 | 0.82 | 0.82 | 0.84 |
Bangladesh | 0.20 | 0.19 | 0.19 | 0.20 | 0.19 | 0.49 | 0.47 | 0.47 | 0.48 | 0.47 |
Saudi Arabia | 0.38 | 0.38 | 0.39 | 0.39 | 0.39 | 0.89 | 0.88 | 0.90 | 0.90 | 0.90 |
UAE | 0.30 | 0.28 | 0.28 | 0.30 | 0.30 | 0.76 | 0.73 | 0.72 | 0.75 | 0.76 |
Iran | 0.53 | 0.56 | 0.56 | 0.58 | 0.59 | 1.24 | 1.34 | 1.34 | 1.35 | 1.38 |
Turkey | 0.13 | 0.12 | 0.12 | 0.12 | 0.12 | 0.35 | 0.31 | 0.33 | 0.32 | 0.32 |
Israel | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | 0.32 | 0.28 | 0.26 | 0.26 | 0.25 |
Egypt | 0.38 | 0.37 | 0.36 | 0.34 | 0.35 | 0.92 | 0.89 | 0.87 | 0.85 | 0.85 |
Kuwait | 0.28 | 0.29 | 0.29 | 0.30 | 0.30 | 0.80 | 0.76 | 0.72 | 0.78 | 0.77 |
Qatar | 0.20 | 0.28 | 0.26 | 0.30 | 0.29 | 0.41 | 0.60 | 0.57 | 0.65 | 0.63 |
South Africa | 0.80 | 0.79 | 0.77 | 0.72 | 0.71 | 2.84 | 2.80 | 2.73 | 2.54 | 2.46 |
Ukraine | 0.85 | 0.80 | 0.75 | 0.69 | 0.70 | 2.06 | 1.96 | 1.80 | 1.57 | 1.67 |
Belarus | 0.45 | 0.40 | 0.40 | 0.39 | 1.04 | 0.94 | 0.94 | 0.91 | 0.83 | 0.91 |
Poland | 0.19 | 0.19 | 0.17 | 0.17 | 0.17 | 0.60 | 0.59 | 0.54 | 0.52 | 0.52 |
Romania | 0.20 | 0.18 | 0.18 | 0.17 | 0.17 | 0.47 | 0.39 | 0.38 | 0.36 | 0.35 |
Czech | 0.20 | 0.20 | 0.19 | 0.18 | 0.17 | 0.51 | 0.50 | 0.46 | 0.46 | 0.46 |
Slovakia | 0.17 | 0.18 | 0.16 | 0.16 | 0.15 | 0.33 | 0.34 | 0.31 | 0.30 | 0.29 |
Bulgaria | 0.35 | 0.32 | 0.34 | 0.35 | 0.32 | 0.86 | 0.76 | 0.81 | 0.83 | 0.76 |
Hungary | 0.17 | 0.15 | 0.15 | 0.15 | 0.15 | 0.32 | 0.30 | 0.30 | 0.31 | 0.31 |
Lithuania | 0.14 | 0.13 | 0.12 | 0.12 | 0.12 | 0.28 | 0.25 | 0.26 | 0.25 | 0.25 |
Slovenia | 0.34 | 0.36 | 0.32 | 0.32 | 0.32 | 0.32 | 0.31 | 0.27 | 0.26 | 0.24 |
Albania | 0.36 | 0.38 | 0.41 | 0.42 | 0.41 | 0.28 | 0.29 | 0.32 | 0.31 | 0.29 |
Kazakhstan | 0.36 | 0.34 | 0.36 | 0.34 | 0.33 | 1.22 | 1.27 | 1.08 | 1.11 | 1.10 |
Uzbekistan | 1.07 | 0.98 | 0.94 | 0.89 | 0.84 | 2.33 | 1.93 | 2.10 | 1.99 | 1.87 |
Turkmenistan | 1.03 | 0.85 | 0.84 | 0.89 | 0.84 | 2.59 | 2.13 | 2.12 | 2.22 | 2.10 |
America | 0.14 | 0.14 | 0.14 | 0.14 | 0.13 | 0.35 | 0.35 | 0.35 | 0.33 | 0.32 |
Canada | 0.19 | 0.19 | 0.19 | 0.18 | 0.18 | 0.32 | 0.32 | 0.31 | 0.30 | 0.29 |
EU | 0.10 | 0.10 | 0.09 | 0.09 | 0.10 | 0.22 | 0.21 | 0.20 | 0.19 | 0.19 |
Japan | 0.08 | 0.08 | 0.08 | 0.07 | 0.07 | 0.22 | 0.22 | 0.21 | 0.20 | 0.20 |
Variable | Carbon Emissions (C) | Energy (E) | Capital (K) | Labor (L) |
---|---|---|---|---|
GDP | 0.983 ** (0.000) | 0.875 ** (0.000) | 0.949 ** (0.000) | 0.746 ** (0.000) |
Country | Crste | Vrste | Scale | Returns to Scale | Country | Crste | Vrste | Scale | Returns to Scale |
---|---|---|---|---|---|---|---|---|---|
China | 0.354 | 1.000 | 0.354 | drs | Egypt | 0.409 | 0.410 | 0.998 | irs |
Russia | 0.511 | 1.000 | 0.511 | drs | Kuwait | 0.792 | 0.849 | 0.933 | irs |
Korea | 0.647 | 1.000 | 0.647 | drs | Qatar | 1.000 | 1.000 | 1.000 | - |
Indonesia | 0.696 | 0.718 | 0.969 | drs | South Africa | 0.232 | 0.240 | 0.968 | irs |
Thailand | 0.383 | 0.387 | 0.990 | drs | Ukraine | 0.191 | 0.207 | 0.923 | irs |
Malaysia | 0.526 | 0.537 | 0.979 | irs | Belarus | 0.364 | 0.628 | 0.579 | irs |
Vietnam | 0.290 | 0.322 | 0.901 | irs | Poland | 1.000 | 1.000 | 1.000 | - |
Singapore | 1.000 | 1.000 | 1.000 | - | Romania | 0.686 | 0.688 | 0.997 | irs |
Philippines | 0.828 | 0.839 | 0.987 | irs | Czech | 0.879 | 0.905 | 0.971 | irs |
New Zealand | 1.000 | 1.000 | 1.000 | - | Slovakia | 0.769 | 0.778 | 0.989 | irs |
India | 0.493 | 1.000 | 0.493 | drs | Bulgaria | 0.392 | 0.661 | 0.593 | irs |
Pakistan | 0.297 | 0.297 | 1.000 | - | Hungary | 1.000 | 1.000 | 1.000 | - |
Bangladesh | 0.639 | 0.692 | 0.924 | irs | Lithuania | 0.958 | 1.000 | 0.958 | irs |
Saudi Arabia | 1.000 | 1.000 | 1.000 | - | Slovenia | 1.000 | 1.000 | 1.000 | - |
The United Arab Emirates | 0.713 | 0.825 | 0.865 | drs | Albania | 0.691 | 1.000 | 0.691 | irs |
Iran | 0.426 | 0.430 | 0.990 | drs | Kazakhstan | 1.000 | 1.000 | 1.000 | - |
Turkey | 1.000 | 1.000 | 1.000 | - | Uzbekistan | 0.150 | 0.262 | 0.572 | irs |
Israel | 1.000 | 1.000 | 1.000 | - |
Inspection Quantity | Carbon Emissions | Energy Input | Capital Investment | Labor Input |
---|---|---|---|---|
Constant term | −10.108 *** (−10.108) | 0.437 *** (3.589) | 261.619 *** (14.608) | 18.245 *** (29.214) |
energy resource structure | −6.177 *** (−6.177) | 0.519 *** (8.75) | −594.346 *** (−38.417) | −36.941 *** (−35.652) |
Industrialization degree | 30.75 *** (30.75) | 1.233 *** (−7.06) | 455.598 *** (72.51) | 26.107 *** (25.88) |
Degree of international trade | −1.477 (−1.477) | −0.084 (0.685) | −44.537 ** (−2.392) | −2.605 *** (−19.3) |
σ2 | 258.061 *** (258.061) | 2.276 *** (4.373) | 127,531 *** (127,530) | 370.994 *** (371.857) |
γ | 0.999 *** (15,266) | 0.999 *** (5,126,025) | 0.999 *** (169,319) | 0.999 *** (3,319,792) |
Log Likelihood | −122.652 | −40.375 | −225 | −125.184 |
One side LR test value | 15.891 *** | 41.006 *** | 28.295 *** | 23.545 *** |
Country | Crste | Vrste | Scale | Returns to Scale | Country | Crste | Vrste | Scale | Returns to Scale |
---|---|---|---|---|---|---|---|---|---|
China | 0.861 | 1.000 | 0.354 | drs | Egypt | 0.350 | 0.786 | 0.445 | irs |
Russia | 0.995 | 1.000 | 0.995 | drs | Kuwait | 0.378 | 0.993 | 0.381 | irs |
Korea | 1.000 | 1.000 | 1.000 | - | Qatar | 0.387 | 1.000 | 0.387 | irs |
Indonesia | 0.733 | 0.733 | 1.000 | - | South Africa | 0.214 | 0.793 | 0.270 | irs |
Thailand | 0.422 | 0.722 | 0.585 | irs | Ukraine | 0.185 | 0.762 | 0.243 | irs |
Malaysia | 0.424 | 0.876 | 0.484 | irs | Belarus | 0.266 | 0.959 | 0.277 | irs |
Vietnam | 0.273 | 0.655 | 0.417 | irs | Poland | 0.879 | 1.000 | 0.879 | irs |
Singapore | 1.000 | 1.000 | 1.000 | - | Romania | 0.589 | 0.939 | 0.627 | irs |
Philippines | 0.727 | 0.897 | 0.811 | irs | Czech | 0.595 | 0.986 | 0.603 | irs |
New Zealand | 0.734 | 1.000 | 0.734 | irs | Slovakia | 0.516 | 0.980 | 0.526 | irs |
India | 0.414 | 1.000 | 0.414 | irs | Bulgaria | 0.256 | 0.970 | 0.264 | irs |
Pakistan | 0.346 | 0.588 | 0.589 | irs | Hungary | 0.598 | 1.000 | 0.598 | irs |
Bangladesh | 0.497 | 0.876 | 0.568 | irs | Lithuania | 0.389 | 1.000 | 0.389 | irs |
Saudi Arabia | 0.929 | 1.000 | 0.929 | irs | Slovenia | 0.301 | 1.000 | 0.301 | irs |
The United Arab Emirates | 0.438 | 0.981 | 0.447 | irs | Albania | 0.694 | 1.000 | 0.691 | irs |
Iran | 0.515 | 0.790 | 0.651 | irs | Kazakhstan | 0.338 | 1.000 | 0.338 | irs |
Turkey | 1.000 | 1.000 | 1.000 | - | Uzbekistan | 0.140 | 0.856 | 0.164 | irs |
Israel | 1.000 | 1.000 | 1.000 | - |
Country | Energy Projection Correction Value | Energy Input Projection (Mt Equivalent Oil) | Energy Saving Potential | Carbon Emissions Projection Correction Value | Carbon Emissions Projection | Emissions Reduction Potential | ||
---|---|---|---|---|---|---|---|---|
Radial Modified Value | Slack Modified Value | Radial Modified Value | Slack Modified Value | |||||
Indonesia | −46.38 | 0 | 173.9 | 26.7% | −132.1 | −7.26 | 495.3 | 28.1% |
Thailand | −36.4 | −9.25 | 130.9 | 34.9% | −92.8 | 0 | 333.7 | 27.8% |
Malaysia | −12.77 | −3.34 | 102.9 | 15.7% | −34.5 | 0 | 278.1 | 12.4% |
Vietnam | −25.14 | −3.45 | 72.8 | 39.3% | −71.34 | 0 | 206.6 | 34.5% |
Philippines | −4.83 | 0 | 46.9 | 10.3% | −14.92 | −7.08 | 144.8 | 15.2% |
Pakistan | −35.51 | −5.39 | 86.2 | 47.4% | −91.9 | 0 | 223.1 | 41.2% |
Bangladesh | −5.02 | −1.19 | 40.4 | 15.4% | −14.63 | 0 | 117.7 | 12.4% |
UAE | −2.19 | 0 | 117.7 | 1.9% | −5.95 | −4.71 | 319.7 | 3.3% |
Iran | −55.22 | −28.48 | 262.8 | 31.8% | −139.2 | −85.14 | 662.5 | 33.9% |
Egypt | −20.44 | 0 | 95.3 | 21.4% | −54.82 | −0.66 | 255.6 | 21.7% |
Kuwait | −0.35 | 0 | 50.6 | 0.7% | −0.9 | −1.4 | 132.1 | 1.7% |
Qatar | −26.68 | −33 | 129.2 | 46.2% | −89.06 | −174.4 | 431.2 | 61.1% |
South Africa | −22.17 | −24.84 | 93 | 50.5% | −55.81 | −61.13 | 234.1 | 50.0% |
Ukraine | −1.34 | −2.97 | 32.7 | 13.2% | −3.34 | −10.54 | 81.7 | 17.0% |
Belarus | −2.54 | −0.53 | 41.7 | 7.4% | −7.02 | 0 | 115.1 | 6.1% |
Poland | −0.67 | 0 | 49.3 | 1.4% | −1.82 | −1.64 | 134.5 | 2.6% |
Romania | −0.51 | 0 | 25 | 2.0% | −1.55 | −4.37 | 76.1 | 7.8% |
Czech | −0.85 | −0.63 | 28.1 | 5.3% | −2.31 | −11.05 | 76.2 | 17.5% |
Slovakia | −8.77 | −24.44 | 60.8 | 54.6% | −21.3 | −60.76 | 147.6 | 55.6% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Zhang, H.; Zeng, Y.; Li, F.; Liu, Y.; Qin, C.; Yuan, J. Total-Factor Energy Efficiency in BRI Countries: An Estimation Based on Three-Stage DEA Model. Sustainability 2018, 10, 278. https://doi.org/10.3390/su10010278
Zhao C, Zhang H, Zeng Y, Li F, Liu Y, Qin C, Yuan J. Total-Factor Energy Efficiency in BRI Countries: An Estimation Based on Three-Stage DEA Model. Sustainability. 2018; 10(1):278. https://doi.org/10.3390/su10010278
Chicago/Turabian StyleZhao, Changhong, Haonan Zhang, Yurong Zeng, Fengyun Li, Yuanxin Liu, Chengju Qin, and Jiahai Yuan. 2018. "Total-Factor Energy Efficiency in BRI Countries: An Estimation Based on Three-Stage DEA Model" Sustainability 10, no. 1: 278. https://doi.org/10.3390/su10010278
APA StyleZhao, C., Zhang, H., Zeng, Y., Li, F., Liu, Y., Qin, C., & Yuan, J. (2018). Total-Factor Energy Efficiency in BRI Countries: An Estimation Based on Three-Stage DEA Model. Sustainability, 10(1), 278. https://doi.org/10.3390/su10010278