Implantable Cardioverter–Defibrillator Therapies Following Generator Replacements—Long-Term Remote Monitoring Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Remote Monitoring
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CRT-D | Cardiac resynchronization therapy–defibrillator |
HF | Heart failure |
ICD | Implantable cardioverter–defibrillator |
LVEF | Left ventricular ejection fraction |
ATP | Antitachycardia pacing |
References
- Wilkoff, B.L.; Fauchier, L.; Stiles, M.K.; Morillo, C.A.; Al-Khatib, S.M.; Almendral, J.; Aguinaga, L.; Berger, R.D.; Cuesta, A.; Daubert, J.P.; et al. 2015 HRS/EHRA/APHRS/SOLAECE expert consensus statement on optimal im-plantable cardioverter-defibrillator programming and testing. Heart Rhythm. 2016, 13, e50–e86. [Google Scholar] [CrossRef]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Tilz, R.; Boveda, S.; Deharo, J.-C.; Dobreanu, D.; Haugaa, K.H.; Dagres, N. Replacement of implantable cardioverter defibrillators and cardiac resynchronization therapy devices: Results of the European Heart Rhythm Association survey. Europace 2016, 18, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Merkely, B.; Hatala, R.; Wranicz, J.K.; Duray, G.; Földesi, C.; Som, Z.; Németh, M.; Goscinska-Bis, K.; Gellér, L.; Zima, E.; et al. Upgrade of right ventricular pacing to cardiac resynchro-nization therapy in heart failure: A randomized trial. Eur. Heart J. 2023, 44, 4259–4269. [Google Scholar] [CrossRef] [PubMed]
- Hindricks, G.; Taborsky, M.; Glikson, M.; Heinrich, U.; Schumacher, B.; Katz, A.; Brachmann, J.; Lewalter, T.; Goette, A.; Block, M.; et al. Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): A randomised controlled trial. Lancet 2014, 384, 583–590. [Google Scholar] [CrossRef]
- Koulaouzidis, G.; Tsigkriki, L.; Grammenos, O.; Iliopoulou, S.; Kalaitzoglou, M.; Theodorou, P.; Bostanitis, I.; Skonieczna-Żydecka, K.; Charisopoulou, D. Factors Influencing Adherence to Non-Invasive Telemedicine in Heart Failure: A Systematic Review. Clin. Pract. 2025, 15, 79. [Google Scholar] [CrossRef]
- Dyrbuś, M.; Tajstra, M.; Kurek, A.; Pyka, Ł.; Gąsior, M. Is the last before-death alert remote monitoring transmission in patients with heart failure life-threatening? Kardiol. Pol. 2022, 80, 286–292. [Google Scholar] [CrossRef]
- Dyrbuś, M.; Pyka, Ł.; Kurek, A.; Niedziela, J.T.; Adamowicz-Czoch, E.; Ostręga, M.; Sokoła, K.; Pres, D.; Gąsior, M.; Tajstra, M. Alert Transmissions From Remote Moni-toring of Patients With Cardiac Implantable Devices. JACC Clin. Electrophysiol. 2023, 9, 2163–2165. [Google Scholar] [CrossRef]
- Tajstra, M.; Sokal, A.; Gadula-Gacek, E.; Kurek, A.; Wozniak, A.; Niedziela, J.; Adamowicz-Czoch, E.; Rozentryt, P.; Milewski, K.; Jachec, W.; et al. Remote Supervision to Decrease Hospitalization Rate (RESULT) study in patients with implanted cardioverter-defibrillator. Europace 2020, 22, 769–776. [Google Scholar] [CrossRef]
- Gąsior, M.; Pyka, Ł.; Gorol, J.; Hawranek, M.; Tajstra, M.; Słonka, G.; Kurek, A.; Krajewski, A.; Rozentryt, P.; Gierlotka, M.; et al. COnteMporary Modalities In Treatment of Heart Failure: A report from the COMMIT-HF registry. Kardiol. Pol. 2016, 74, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, C.; Tagami, T.; Kaneko, J.; Kitamura, N.; Yasunaga, H.; Aso, S.; Takeda, M.; Kuno, M. Impact of the COVID-19 pandemic on prehospital and in-hospital treatment and outcomes of patients after out-of-hospital cardiac arrest: A Japanese multicenter cohort study. BMC Emerg. Med. 2024, 24, 12. [Google Scholar] [CrossRef]
- Goldenberg, I.; Ezekowitz, J.; Albert, C.; Alexis, J.D.; Anderson, L.; Behr, E.R.; Daubert, J.; Di Palo, K.E.; Ellenbogen, K.A.; Dzikowicz, D.J.; et al. Reassessing the need for primary prevention implantable cardioverter-defibrillators in contemporary patients with heart failure. Heart Rhythm. 2025, 22, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Blomström-Lundqvist, C.; Traykov, V.; Erba, P.A.; Burri, H.; Nielsen, J.C.; Bongiorni, M.G.; Poole, J.; Boriani, G.; Costa, R.; Deharo, J.-C.; et al. European Heart Rhythm Association (EHRA) international consensus document on how to prevent, diagnose, and treat cardiac implantable electronic device infections-endorsed by the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), the Latin American Heart Rhythm Society (LAHRS), International Society for Cardiovascular Infectious Diseases (ISCVID) and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Europace 2020, 22, 515–549. [Google Scholar]
- Dyrbuś, M.; Kurek, A.; Sokoła, K.; Niedziela, J.T.; Ostręga, M.; Cieśla, D.; Gąsior, M.; Tajstra, M. Low-temperature electrocautery for high-risk cardiac implantable electronic device procedures. Cardiol. J. 2024, 31, 171–173. [Google Scholar] [CrossRef]
- Poole, J.E.; Gleva, M.J.; Mela, T.; Chung, M.K.; Uslan, D.Z.; Borge, R.; Gottipaty, V.; Shinn, T.; Dan, D.; REPLACE Registry Investigators; et al. Complication rates asso-ciated with pacemaker or implantable cardioverter-defibrillator generator replacements and upgrade procedures: Results from the REPLACE registry. Circulation 2010, 122, 1553–1561. [Google Scholar] [CrossRef]
- Kramer, D.B.; Kennedy, K.F.; Spertus, J.A.; Normand, S.-L.; Noseworthy, P.A.; Buxton, A.E.; Josephson, M.E.; Zimetbaum, P.J.; Mitchell, S.L.; Reynolds, M.R. Mortality risk following replacement implantable cardioverter-defibrillator implantation at end of battery life: Results from the NCDR. Heart Rhythm. 2014, 11, 216–221. [Google Scholar] [CrossRef]
- Van Welsenes, G.H.; Van Rees, J.B.; Thijssen, J.; Trines, S.A.; Van Erven, L.; Schalij, M.J.; Borleffs, C. Primary prevention implantable cardioverter defibrillator recipients: The need for defibrillator back-up after an event-free first battery service-life. J. Cardiovasc. Electrophysiol. 2011, 22, 1346–1350. [Google Scholar] [CrossRef]
- Veltmann, C.; Duncker, D.; Doering, M.; Gummadi, S.; Robertson, M.; Wittlinger, T.; Colley, B.J.; Perings, C.; Jonsson, O.; Bauersachs, J.; et al. The rapy duration and improvement of ventricular function in de novo heart failure: The Heart Failure Optimization study. Eur. Heart J. 2024, 45, 2771–2781. [Google Scholar] [CrossRef]
- Adabag, S.; Patton, K.K.; Buxton, A.E.; Rector, T.S.; Ensrud, K.E.; Vakil, K.; Levy, W.C.; Poole, J.E. Association of Implantable Cardioverter Defibrillators With Survival in Patients With and Without Improved Ejection Fraction: Secondary Analysis of the Sudden Cardiac Death in Heart Failure Trial. JAMA Cardiol. 2017, 2, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.D.; Pantlin, P.; Benn, F.; Gullatt, T.R.; Williams, C.M.; Bernard, M.L.; Hiltbold, A.E.; Khatib, S.; Polin, G.M.; Rogers, P.A.; et al. Risk of ventricular arrhythmias following implantable cardioverter-defibrillator generator change in patients with recovered ejection fraction: Implications for shared decision-making. J. Cardiovasc. Electrophysiol. 2023, 34, 1405–1414. [Google Scholar] [CrossRef]
- Rordorf, R.; Cornara, S.; Klersy, C.; Savastano, S.; Vicentini, A.; Sanzo, A.; Petracci, B.; Ghio, S.; Visconti, L.O.; De Ferrari, G.M. Incidence of appropriate anti-tachycardia therapies after elective generator replacement in patient with heart failure initially implanted with a defibrillator for primary prevention: Results of a meta-analysis. Int. J. Cardiol. 2019, 283, 122–127. [Google Scholar] [CrossRef]
- Looi, K.-L.; Gavin, A.; Cooper, L.; Dawson, L.; Slipper, D.; Lever, N. Outcomes of patients with heart failure after primary prevention ICD unit generator replacement. Heart Asia 2019, 11, e011162. [Google Scholar] [CrossRef] [PubMed]
- Adabag, S.; Alhuneafat, L. Implantable-cardioverter defibrillators and COVID-19: A complicated relationship. Kardiol. Pol. 2024, 82, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, A.; Kurek, K.; Nucera, G.; Pruc, M.; Swieczkowski, D.; Kacprzyk, D.; Skrzypek, E.; Bragazzi, N.L.; Safiejko, K.; Szarpak, L. Effect of COVID-19 on the prevalence of bystanders performing cardiopulmonary resuscitation: A systematic review and meta-analysis. Cardiol. J. 2025, 32, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Yu, J.; Pan, Q.; Lu, Y.; Li, L.; Cao, H. Impact of Total Epinephrine Dose on Long Term Neurological Outcome for Cardiac Arrest Patients: A Cohort Study. Front. Pharmacol. 2021, 12, 580234. [Google Scholar] [CrossRef]
- Ludwin, K.; Safiejko, K.; Smereka, J.; Nadolny, K.; Cyran, M.; Yakubtsevich, R.; Jaguszewski, M.J.; Filipiak, K.J.; Szarpak, L.; Rodríguez-Núñez, A. Systematic review and meta-analysis appraising efficacy and safety of adrenaline for adult cardiopulmonary resuscitation. Cardiol. J. 2021, 28, 279–292. [Google Scholar] [CrossRef]
- Lundin, A.; Rylander, C.; Karlsson, T.; Herlitz, J.; Lundgren, P. Adrenaline, ROSC and survival in patients resuscitated from in-hospital cardiac arrest. Resuscitation 2019, 140, 64–71. [Google Scholar] [CrossRef]
- Linde, C. Cardiac resynchronization in heart failure: Recent advances and their practical implications. Kardiol. Pol. 2023, 81, 7–13. [Google Scholar] [CrossRef]
- Schuger, C.; Joung, B.; Ando, K.; Mont, L.; Lambiase, P.D.; O’hAra, G.E.; Jennings, J.M.; Yung, D.; Boriani, G.; Piccini, J.P.; et al. Assessment of Antitachycardia Pacing in Primary Prevention Patients: The APPRAISE ATP Randomized Clinical Trial. JAMA 2024, 332, 1723–1731. [Google Scholar] [CrossRef]
Variable | Overall, N = 134 | Survived, N = 83 | Died, N = 51 | p |
---|---|---|---|---|
NYHA class at replacement | 0.107 | |||
I | 19 (17.1%) | 13 (17.6%) | 6 (16.2%) | |
II | 46 (41.4%) | 35 (47.3%) | 11 (29.7%) | |
III | 42 (37.8%) | 25 (33.8%) | 17 (45.9%) | |
IV | 4 (3.6%) | 1 (1.4%) | 3 (8.1%) | |
N/A | 23 | 9 | 14 | |
Device after replacement | 0.447 | |||
ICD | 69 (51.5%) | 42 (50.6%) | 27 (52.9%) | |
CRT | 49 (36.6%) | 33 (39.8%) | 16 (31.4%) | |
Upgrade to CRT | 16 (11.9%) | 8 (9.6%) | 8 (15.7%) | |
Ischemic cardiomyopathy | 80 (59.7%) | 53 (63.9%) | 27 (52.9%) | 0.211 |
Male sex | 118 (88.1%) | 72 (86.7%) | 46 (90.2%) | 0.550 |
Arterial hypertension | 66 (49.3%) | 48 (57.8%) | 18 (35.3%) | 0.011 |
Prior stroke | 12 (9.0%) | 7 (8.4%) | 5 (9.8%) | 0.766 |
Lipid disorders | 69 (51.5%) | 45 (54.2%) | 24 (47.1%) | 0.421 |
History of smoking | 48 (35.8%) | 32 (38.6%) | 16 (31.4%) | 0.400 |
Anemia | 33 (24.6%) | 20 (24.1%) | 13 (25.5%) | 0.856 |
Diabetes | 53 (39.6%) | 29 (34.9%) | 24 (47.1%) | 0.164 |
Chronic kidney disease ≥ 3° | 38 (28.4%) | 22 (26.5%) | 16 (31.4%) | 0.544 |
Atrial fibrillation | 53 (39.6%) | 35 (42.2%) | 18 (35.3%) | 0.429 |
History of PCI | 58 (43.3%) | 37 (44.6%) | 21 (41.2%) | 0.700 |
History of MI | 58 (43.3%) | 40 (48.2%) | 18 (35.3%) | 0.143 |
Secondary prevention of SCD | 20 (14.9%) | 12 (14.5%) | 8 (15.7%) | 0.846 |
Appropriate shocks | 33 (24.6%) | 17 (20.5%) | 16 (31.4%) | 0.155 |
Inappropriate shocks | 5 (3.7%) | 5 (6.0%) | 0 (0.0%) | 0.156 |
Appropriate ATP | 38 (28.4%) | 17 (20.5%) | 21 (41.2%) | 0.010 |
Inappropriate ATP | 7 (5.2%) | 7 (8.4%) | 0 (0.0%) | 0.044 |
Appropriate therapies | 43 (32.1%) | 22 (26.5%) | 21 (41.2%) | 0.077 |
Inappropriate therapies | 8 (6.0%) | 8 (9.6%) | 0 (0.0%) | 0.024 |
Low %BiV (during follow-up) | 53/65 (81.5%) | 31/41 (75.6%) | 22/24 (91.7%) | 0.107 |
LVEF at replacement | 23.00 (18.00, 28.00) | 25.00 (19.00–32.00) | 20.00 (17.00–25.00) | 0.003 |
Age | 64.39 (59.22, 68.99) | 65.63 (8.39) | 61.68 (7.84) | 0.008 |
LVEDD at implantation | 68.80 (9.92) | 66.00 (60.00–71.00) | 72.00 (65.00–79.00) | 0.001 |
LVESD at implantation | 56.76 (11.78) | 53.66 (11.86) | 61.43 (10.08) | <0.001 |
LVEF at implantation | 24.00 (20.00, 28.00) | 25.00 (22.00–30.00) | 20.00 (17.00–25.00) | <0.001 |
Variable | Overall, N = 134 | No Improvement of LVEF to >35%, N = 123 | Improvement of LVEF to >35%, N = 11 | p-Value |
---|---|---|---|---|
All-cause death | 51 (38.1%) | 49 (39.8%) | 2 (18.2%) | 0.205 |
NYHA class at replacement | 0.483 | |||
I | 19 (17.1%) | 16 (15.7%) | 3 (33.3%) | |
II | 46 (41.4%) | 42 (41.2%) | 4 (44.4%) | |
III | 42 (37.8%) | 40 (39.2%) | 2 (22.2%) | |
IV | 4 (3.6%) | 4 (3.9%) | 0 (0.0%) | |
No data | 23 | 21 | 2 | |
Device after replacement | 0.155 | |||
ICD | 69 (51.5%) | 65 (52.8%) | 4 (36.4%) | |
CRT | 49 (36.6%) | 42 (34.1%) | 7 (63.6%) | |
Upgrade | 16 (11.9%) | 16 (13.0%) | 0 (0.0%) | |
Ischemic cardiomyopathy | 80 (59.7%) | 74 (60.2%) | 6 (54.5%) | 0.756 |
Male sex | 118 (88.1%) | 111 (90.2%) | 7 (63.6%) | 0.027 |
Arterial hypertension | 66 (49.3%) | 64 (52.0%) | 2 (18.2%) | 0.031 |
Prior stroke | 12 (9.0%) | 12 (9.8%) | 0 (0.0%) | 0.598 |
Lipid disorders | 69 (51.5%) | 63 (51.2%) | 6 (54.5%) | 0.833 |
History of smoking | 48 (35.8%) | 44 (35.8%) | 4 (36.4%) | >0.999 |
anemia | 33 (24.6%) | 30 (24.4%) | 3 (27.3%) | >0.999 |
Diabetes | 53 (39.6%) | 50 (40.7%) | 3 (27.3%) | 0.526 |
Chronic kidney disease ≥ 3° | 38 (28.4%) | 35 (28.5%) | 3 (27.3%) | >0.999 |
Atrial fibrillation | 53 (39.6%) | 49 (39.8%) | 4 (36.4%) | >0.999 |
History of PCI | 58 (43.3%) | 54 (43.9%) | 4 (36.4%) | 0.756 |
History of MI | 58 (43.3%) | 55 (44.7%) | 3 (27.3%) | 0.349 |
Secondary prevention of SCD | 20 (14.9%) | 18 (14.6%) | 2 (18.2%) | 0.669 |
Appropriate shocks | 33 (24.6%) | 32 (26.0%) | 1 (9.1%) | 0.292 |
Inappropriate shocks | 5 (3.7%) | 5 (4.1%) | 0 (0.0%) | >0.999 |
Appropriate ATP | 38 (28.4%) | 36 (29.3%) | 2 (18.2%) | 0.728 |
Inappropriate ATP | 7 (5.2%) | 7 (5.7%) | 0 (0.0%) | >0.999 |
Appropriate therapies | 43 (32.1%) | 41 (33.3%) | 2 (19.8%) | 0.105 |
Inappropriate therapies | 8 (6.0%) | 8 (6.5%) | 0 (0.0%) | >0.999 |
Low %BiV alert (during follow-up) | 53/65 (81.5%) | 49/58 (81.5%) | 4/7 (57.1%) | 0.118 |
LVEF at replacement | 23.00 (18.00, 28.00) | 21.00 (18.00, 27.00) | 45.00 (41.50, 45.00) | <0.001 |
Age at replacement | 64.39 (59.22, 68.99) | 63.44 (58.83, 68.40) | 67.81 (65.87, 79.31) | 0.011 |
LVEDD at implantation | 68.80 (9.92) | 69.55 (9.71) | 60.64 (8.82) | 0.008 |
LVESD at implantation | 56.76 (11.78) | 57.68 (11.55) | 47.00 (9.98) | 0.005 |
LVEF at implantation | 24.00 (20.00, 28.00) | 23.00 (19.00, 28.00) | 28.00 (25.00, 31.00) | 0.032 |
Variable | Overall, N = 134 | No Appropriate Therapy During Follow-Up, N = 91 | At Least One Appropriate Therapy, N = 43 | p-Value |
---|---|---|---|---|
All-cause death | 51 (38.1%) | 30 (33.0%) | 21 (48.8%) | 0.077 |
NYHA class at replacement | >0.999 | |||
I | 19 (17.1%) | 13 (16.9%) | 6 (17.6%) | |
II | 46 (41.4%) | 32 (41.6%) | 14 (41.2%) | |
III | 42 (37.8%) | 29 (37.7%) | 13 (38.2%) | |
IV | 4 (3.6%) | 3 (3.9%) | 1 (2.9%) | |
N/A | 23 | 14 | 9 | |
Device after replacement | 0.160 | |||
ICD | 69 (51.5%) | 42 (46.2%) | 27 (62.8%) | |
CRT | 49 (36.6%) | 38 (41.8%) | 11 (25.6%) | |
Upgrade | 16 (11.9%) | 11 (12.1%) | 5 (11.6%) | |
Ischemic cardiomyopathy | 80 (59.7%) | 50 (54.9%) | 30 (69.8%) | 0.102 |
Male sex | 118 (88.1%) | 78 (85.7%) | 40 (93.0%) | 0.223 |
Arterial hypertension | 66 (49.3%) | 46 (50.5%) | 20 (46.5%) | 0.663 |
Prior stroke | 12 (9.0%) | 9 (9.9%) | 3 (7.0%) | 0.751 |
Lipid disorders | 69 (51.5%) | 47 (51.6%) | 22 (51.2%) | 0.958 |
History of smoking | 48 (35.8%) | 33 (36.3%) | 15 (34.9%) | 0.876 |
Anemia | 33 (24.6%) | 23 (25.3%) | 10 (23.3%) | 0.800 |
Diabetes | 53 (39.6%) | 40 (44.0%) | 13 (30.2%) | 0.129 |
Chronic kidney disease ≥ 3° | 38 (28.4%) | 28 (30.8%) | 10 (23.3%) | 0.368 |
Atrial fibrillation | 53 (39.6%) | 36 (39.6%) | 17 (39.5%) | 0.998 |
History of PCI | 58 (43.3%) | 36 (39.6%) | 22 (51.2%) | 0.206 |
History of MI | 58 (43.3%) | 33 (36.3%) | 25 (58.1%) | 0.017 |
Secondary prevention of SCD | 20 (14.9%) | 14 (15.4%) | 6 (14.0%) | 0.828 |
LVEF change after first device implantation | 0.105 | |||
LVEF remaining ≤35% | 123 (91.8%) | 81 (89.0%) | 42 (97.7%) | |
Improvement to >35% | 11 (8.2%) | 10 (11.0%) | 1 (2.3%) | |
Inappropriate shocks | 5 (3.7%) | 4 (4.4%) | 1 (2.3%) | >0.999 |
Inappropriate ATP | 7 (5.2%) | 5 (5.5%) | 2 (4.7%) | >0.999 |
Inappropriate therapies | 8 (6.0%) | 6 (6.6%) | 2 (4.7%) | >0.999 |
Low %BiV alert (during follow-up) | 53 (39.6%) | 31 (34.1%) | 22 (51.2%) | 0.059 |
LVEF at replacement | 23.00 (18.00, 28.00) | 23.00 (18.00, 30.50) | 20.00 (17.50, 26.00) | 0.112 |
Age | 64.13 (8.38) | 64.94 (8.54) | 62.40 (7.85) | 0.092 |
LVEDD at implantation | 68.80 (9.92) | 67.80 (9.77) | 70.88 (10.01) | 0.098 |
LVESD at implantation | 56.76 (11.78) | 55.34 (11.78) | 59.67 (11.38) | 0.049 |
LVEF at implantation | 24.00 (20.00, 28.00) | 25.00 (20.00, 30.00) | 22.00 (18.00, 28.00) | 0.047 |
HR | 95% CI | p-Value | |
---|---|---|---|
Independent Predictors of Death | |||
Baseline LVEF, per 1% increase | 0.88 | 0.84, 0.94 | <0.001 |
History of myocardial infarction | 0.54 | 0.30, 0.98 | 0.042 |
Appropriate ATP during follow-up | 1.87 | 1.05, 3.30 | 0.032 |
Independent predictors of appropriate therapies after device replacement | |||
Age, per 1 year | 0.95 | 0.92, 0.98 | 0.005 |
History of myocardial infarction | 2.22 | 1.19, 4.15 | 0.012 |
Independent predictors of inappropriate therapies after device replacement | |||
Age, per 1 year | 1.13 | 1.02, 1.24 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyrbuś, M.; Pyka, Ł.; Kurek, A.; Niedziela, J.; Adamowicz-Czoch, E.; Sokoła, K.; Machowicz, J.; Ostręga, M.; Pres, D.; Skrzypek, M.; et al. Implantable Cardioverter–Defibrillator Therapies Following Generator Replacements—Long-Term Remote Monitoring Data. Clin. Pract. 2025, 15, 160. https://doi.org/10.3390/clinpract15090160
Dyrbuś M, Pyka Ł, Kurek A, Niedziela J, Adamowicz-Czoch E, Sokoła K, Machowicz J, Ostręga M, Pres D, Skrzypek M, et al. Implantable Cardioverter–Defibrillator Therapies Following Generator Replacements—Long-Term Remote Monitoring Data. Clinics and Practice. 2025; 15(9):160. https://doi.org/10.3390/clinpract15090160
Chicago/Turabian StyleDyrbuś, Maciej, Łukasz Pyka, Anna Kurek, Jacek Niedziela, Elżbieta Adamowicz-Czoch, Katarzyna Sokoła, Joanna Machowicz, Mateusz Ostręga, Damian Pres, Michał Skrzypek, and et al. 2025. "Implantable Cardioverter–Defibrillator Therapies Following Generator Replacements—Long-Term Remote Monitoring Data" Clinics and Practice 15, no. 9: 160. https://doi.org/10.3390/clinpract15090160
APA StyleDyrbuś, M., Pyka, Ł., Kurek, A., Niedziela, J., Adamowicz-Czoch, E., Sokoła, K., Machowicz, J., Ostręga, M., Pres, D., Skrzypek, M., Gąsior, M., & Tajstra, M. (2025). Implantable Cardioverter–Defibrillator Therapies Following Generator Replacements—Long-Term Remote Monitoring Data. Clinics and Practice, 15(9), 160. https://doi.org/10.3390/clinpract15090160