Potential of Regulating Ecosystem Services in Relation to Natural Capital in Model Regions of Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Theoretical and Methodological Baselines of the Matrix Approach
2.2. Study Area
Geospatial Datasets Used for Specifying the Area Distribution of Individual Ecosystems
2.3. Regulating Ecosystem Services Assessment
2.3.1. Non-Monetary Assessment of Regulating Ecosystem Services
2.3.2. Monetary Assessment of Regulating Ecosystem Services
2.4. Statistical Model Regions Comparison
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Constanza, R.; Daly, H.E. Natural Capital and Sustainable Development. Conserv. Biol. 1992, 6, 37–46. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. A global view of regulatory ecosystem services: Existed knowledge, trends, and research gaps—ecological processes. Ecol. Process. 2020, 9, 1–14. [Google Scholar] [CrossRef]
- Černecký, J.; Gajdoš, P.; Ďuricová, V.; Špulerová, J.; Černecká, L.; Švajda, J.; Andráš, P.; Ulrych, L.; Rybanič, R.; Považan, R. The Value of Ecosystems and Their Services in Slovakia; ŠOP SR: Banská Bystrica, Slovakia, 2020; p. 166. ISBN 978-80-8184-078-4. (In Slovak) [Google Scholar]
- Maes, J.; Teller, A.; Erhard, M.; Conde, S.; Vallecillo Rodriguez, S.; Barredo Cano, J.I.; Paracchini, M.; Abdul Malak, D.; Trombetti, M.; Vigiak, O.; et al. Mapping and Assessment of Ecosystems and Their Services: An EU Wide Ecosystem Assessment in Support of the EU Biodiversity Strategy: Supplement (Indicator Fact Sheets); European Commission, Joint Research Centre, Publications Office: Bruxelles, Belgium, 2020; Available online: https://data.europa.eu/doi/10.2760/519233 (accessed on 5 December 2022).
- Haines-Young, R.; Potschin-Young, M. Revision of the Common International Classification for Ecosystem Services (CICES v5.1): A Policy Brief. One Ecosyst. 2018, 3, e27108. [Google Scholar] [CrossRef]
- Sinha, K.; Baten, M.A. Regulating Ecosystem Services: Enhancements through Sustainable Management. In Encyclopedia of the UN Sustainable Development Goals; Filho, W.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 817–829. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Our Human Planet; Summary for Decision Makers; The Millennium Ecosystem Assessment Series; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Smith, P.; Ashmore, M.R.; Black, H.I.; Burgess, P.J.; Evans, C.D.; Quine, T.A.; Thomson, A.M.; Hicks, K.; Orr, H.G. Review: The Role of Ecosystems and Their Management in Regulating Climate, and Soil, Water and Air Quality. J. Appl. Ecol. 2012, 50, 812–829. [Google Scholar] [CrossRef]
- Elliot, T.; Torres-Matallana, J.A.; Goldstein, B.; Babí Almenar, J.; Gómez-Baggethun, E.; Proença, V.; Rugani, B. An Expanded Framing of Ecosystem Services Is Needed for a Sustainable Urban Future. Renew. Sustain. Energy Rev. 2022, 162, 112418. [Google Scholar] [CrossRef]
- Seidl, R.; Albrich, K.; Erb, K.; Formayer, H.; Leidinger, D.; Leitinger, G.; Tappeiner, U.; Tasser, E.; Rammer, W. What Drives the Future Supply of Regulating Ecosystem Services in a Mountain Forest Landscape? For. Ecol. Manag. 2019, 445, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Boyd, J.; Banzhaf, S. What Are Ecosystem Services? the Need for Standardized Environmental Accounting Units. Ecol. Econ. 2007, 63, 616–626. [Google Scholar] [CrossRef] [Green Version]
- Amorim, J.H.; Engardt, M.; Johansson, C.; Ribeiro, I.; Sannebro, M. Regulating and Cultural Ecosystem Services of Urban Green Infrastructure in the Nordic Countries: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 1219. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, M. Economic Value of Regulating Ecosystem Services: A Comprehensive at the Global Level Review. Environ. Monit. Assess. 2019, 191, 616. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Baggethun, E.; Barton, D.N.; Berry, P.; Dunford, R.; Harrison, P.A. Concepts and methods in ecosystem services valuation. In Routledge Handbook of Ecosystem Services, 1st ed.; Potschin, M., Haines-Young, R., Fish, R., Turner, R.K., Eds.; Routledge: London, UK; Taylor & Francis Group: London, UK, 2016; pp. 99–111. [Google Scholar]
- Dunford, R.; Harrison, P.; Smith, A.; Dick, J.; Barton, D.N.; Martin-Lopez, B.; Kelemen, E.; Jacobs, S.; Saarikoski, H.; Turkelboom, F.; et al. Integrating Methods for Ecosystem Service Assessment: Experiences from Real World Situations. Ecosyst. Serv. 2018, 29, 499–514. [Google Scholar] [CrossRef] [Green Version]
- Wojtach, A. Ecosystem services in the circular economy. Environ. Policy Manag. 2016, 4, 100–108. [Google Scholar]
- Lautenbach, S.; Volk, M.; Gruber, B.; Dormann, C.F. Quantifying Ecosystem Service Trade-Offs. In Proceedings of the 5th International Congress on Environmental Modelling and Software, Ottawa, ON, Canada, 1 July 2010. [Google Scholar]
- Inostroza, L.; König, H.J.; Pickard, B.; Zhen, L. Putting Ecosystem Services into Practice: Trade-off Assessment Tools, Indicators and Decision Support Systems. Ecosyst. Serv. 2017, 26, 303–305. [Google Scholar] [CrossRef]
- Brandt, J.; Vejre, H. Multifunctional landscapes: Motives, concepts and perceptions. In Multifunctional Landscapes: Theory, Values and History; Brandt, J., Vejre, H., Eds.; WIT Press: Southampton, MA, USA, 2004; pp. 3–33. Volume 1. [Google Scholar]
- Wackernagel, M.; Monfreda, C.; Moran, D.; Wermer, P.; Goldfinger, S.; Deumling, D.; Murray, M. National Footprint and Biocapacity Accounts 2005: The Underlying Calculation Method; Global Footprint Network: Oakland, CA, USA, 2005; pp. 4–28. [Google Scholar]
- Welde, K.; Gebremariam, B. Effect of Land Use Land Cover Dynamics on Hydrological Response of Watershed: Case Study of Tekeze Dam Watershed, Northern Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 1–16. [Google Scholar] [CrossRef]
- Kanianska, R.; Jaďuďová, J.; Makovníková, J.; Kizeková, M.; Tomaškin, J. Ecosystem Services (Ekosystémové služby); Belianum: Banská Bystrica, Slovakia, 2016. (In Slovak) [Google Scholar]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent Developments in Life Cycle Assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef]
- Bakshi, B.R. A Thermodynamic Framework for Ecologically Conscious Process Systems Engineering. Comput. Chem. Eng. 2002, 26, 269–282. [Google Scholar] [CrossRef]
- Santos-Martin, F.; Viinikka, A.; Mononen, L.; Brander, L.; Vihervaara, P.; Liekens, I.; Potschin-Young, M. Creating an Operational Database for Ecosystems Services Mapping and Assessment Methods. One Ecosyst. 2018, 3, e26719. [Google Scholar] [CrossRef]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A Typology for the Classification, Description and Valuation of Ecosystem Functions, Goods and Services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ Capacities to Provide Ecosystem Services - a Concept for Land-Cover Based Assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem Service Potentials, Flows and Demands-Concepts for Spatial Localisation, Indication and Quantification. Landsc. Online 2014, 34, 1–32. [Google Scholar] [CrossRef]
- Kandziora, M.; Burkhard, B.; Müller, F. Interactions of Ecosystem Properties, Ecosystem Integrity and Ecosystem Service Indicators—A Theoretical Matrix Exercise. Ecol. Indic. 2013, 28, 54–78. [Google Scholar] [CrossRef]
- Kaiser, G.; Burkhard, B.; Römer, H.; Sangkaew, S.; Graterol, R.; Haitook, T.; Sterr, H.; Sakuna-Schwartz, D. Mapping Tsunami Impacts on Land Cover and Related Ecosystem Service Supply in Phang Nga, Thailand. Nat. Hazards Earth Syst. Sci. 2013, 13, 3095–3111. [Google Scholar] [CrossRef] [Green Version]
- Vihervaara, P.; Kumpula, T.; Tanskanen, A.; Burkhard, B. Ecosystem Services–a Tool for Sustainable Management of Human–Environment Systems. Case Study Finnish Forest Lapland. Ecol. Complex. 2010, 7, 410–420. [Google Scholar] [CrossRef] [Green Version]
- Vihervaara, P.; Kumpula, T.; Ruokolainen, A.; Tanskanen, A.; Burkhard, B. The Use of Detailed Biotope Data for Linking Biodiversity with Ecosystem Services in Finland. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 169–185. [Google Scholar] [CrossRef]
- Kroll, F.; Müller, F.; Haase, D.; Fohrer, N. Rural–Urban Gradient Analysis of Ecosystem Services Supply and Demand Dynamics. Land Use Policy 2012, 29, 521–535. [Google Scholar] [CrossRef]
- Nedkov, S.; Burkhard, B. Flood Regulating Ecosystem Services—Mapping Supply and Demand, in the Etropole Municipality, Bulgaria. Ecol. Indic. 2012, 21, 67–79. [Google Scholar] [CrossRef]
- Schröter, M.; Bonn, A.; Klotz, S.; Seppelt, R.; Baessler, C. Atlas of Ecosystem Services Drivers, Risks, and Societal Responses; Schröter, M., Bonn, A., Klotz, S., Seppelt, R., Baessler, C., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-319-96228-3. [Google Scholar]
- Černecký, J.; Gajdoš, P.; Špulerová, J.; Halada, Ľ.; Mederly, P.; Ulrych, L.; Ďuricová, V.; Švajda, J.; Černecká, Ľ.; Andráš, P.; et al. Ecosystems in Slovakia. J. Maps 2019, 16, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Bukvareva, E.; Zamolodchikov, D.; Kraev, G.; Grunewald, K.; Narykov, A. Supplied, Demanded and Consumed Ecosystem Services: Prospects for National Assessment in Russia. Ecol. Indic. 2017, 78, 351–360. [Google Scholar] [CrossRef]
- Gascoigne, W.R.; Hoag, D.; Koontz, L.; Tangen, B.A.; Shaffer, T.L.; Gleason, R.A. Valuing Ecosystem and Economic Services across Land-Use Scenarios in the Prairie Pothole Region of the Dakotas, USA. Ecol. Econ. 2011, 70, 1715–1725. [Google Scholar] [CrossRef]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing Ecosystem Services into Economic Decision-Making: Land Use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef]
- Frélichová, J.; Vačkář, D.; Pártl, A.; Loučková, B.; Harmáčková, Z.V.; Lorencová, E. Integrated Assessment of Ecosystem Services in the Czech Republic. Ecosyst. Serv. 2014, 8, 110–117. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Martín-López, B.; Santos-Martín, F.; Loureiro, M.; Montes, C.; Benayas, J.; García-Llorente, M. Ecosystem Services Values in Spain: A Meta-Analysis. Environ. Sci. Policy 2016, 55, 186–195. [Google Scholar] [CrossRef]
- Vačkář, D.; Grammatikopoulou, I.; Daněk, J.; Lorencová, E. Methodological Aspects of Ecosystem Service Valuation at the National Level. One Ecosyst. 2018, 3, e25508. [Google Scholar] [CrossRef]
- Švajda, J. Mountain Research in Protected Areas in the Carpathians—A Brief Overview. Eco. Mont. J. Prot. Mt. Areas Res. 2018, 10, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, P.; Pichler, V.; Fleischer Jr, P.; Holko, L.; Máliš, F.; Gömöryová, E.; Cudlín, P.; Holeksa, J.; Michalová, Z.; Homolová, Z.; et al. Forest Ecosystem Services Affected by Natural Disturbances, Climate and Land-Use Changes in the Tatra Mountains. Clim. Res. 2017, 73, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Považan, R.; Getzner, M.; Švajda, J. Value of Ecosystem Services in Mountain National Parks. Case Study of Veľká Fatra National Park (Slovakia). Pol. J. Environ. Stud. 2014, 23, 1699–1710. [Google Scholar]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty Years of Ecosystem Services: How Far Have We Come and How Far Do We Still Need to Go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Bateman, I.J.; Mace, G.M. The Natural Capital Framework for Sustainably Efficient and Equitable Decision Making. Nat. Sustain. 2020, 3, 776–783. [Google Scholar] [CrossRef]
- Dasgupta, P. The Economics of Biodiversity; The Dasgupta Review; HM Treasury: London, UK, 2021; ISBN 978-1-911680-29-1. [Google Scholar]
- Kenter, J.O. Deliberative and Non-Monetary Valuation. In Routledge Handbook of Ecosystem Services, 1st ed.; Potschin, M., Haines-Young, R., Fish, R., Turner, R.K., Eds.; Routledge, Taylor & Francis Group: London, UK, 2016; pp. 271–288. [Google Scholar]
- Yang, Q.; Liu, G.; Casazza, M.; Campbell, E.T.; Giannetti, B.F.; Brown, M.T. Development of a New Framework for Non-Monetary Accounting on Ecosystem Services Valuation. Ecosyst. Serv. 2018, 34, 37–54. [Google Scholar] [CrossRef]
- Elliot, T.; Bertrand, A.; Babí Almenar, J.; Petucco, C.; Proença, V.; Rugani, B. Spatial Optimisation of Urban Ecosystem Services through Integrated Participatory and Multi-Objective Integer Linear Programming. Ecol. Model. 2019, 409, 108774. [Google Scholar] [CrossRef]
- Acharya, R.P.; Maraseni, T.; Cockfield, G. Global Trend of Forest Ecosystem Services Valuation—An Analysis of Publications. Ecosyst. Serv. 2019, 39, 100979. [Google Scholar] [CrossRef]
- Lee, D.; Oh, K.; Suh, J. Diagnosis and Prioritization of Vulnerable Areas of Urban Ecosystem Regulation Services. Land 2022, 11, 1804. [Google Scholar] [CrossRef]
- La Notte, A.; Turvani, M.; Giaccari, S. Economic valuation of ecosystem services at local level for policy makers and planners. The case of the island of St. Erasmo in the Lagoon of Venice. Environ. Econ. 2011, 2, 87–103. [Google Scholar]
- Christie, M.; Fazey, I.; Cooper, R.; Hyde, T.; Kenter, J.O. An Evaluation of Monetary and Non-Monetary Techniques for Assessing the Importance of Biodiversity and Ecosystem Services to People in Countries with Developing Economies. Ecol. Econ. 2012, 83, 67–78. [Google Scholar] [CrossRef]
- Guerry, A.D.; Polasky, S.; Lubchenco, J.; Chaplin-Kramer, R.; Daily, G.C.; Griffin, R.; Ruckelshaus, M.; Bateman, I.J.; Duraiappah, A.; Elmqvist, T.; et al. Natural Capital and Ecosystem Services Informing Decisions: From Promise to Practice. Proc. Natl. Acad. Sci. USA 2015, 112, 7348–7355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borsuk, M.E.; Mavrommati, G.; Samal, N.R.; Zuidema, S.; Wollheim, W.; Rogers, S.H.; Thorn, A.M.; Lutz, D.; Mineau, M.; Grimm, C.; et al. Deliberative Multiattribute Valuation of Ecosystem Services across a Range of Regional Land-Use, Socioeconomic, and Climate Scenarios for the Upper Merrimack River Watershed, New Hampshire, USA. Ecol. Soc. 2019, 24, 11. [Google Scholar] [CrossRef] [Green Version]
- Považan, R.; Getzner, M.; Švajda, J. On the valuation of ecosystem services in Muránska Planina National Park (Slovakia). Eco. Mont. J. Prot. Mt. Areas Res. Manag. 2015, 7, 61–69. [Google Scholar] [CrossRef]
- Marta-Pedroso, C.; Laporta, L.; Gama, I.; Domingos, T. Economic Valuation and Mapping of Ecosystem Services in the Context of Protected Area Management (Natural Park of Serra De São Mamede, Portugal). One Ecosyst. 2018, 3, e26722. [Google Scholar] [CrossRef] [Green Version]
- Müller, F.; Bicking, S.; Ahrendt, K.; Kinh Bac, D.; Blindow, I.; Fürst, C.; Haase, P.; Kruse, M.; Kruse, T.; Ma, L.; et al. Assessing Ecosystem Service Potentials to Evaluate Terrestrial, Coastal and Marine Ecosystem Types in Northern Germany—An Expert-Based Matrix Approach. Ecol. Indic. 2020, 112, 106116. [Google Scholar] [CrossRef]
- Sutherland, I.J.; Villamagna, A.M.; Dallaire, C.O.; Bennett, E.M.; Chin, A.T.M.; Yeung, A.C.Y.; Lamothe, K.A.; Tomscha, S.A.; Cormier, R. Undervalued and under Pressure: A Plea for Greater Attention toward Regulating Ecosystem Services. Ecol. Indic. 2018, 94, 23–32. [Google Scholar] [CrossRef]
- Braat, L.C.; de Groot, R. The Ecosystem Services Agenda:Bridging the Worlds of Natural Science and Economics, Conservation and Development, and Public and Private Policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Burkhard, B.; Fath, B.D.; Müller, F. Adapting the Adaptive Cycle: Hypotheses on the Development of Ecosystem Properties and Services. Ecol. Model. 2011, 222, 2878–2890. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping Ecosystem Service Supply, Demand and Budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Jacobs, S.; Burkhard, B.; Van Daele, T.; Staes, J.; Schneiders, A. ‘The Matrix Reloaded’: A Review of Expert Knowledge Use for Mapping Ecosystem Services. Ecol. Model. 2015, 295, 21–30. [Google Scholar] [CrossRef]
- Hermann, A.J.; Gibson, G.A.; Bond, N.A.; Curchitser, E.N.; Hedstrom, K.; Cheng, W.; Wang, M.; Stabeno, P.J.; Eisner, L.; Cieciel, K.D. A Multivariate Analysis of Observed and Modeled Biophysical Variability on the Bering Sea Shelf: Multidecadal Hindcasts (1970–2009) and Forecasts (2010–2040). Deep. Sea Res. Part II Top. Stud. Oceanogr. 2013, 94, 121–139. [Google Scholar] [CrossRef]
- Stoll, S.; Frenzel, M.; Burkhard, B.; Adamescu, M.; Augustaitis, A.; Baeßler, C.; Bonet, F.J.; Carranza, M.L.; Cazacu, C.; Cosor, G.L.; et al. Assessment of Ecosystem Integrity and Service Gradients across Europe Using the LTER Europe Network. Ecol. Model. 2015, 295, 75–87. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, Z.; Wen, M.; Huang, L.; Liu, H.; Wang, J.; Chen, W.; Zhuang, C. Identifying the Spatial Disparities and Determinants of Ecosystem Service Balance and Their Implications on Land Use Optimization. Sci. Total Environ. 2021, 793, 148472. [Google Scholar] [CrossRef]
- Depellegrin, D.; Pereira, P.; Misiunė, I.; Egarter-Vigl, L. Mapping Ecosystem Services Potential in Lithuania. Int. J. Sustain. Dev. Amp. World Ecol. 2016, 23, 441–455. [Google Scholar] [CrossRef]
- Burkhard, B.; Maes, J. Mapping Ecosystem Services; Pensoft Publishers: Sofia, Bulgaria, 2017. [Google Scholar] [CrossRef]
- Jacobs, S.; Burkhard, B. Applying expert knowledge for ecosystem services quantification. In Mapping Ecosystem Services; Burkhard, B., Maes, J., Eds.; Pensoft Publishers: Sofia, Bulgaria, 2017. [Google Scholar] [CrossRef]
- Roche, P.K.; Campagne, C.S. Are Expert-Based Ecosystem Services Scores Related to Biophysical Quantitative Estimates? Ecol. Indic. 2019, 106, 105421. [Google Scholar] [CrossRef]
- NAFC-SSCRI. Distribution of Agricultural Land in Agro-Climatic Regions of Slovakia. 2015. Available online: http://www.podnemapy.sk/portal/reg_pod_infoservis/klima/klima.aspx (accessed on 30 April 2017).
- Džatko, M. Hodnotenie Produkčného Potenciálu Poľnohospodárskych Pôd a Pôdno-Ekologických Regiónov Slovenska; VÚPOP: Bratislava, Slovakia, 2002; p. 87. [Google Scholar]
- Makovníková, J.; Pálka, B.; Širáň, M.; Houšková, B.; Kanianska, R.; Kizeková, M. Ecosystem Services in Differently Used Agroecosystems along a Climatic Gradient in Slovakia. Open J. Ecol. 2018, 08, 623–645. [Google Scholar] [CrossRef] [Green Version]
- Makovníková, J.; Kološta, S.; Flaška, F.; Pálka, B. Regional Differentiations of the Potential of Cultural Ecosystem Services in Relation to Natural Capital—A Case Study in Selected Regions of the Slovak Republic. Land 2022, 11, 270. [Google Scholar] [CrossRef]
- Heckwolf, M.J.; Peterson, A.; Jänes, H.; Horne, P.; Künne, J.; Liversage, K.; Sajeva, M.; Reusch, T.B.H.; Kotta, J. From Ecosystems to Socio-Economic Benefits: A Systematic Review of Coastal Ecosystem Services in the Baltic Sea. Sci. Total Environ. 2021, 755, 142565. [Google Scholar] [CrossRef]
- Frélichová, J.; Fanta, J. Ecosystem Service Availability in View of Long-Term Land-Use Changes: A Regional Case Study in the Czech Republic. Ecosyst. Health Sustain. 2015, 1, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Fabrega, N.; Zulian, G.; Barbosa, A.; Vizcaino, P.; Ivits, E.; Polce, C.; Vandecasteele, I.; Rivero, I.; Guerra, C.; et al. Mapping and Assessment of Ecosystems and their Services: Trends in ecosystems and ecosystem services in the European Union between 2000 and 2010; Publications Office of the European Union: Luxembourg, 2015; 131p. [Google Scholar] [CrossRef]
- Nedkov, S.; Zhiyanski, M.; Borisova, B.; Bratanova-Doncheva, S. Mapping and Assessment of Ecosystem Condition and Ecosystem Services across Different Scales and Domains in Europe. One Ecosyst. 2018, 3, e29288. [Google Scholar] [CrossRef]
- Urli, M.; Delzon, S.; Eyermann, A.; Couallier, V.; García-Valdés, R.; Zavala, M.A.; Porté, A.J. Inferring Shifts in Tree Species Distribution Using Asymmetric Distribution Curves: A Case Study in the Iberian Mountains. J. Veg. Sci. 2013, 25, 147–159. [Google Scholar] [CrossRef]
- Delzon, S.; Urli, M.; Samalens, J.-C.; Lamy, J.-B.; Lischke, H.; Sin, F.; Zimmermann, N.E.; Porté, A.J. Field Evidence of Colonisation by Holm Oak, at the Northern Margin of Its Distribution Range, during the Anthropocene Period. PLoS ONE 2013, 8, e80443. [Google Scholar] [CrossRef] [Green Version]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, Forests and Water: Cool Insights for a Hot World. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- European Environment Agency (EU Body or Agency). Climate Change, Impacts and Vulnerability in Europe 2016: An Indicator-Based Report. Available online: https://op.europa.eu/en/publication-detail/-/publication/794dcba3-e922-11e6-ad7c-01aa75ed71a1/language-en (accessed on 20 September 2022).
- Mederly, P.; Černecký, J.; Špulerová, J.; Izakovičová, Z.; Ďuricová, V.; Považan, R.; Švajda, J.; Močko, M.; Jančovič, M.; Gusejnov, S.; et al. National Ecosystem Services Assessment in Slovakia—Meeting Old Liabilities and Introducing New Methods. One Ecosyst. 2020, 5, 53677. [Google Scholar] [CrossRef]
- Škodová, M.; Sabo, P.; Švajda, J.; Vološčuk, I. Ecosystem Services in the National Park Malá Fatra. Geogr. Inf. 2016, 20, 311–325. [Google Scholar] [CrossRef]
- Steinhoff-Knopp, B.; Kuhn, T.K.; Burkhard, B. The Impact of Soil Erosion on Soil-Related Ecosystem Services: Development and Testing a Scenario-Based Assessment Approach. Environ. Monit. Assess. 2021, 193, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Thom, D.; Seidl, R. Natural Disturbance Impacts on Ecosystem Services and Biodiversity in Temperate and Boreal Forests. Biol. Rev. 2015, 91, 760–781. [Google Scholar] [CrossRef] [PubMed]
- Bodnaruk, E.W.; Kroll, C.N.; Yang, Y.; Hirabayashi, S.; Nowak, D.J.; Endreny, T.A. Where to Plant Urban Trees? A Spatially Explicit Methodology to Explore Ecosystem Service Tradeoffs. Landsc. Urban Plan. 2017, 157, 457–467. [Google Scholar] [CrossRef] [Green Version]
- Grêt-Regamey, A.; Sirén, E.; Brunner, S.H.; Weibel, B. Review of Decision Support Tools to Operationalize the Ecosystem Services Concept. Ecosyst. Serv. 2017, 26, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Makovníková, J.; Pálka, B.; Širáň, M.; Kanianska, R.; Kizeková, M.; Jaďuďová, J. Modeling and Evaluation Agroecosystem Services; Belianum: Banská Bystrica, Slovakia, 2017; pp. 15–16. (In Slovak) [Google Scholar]
- Purvis, B.; Mao, Y.; Robinson, D. Three Pillars of Sustainability: In Search of Conceptual Origins. Sustain. Sci. 2018, 14, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem Service Bundles for Analyzing Tradeoffs in Diverse Landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Farrell, P.J.; Anderson, P.M.L. Sustainable Multifunctional Landscapes: A Review to Implementation. Curr. Opin. Environ. Sustain. 2010, 2, 59–65. [Google Scholar] [CrossRef]
- Otte, A.; Simmering, D.; Wolters, V. Biodiversity at the Landscape Level: Recent Concepts and Perspectives for Multifunctional Land Use. Landsc. Ecol. 2007, 22, 639–642. [Google Scholar] [CrossRef]
- Hou, Y.; Burkhard, B.; Müller, F. Uncertainties in Landscape Analysis and Ecosystem Service Assessment. J. Environ. Manag. 2013, 127, 117–131. [Google Scholar] [CrossRef]
Region | Area (km2) | Population Density (km2) | Climate | Altitude | Geographical Location |
---|---|---|---|---|---|
Michalovce | 1019 | 109 | 99.4% within warm climate. | 96% of the landscape up to 300 m above sea level and 92% of the landscape is on the plain. | Bordered on the north by the Vihorlat Hills, part of the East Slovak Lowland. |
Piešťany | 381 | 164 | 95.7% within very warm climate. | 83.5% of the territory has an altitude of 300 m above sea level. | Located in the northern part of the Danubian Lowland within the part of the Trnava Uplands. In the west, it is bordered by the Little Carpathians; in the east, it is bordered by Považský Inovec. |
Krupina | 548 | 38 | 58.9% within very warm climate and 36.6% moderately warm climate. | 60% of the landscape has an altitude from 300–600 m above sea level. 26% of the area is on the plain. | From the northwest, it is covered by the Štiavnica Mountains, from the northeast by the Krupina plain, and from the south by the Ipeľ Uplands. |
Brezno | 1265 | 48 | 86.9% within moderately cool climate. | 88.6% of the landscape has an altitude over 600 m above sea level with the lowest point at 406 m above sea level. | The entire length of the northern side is formed by the southern slopes of the Low Tatras ridge, on the southern side by the Poľana massif and the Veporské Hills, and in the central part by the Horehronské Valley; from the east partially extends the Spiš-Gemer karst. |
Land Cover | Capacity Scores | |||||||
---|---|---|---|---|---|---|---|---|
Local Climate Regulation | Global Climate Regulation | Air quality Regulation | Water Regulation | Erosion Regulation | Filtration/ Immobilization of Risk Elements | Pollination | Biodiversity Protection | |
Arable land | 40 | 20 | 20 | 20 | 30 | 30 | 30 | 30 |
Grassland | 40 | 70 | 20 | 30 | 90 | 80 | 80 | 50 |
Vineyards | 30 | 30 | 30 | 10 | 30 | 50 | 90 | 50 |
Fruit trees and berries | 30 | 30 | 30 | 10 | 30 | 50 | 80 | 50 |
Agro-forestry areas: fast growing woody plants | 40 | 70 | 20 | 60 | 90 | 70 | 90 | 40 |
Water bodies | 70 | 40 | 5 | 40 | 30 | 30 | 30 | 70 |
Wetlands | 90 | 90 | 30 | 40 | 30 | 80 | 70 | 80 |
Natural protected areas | 90 | 90 | 90 | 60 | 90 | 90 | 80 | 90 |
Productive forest | 90 | 90 | 90 | 60 | 90 | 70 | 70 | 40 |
Protective forest | 90 | 90 | 90 | 60 | 90 | 90 | 70 | 70 |
Special purpose forest | 90 | 90 | 90 | 60 | 90 | 90 | 70 | 70 |
Score/Value | Formula | Variables | |
---|---|---|---|
The complex index score for individual ecosystem service | ISES | ISES = (∑ISe × Ae) | ISe—the index score of the potential of the evaluated service of a particular ecosystem Ae—area of a particular ecosystem |
Weighted average score for individual ecosystem service (in scores per ha) | ISESw | ISESw = (∑ISe × Ae)/A | A—the total area of ecosystems in a pilot region |
Complex non-monetary value of ES in region | NMV | NMV = (∑ISES) | ISES—the complex index score for individual ecosystem service |
Value | Formula | Variables | |
---|---|---|---|
The complex monetary value for individual ecosystem service | MISES | MISES = ISES × Me | ISES—the complex index score for individual ecosystem service Me—monetary value of score 1 in EUR |
Weighted average value for individual ecosystem service (in EUR per ha) | MISESw | MISESw = ISESw × Me | MISESw—weighted average score for individual ecosystem service Me—monetary value of score 1 in EUR |
Complex monetary value | MV | MV = NMV ×Me | NMV—complex non-monetary value Me—monetary value of score 1 in EUR |
Region | Brezno | Michalovce | Piešťany | Krupina |
---|---|---|---|---|
Brezno | 0.6179 | 0.6716 | 0.9411 ** | |
Michalovce | 0.6179 | 0.9169 ** | 0.8075 | |
Piestany | 0.6716 | 0.9169 ** | 0.7696 | |
Krupina | 0.9411 ** | 0.8075 | 0.7696 |
Ecosystem Service | Altitude | Brezno | Krupina | Michalovce | Piešťany |
---|---|---|---|---|---|
Point Value per Hectare | |||||
Local climate regulation | up to 300 m | 0 | 58.0 | 48.7 | 46.9 |
over 300 m | 80.5 | 65.4 | 90.0 | 86.3 | |
Global climate regulation | up to 300 m | 0 | 53.2 | 38.2 | 30.3 |
over 300 m | 84.7 | 66.9 | 90.0 | 86.5 | |
Air quality regulation | up to 300 m | 0 | 45.1 | 30.4 | 28.8 |
over 300 | 76.6 | 55.6 | 90.0 | 84.8 | |
Water regulation | up to 300 m | 0 | 36.2 | 28.2 | 25.6 |
over 300 m | 54.0 | 42.7 | 60.0 | 57.4 | |
Erosion regulation | up to 300 m | 0 | 61.1 | 46.6 | 38.7 |
over 300 m | 88.2 | 74.0 | 90.0 | 87.6 | |
Filtration/immobilization of risk elements | up to 300 m | 0 | 55.6 | 44.1 | 37.2 |
over 300 | 75.1 | 63.4 | 82.6 | 73.9 | |
Pollination | up to 300 m | 0 | 52.7 | 42.5 | 36.6 |
over 300 m | 70.4 | 61.8 | 70.0 | 69.0 | |
Biodiversity protection | up to 300 m | 0 | 42.1 | 38.8 | 34.4 |
over 300 | 48.4 | 42.7 | 58.9 | 48.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makovníková, J.; Kološta, S.; Flaška, F.; Pálka, B. Potential of Regulating Ecosystem Services in Relation to Natural Capital in Model Regions of Slovakia. Sustainability 2023, 15, 1076. https://doi.org/10.3390/su15021076
Makovníková J, Kološta S, Flaška F, Pálka B. Potential of Regulating Ecosystem Services in Relation to Natural Capital in Model Regions of Slovakia. Sustainability. 2023; 15(2):1076. https://doi.org/10.3390/su15021076
Chicago/Turabian StyleMakovníková, Jarmila, Stanislav Kološta, Filip Flaška, and Boris Pálka. 2023. "Potential of Regulating Ecosystem Services in Relation to Natural Capital in Model Regions of Slovakia" Sustainability 15, no. 2: 1076. https://doi.org/10.3390/su15021076
APA StyleMakovníková, J., Kološta, S., Flaška, F., & Pálka, B. (2023). Potential of Regulating Ecosystem Services in Relation to Natural Capital in Model Regions of Slovakia. Sustainability, 15(2), 1076. https://doi.org/10.3390/su15021076