Evidence to Date: Evaluating Pembrolizumab in the Treatment of Extensive-Stage Small-Cell Lung Cancer
Abstract
:1. Introduction
2. Pembrolizumab for Previously-Treated ES-SCLC
3. Pembrolizumab for Previously Untreated ES-SCLC
4. Other Therapeutic Treatment Strategies for ES-SCLC
5. Predictive Biomarkers for Immune Checkpoint Inhibitors in SCLC
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Govindan, R.; Page, N.; Morgensztern, D.; Read, W.; Tierney, R.; Vlahiotis, A.; Spitznagel, E.L.; Piccirillo, J. Changing Epidemiology of Small-Cell Lung Cancer in the United States Over the Last 30 Years: Analysis of the Surveillance, Epidemiologic, and End Results Database. J. Clin. Oncol. 2006, 24, 4539–4544. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.F.; Liu, S.V. Small Cell Lung Cancer: Advances in Diagnosis and Management. Semin. Respir. Crit. Care. Med. 2020, 41, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Primers 2021, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, A.G.; Chansky, K.; Crowley, J.; Beyruti, R.; Kubota, K.; Turrisi, A.; Eberhardt, W.E.; van Meerbeeck, J.; Rami-Porta, R.; Goldstraw, P.; et al. The International Association for the Study of Lung Cancer Lung Cancer Staging Project: Proposals for the revision of the clinical and pathologic staging of small cell lung cancer in the forthcoming eighth edition of the TNM classification for lung cancer. J. Thorac. Oncol. 2016, 11, 300–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, S.; Stanley, K.E.; Yesner, R.; Kuang, D.T.; Morris, J.F. Small-cell carcinoma of the lung–survival according to histologic subtype: A Veterans Administration Lung Group Study. Cancer 1981, 47, 1863–1866. [Google Scholar]
- Kalemkerian, G.P.; Loo, B.; Akerley, W.; Attia, A.; Bassetti, M.; Boumber, Y.; Decker, R.; Dobelbower, M.C.; Dowlati, A.; Downey, R.J.; et al. NCCN guidelines insights: Small cell lung cancer, version 2.2018. J. Natl. Compr. Canc. Netw. 2018, 16, 1171–1182. [Google Scholar] [CrossRef]
- Rusthoven, C.G.; Kavanagh, B.D. Prophylactic cranial irradiation (PCI) versus active MRI surveillance for small cell lung cancer: The case for equipoise. J. Thorac. Oncol. 2017, 12, 1746–1754. [Google Scholar] [CrossRef] [Green Version]
- Rudin, C.M.; Durinck, S.; Stawiski, E.W.; Poirier, J.T.; Modrusan, Z.; Shames, D.S.; Bergbower, E.A.; Guan, Y.; Shin, J.; Guillory, J.; et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nature genetics. 2012, 44, 1111–1116. [Google Scholar] [CrossRef]
- George, J.; Lim, J.S.; Jang, S.J.; Cun, Y.; Ozretić, L.; Kong, G.; Leenders, F.; Lu, X.; Fernández-Cuesta, L.; Bosco, G.; et al. Comprehensive genomic profiles of small cell lung cancer. Nature 2015, 524, 47. [Google Scholar] [CrossRef]
- Ross, J.; Wang, K.; Elkadi, O.; Tarasen, A.; Foulke, L.; Sheehan, C.E.; Otto, G.A.; Palmer, G.; Yelensky, R.; Lipson, D.; et al. Next-generation sequencing reveals frequent, consistent genomic alterations in small cell undifferentiated lung cancer. J. Clin. Path. 2014, 67, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Roth, B.J.; Johnson, D.H.; Einhorn, L.H.; Schacter, L.P.; Cherng, N.C.; Cohen, H.J.; Crawford, J.; Randolph, J.A.; Goodlow, J.L.; Broun, G.O.; et al. Randomized study of cyclophosphamide, doxorubicin, and vincristine versus etoposide and cisplatin versus alternation of these two regimens in extensive small-cell lung cancer: A phase III trial of the Southeastern Cancer Study Group. J. Clin. Oncol. 1992, 10, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Ott, P.A.; Zugazagoitia, J.; Ready, N.E.; Hann, C.L.; De Braud, F.G.; Antonia, S.J.; Ascierto, P.A.; Moreno, V.; Atmaca, A.; et al. Nivolumab (nivo)±ipilimumab (ipi) in advanced small-cell lung cancer (SCLC): First report of a randomized expansion cohort from CheckMate 032. J. Clin. Onc. 2017, 35 (Suppl. 15), 8503. [Google Scholar] [CrossRef]
- Chung, H.C.; Piha-Paul, S.A.; Lopez-Martin, J.; Schellens, J.H.M.; Kao, S.; Miller, W.H., Jr.; Delord, J.P.; Gao, B.; Planchard, D.; Gottfried, M.; et al. Pembrolizumab after two or more lines of prior therapy in patients with advanced small-cell lung cancer (SCLC): Results from the KEYNOTE-028 and KEYNOTE-158 studies. J. Thorac. Oncol. 2020, 15, 618–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffens, C.C.; Elender, C.; Hutzschenreuter, U.; Dille, S.; Binninger, A.; Spring, L.; Jänicke, M.; Marschner, N.; TLK-Group (Tumour Registry Lung Cancer). Treatment and outcome of 432 patients with extensive-stage small cell lung cancer in first, second and third line-Results from the prospective German TLK cohort study. Lung. Cancer. 2019, 130, 216–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horn, L.; Mansfield, A.S.; Szczęsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Dvorkin, M.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.J.; Özgüroğlu, M.; Ji, J.H.; et al. Durvalumab plus platinum–etoposide versus platinum–etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): A randomized, controlled, open-label, phase 3 trial. Lancet. 2019, 394, 1929–1939. [Google Scholar] [CrossRef]
- Rudin, C.M.; Awad, M.M.; Navarro, A.; Gottfried, M.; Peters, S.; Csőszi, T.; Cheema, P.K.; Rodriguez-Abreu, D.; Wollner, M.; Yang, J.C.-H.; et al. Pembrolizumab or Placebo Plus Etoposide and Platinum as First-Line Therapy for Extensive-Stage Small-Cell Lung Cancer: Randomized, Double-Blind, Phase III KEYNOTE-604 Study. J. Clin. Oncol. 2020, 38, 2369–2379. [Google Scholar] [CrossRef]
- Ott, P.A.; Elez, E.; Hiret, S.; Kim, D.W.; Morosky, A.; Saraf, S.; Piperdi, B.; Mehnert, J.M. Pembrolizumab in patients with extensive-stage small-cell lung cancer: Results from the phase Ib KEYNOTE-028 study. J. Clin. Oncol. 2017, 35, 3823–3829. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.C.; Lopez-Martin, J.A.; Kao, S.C.-H.; Miller, W.H.; Ros, W.; Gao, B.; Marabelle, A.; Gottfried, M.; Zer, A.; Delord, J.P.; et al. Phase 2 study of pembrolizumab in advanced small-cell lung cancer (SCLC): KEYNOTE-158. J. Clin. Oncol. 2018, 36 (Suppl. 15), 8506. [Google Scholar] [CrossRef]
- Gadgeel, S.M.; Pennell, N.A.; Fidler, M.J.; Halmos, B.; Bonomi, P.; Stevenson, J.; Schneider, B.; Sukari, A.; Ventimiglia, J.; Chen, W.; et al. Phase II study of maintenance pembrolizumab in patients with extensive-stage small-cell lung cancer (SCLC). J. Thorac. Oncol. 2018, 13, 1393–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.J.; Keam, B.; Ock, C.Y.; Song, S.; Kim, M.; Kim, S.H.; Kim, K.H.; Kim, J.S.; Kim, T.M.; Kim, D.W.; et al. A phase II study of pembrolizumab and paclitaxel in patients with relapsed or refractory small-cell lung cancer. Lung Cancer 2019, 136, 122–128. [Google Scholar] [CrossRef]
- Liu, S.V.; Reck, M.; Mansfield, A.S.; Mok, T.; Scherpereel, A.; Reinmuth, N.; Garassino, M.C.; De Castro Carpeno, J.; Califano, R.; Nishio, M.; et al. Updated Overall Survival and PD-L1 Subgroup Analysis of Patients with Extensive-Stage Small-Cell Lung Cancer Treated with Atezolizumab, Carboplatin, and Etoposide (IMpower133). J. Clin. Oncol. 2021, 39, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Leal, T.; Wang, Y.; Dowlati, A.; Lewis, D.A.; Chen, Y.; Mohindra, A.R.; Razaq, M.; Ahuja, H.G.; Liu, J.; King, D.M.; et al. Randomized phase II clinical trial of cisplatin/carboplatin and etoposide (CE) alone or in combination with nivolumab as frontline therapy for extensive-stage small cell lung cancer (ES-SCLC): ECOG-ACRIN EA5161. J. Clin. Oncol. 2020, 38 (Suppl. 15), 9000. [Google Scholar] [CrossRef]
- Weiss, G.J.; Waypa, J.; Blaydorn, L.; Coats, J.; McGahey, K.; Sangal, A.; Niu, J.; Lynch, C.A.; Farley, J.H.; Khemka, V. A phase Ib study of pembrolizumab plus chemotherapy in patients with advanced cancer (PembroPlus). Br. J. Cancer 2017, 117, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Welsh, J.W.; Heymach, J.V.; Chen, D.; Verma, V.; Cushman, T.R.; Hess, K.R.; Shroff, G.; Tang, C.; Skoulidis, F.; Jeter, M.; et al. Phase I Trial of Pembrolizumab and Radiation Therapy after Induction Chemotherapy for Extensive-Stage Small Cell Lung Cancer. J. Thorac. Oncol. 2020, 15, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, H.; Sen, T.; Rudin, C.M. Targeted Therapies and Biomarkers in Small Cell Lung Cancer. Front. Oncol. 2020, 10, 741. [Google Scholar] [CrossRef]
- Scheel, A.H.; Ansén, S.; Schultheis, A.M.; Scheffler, M.; Fischer, R.N.; Michels, S.; Hellmich, M.; George, J.; Zander, T.; Brockmann, M.; et al. PD-L1 expression in non-small cell lung cancer: Correlations with genetic alterations. Oncoimmunology 2016, 5, e1131379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasuda, Y.; Ozasa, H.; Kim, Y.H. PD-L1 expression in small cell lung cancer. J. Thorac. Oncol. 2018, 13, e40–e41. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wu, D.; Li, L.; Chai, Y.; Huang, J. PD-L1 and survival in solid tumors: A meta-analysis. PLoS ONE 2015, 10, e0131403. [Google Scholar] [CrossRef]
- Muppa, P.; Barreto-Siqueira-Parrilha-Terra, S.; Sharma, A.; Mansfield, A.S.; Aubry, M.C.; Bhinge, K.; Asiedu, M.K.; de Andrade, M.; Janaki, N.; Murphy, S.J.; et al. Immune Cell Infiltration May Be a Key Determinant of Long-Term Survival in Small Cell Lung Cancer. J. Thorac. Oncol. 2019, 14, 1286–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inamura, K.; Inamura, K.; Yokouchi, Y.; Ninomiya, H.; Sakakibara, R.; Nishio, M.; Okumura, S.; Ishikawa, Y. Relationship of tumor PD-L1 (CD274) expression with lower mortality in lung high-grade neuroendocrine tumor. Cancer Med. 2017, 6, 2347–2356. [Google Scholar] [CrossRef] [PubMed]
- Murciano-Goroff, Y.R.; Warner, A.B.; Wolchok, J.D. The future of cancer immunotherapy: Microenvironment-targeting combinations. Cell Res. 2020, 30, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Huard, B.; Tournier, M.; Hercend, T.; Triebel, F.; Faure, F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the anti-genic response of CD4+ T lymphocytes. Eur. J. Immunol. 1994, 24, 3216–3221. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.R.; Turnis, M.; Goldberg, M.; Bankoti, J.; Selby, M.; Nirschl, C.J.; Bettini, M.L.; Gravano, D.M.; Vogel, P.; Liu, C.L.; et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012, 72, 917–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arriola, E.; Wheater, M.; Galea, I.; Cross, N.; Maishman, T.; Hamid, D.; Stanton, L.; Cave, J.; Geldart, T.; Mulatero, C.; et al. Outcome and biomarker analysis from a multicenter phase 2 study of ipilimumab in combination with carboplatin and etoposide as first-line therapy for extensive-stage SCLC. J. Thorac. Oncol. 2016, 11, 1511–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: Results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Sanchez-Paulete, A.R.; Labiano, S.; Rodriguez-Ruiz, M.E.; Azpilikueta, A.; Etxeberria, I.; Bolaños, E.; Lang, V.; Rodriguez, M.; Aznar, M.A.; Jure-Kunkel, M.; et al. Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy. Eur. J. Immunol. 2016, 46, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Segal, N.H.; He, A.R.; Doi, T.; Levy, R.; Bhatia, S.; Pishvaian, M.J.; Cesari, R.; Chen, Y.; Davis, C.B.; Huang, B.; et al. Phase I study of single-agent utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in patients with advanced cancer. Clin. Cancer Res. 2018, 24, 1816–1823. [Google Scholar] [CrossRef] [Green Version]
- Goel, S.; DeCristo, M.J.; Watt, A.C.; BrinJones, H.; Sceneay, J.; Li, B.B.; Khan, N.; Ubellacker, J.M.; Xie, S.; Metzger-Filho, O.; et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017, 548, 471. [Google Scholar] [CrossRef]
- Poirier, J.T.; Gardner, E.E.; Connis, N.; Moreira, A.L.; de Stanchina, E.; Hann, C.L.; Rudin, C.M. DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene 2015, 34, 5869. [Google Scholar] [CrossRef] [Green Version]
- Tellez, C.S.; Grimes, M.J.; Picchi, M.A.; Liu, Y.; March, T.H.; Reed, M.D.; Oganesian, A.; Taverna, P.; Belinsky, S.A. SGI-110 and entinostat therapy reduces lung tumor burden and reprograms the epigenome. Int. J. Cancer 2014, 135, 2223–2231. [Google Scholar] [CrossRef] [PubMed]
- Hubaux, R.; Thu, K.L.; Coe, B.P.; MacAulay, C.; Lam, S.; Lam, W.L. EZH2 promotes E2F-driven SCLC tumorigenesis through modulation of apoptosis and cell-cycle regulation. J. Thorac. Oncol. 2013, 8, 1102–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Zimmermann, S.; Parikh, K.; Mansfield, A.S.; Adjei, A.A. Current diagnosis and management of small-cell lung cancer. Mayo Clin. Proc. 2019, 94, 1599–1622. [Google Scholar] [CrossRef] [PubMed]
Trial | Design | End Points | PD-L1 Expression | Key Eligibility Criteria | Pembrolizumab Dose | Response Assessment |
---|---|---|---|---|---|---|
KEYNOTE-028 [19] | Multicohort Phase 1b open-label for previously treated SCLC | Primary: ORR; secondary: PFS, OS, DOR, safety, and tolerability | PD-L1 expression was required | SCLC or pulmonary neuroendocrine tumor that had failed standard therapy | Pembrolizumab 10 mg/kg every 2 weeks | Every 8 weeks for 6 months; every 12 weeks thereafter |
KEYNOTE-158 [20] | Multicohort Phase 2 open-label for previously treated SCLC | Primary: ORR; secondary: PFS, OS, DOR, and safety | No PD-L1 expression required | Evaluable tumor sample for biomarker assessments | Pembrolizumab 200 mg IV every 3 weeks | Every 9 weeks for 12 months; every 12 weeks thereafter |
Gadgeel et al. [21] | Phase 2 open-label, single-arm maintenance pembrolizumab after 1st line chemotherapy | Primary: PFS; secondary: OS and safety | No PD-L1 expression required | Response or stable disease after chemotherapy and enrollment within 8 weeks of last chemotherapy dose | Pembrolizumab 200 mg IV every 3 weeks | Every 6 weeks (two cycles) for the first six cycles and then at the discretion of the treating physician |
KEYNOTE-604 [18] | Phase 3 randomized, double-blind, placebo-controlled for the 1st-line treatment of ES-SCLC | Primary: PFS, OS; secondary: ORR, DOR, and safety | PD-L1 expression was assessed retrospectively | SCLC not previously treated with systemic therapy | Pembrolizumab 200 mg IV every 3 weeks + platinum/etoposide | At baseline, every 6 weeks for the first 48 weeks, and every 9 weeks thereafter |
Kim et al. [22] | Phase 2, multi-center, open label, single-arm for ES-SCLC that had not responded to 1st line | Primary: ORR; secondary: OS, PFS, safety and analysis of biomarkers | PD-L1 expression was required | ED SCLC that progressed after 1st line standard treatment regardless of their initial best response | Pembrolizumab 200 mg IV every 3 weeks + paclitaxel | At baseline, every two cycles until six cycles. Thereafter, every three cycles |
Clinical Study | ORR | DOR | PFS | OS |
---|---|---|---|---|
KEYNOTE-028 [19] | 33.3% (95% CI, 15.6–55.3) | 19.4 mo (range, 3.6–20.0) | 1.9 mo (95% CI, 1.7–5.9) | 9.7 mo (range, 4.1-NR) |
KEYNOTE-158 [20] | 18.7 % (95% CI, 11.8–27.4) | NR (range, 2.1–18.7) | 2.0 mo (95% CI, 1.9–2.1) | 8.7 mo |
Pooled analysis * [14] | 19.3% (95% CI, 11.4–29.4) | NR (range, 4.1–35.8) | 2.0 mo (95% CI, 1.9–3.4) | 7.7 mo (95% CI, 5.2–10.1) |
Patient and Disease Characteristics at Baseline | IMpower 133 [23] | CASPIAN [17] | KEYNOTE-604 [18] |
---|---|---|---|
Therapeutic regimen | Atezolizumab (anti-PD-L1) + carboplatin + etoposide | Durvalumab (anti-PD-L1) + platinum (carboplatin/cisplatin) + etoposide | Pembrolizumab (anti-PD-1) + platinum (carboplatin/cisplatin) + etoposide |
Patients in the arm of interest, n | 201 | 268 | 228 |
Primary endpoint | PFS, OS | OS | PFS, OS |
Age groups, n (%) | |||
<65 years | 111 (55.2) | 167 (62) | 115 (50.4) |
≥65 years | 90 (44.8) | 101 (38) | 113 (49.6) |
Sex, n (%) | |||
Men | 129 (64.2) | 190 (71) | 152 (66.7) |
Women | 72 (35.8) | 78 (29) | 76 (33.3) |
ECOG, n (%) | |||
0 | 73 (36.3) | 99 (37%) * | 60 (26.3) |
1 | 128 (63.7) | 169 (63%) * | 168 (73.7) |
Smoking history, n (%) | |||
Never smoked | 9 (4.5) | 22 (8) | 8 (3.5) |
Former smoker | 118 (58.7) | 126 (63) | 72 (31.6) |
Current smoker | 74 (36.8) | 120 (45) | 148 (64.9) |
Brain or CNS metastasis, n (%) | |||
Yes | 17 (8.5) | 28 (10) | 33 (14.5) |
No | 184 (91.5) | 240 (90) | 195 (85.5) |
PD-L1 status, n (%) | |||
<1 | 28 (43.8) ** | - | 97 (42.5) *** |
≥1 | 36 (56.3) ** | - | 88 (38.6) *** |
Unknown | - | - | 43 (18.9) *** |
Duration of follow-up, median | 22.9 mo | 14.2 mo | 21.6 mo |
ORR | 60.2% (95% CI, 53.1–67.0) | 68% **** Odds ratio 1.56 (95% CI, 1.10–2.22) | 70.6% (95% CI, 64.2–76.4) |
DOR | 4.2 mo (95%CI, 4.1–4.5) | 5.1 mo (3.4–10.4) | 4.2 mo (1.0+ to 26.0+) |
PFS, median | 5.2 mo (95% CI, 4.4–5.6) HR 0.77 (95% CI, 0.63–0.95) | 5.1 mo (95% CI, 0.65–0.94) HR 0.78 (95% CI, 0.65–0.94) | 4.5 mo (4.3 to 5.4) HR 0.75 (95% CI, 0.61–0.91; p = 0.0023) |
OS | 12.3 mo (95% CI, 10.8–15.8) HR 0.76 (95% CI, 0.60–0.95; descriptive p = 0.0154). | 13.0 mo (95% CI, 11.5–14.8) HR 0.73 (95% CI, 0.59–0.91; p = 0.0047) | 10.8 mo (95% CI, 9.2–12.9) HR 0.80 (95% CI, 0.64–0.98; p = 0.0164) |
Any event, n (%) | 198 (100) | 260 (98) | 223 (100) |
Grade 3 or 4, n (%) | 134 (67.7) | 163 (62) | 171 (76.7) |
Immune-related AEs, n (%) | 40 (20.2%) | 52 (20%) | 55 (24.7%) |
Study Phase | Study Name | Clinical Setting | Treatment | Key Endpoints | ClinicalTrials.gov Study Identifier |
---|---|---|---|---|---|
2 | REACTION | 1L concurrent ES-SCLC | Platinum + E +/− pembrolizumab | PFS, OS | NCT02580994 |
2 | AFT-17 | 2L platinum-refractory, resistant, sensitive ES-SCLC | Pembrolizumab vs. topotecan | PFS | NCT02963090 |
2 | 1L ES-SCLC | Pembrolizumab + platinum + E + radiation (concurrent, phased, or sequential) | Dynamic PD-L1 expression, PFS and OS | NCT02934503 | |
2 | 2L platinum refractory, resistant ES SCLC | Pembrolizumab + amrubicin | ORR | NCT03253068 | |
1 | MK-3475-011/KEYNOTE-011 | 1L ES-SCLC part E | Pembrolizumab + cisplatin/etoposide vs. pembrolizumab + carboplatin/etoposide vs. pembrolizumab + cisplatin/etoposide + G-CSF | Safety | NCT01840579 |
1/2 | 2L platinum refractory, resistant | Pembrolizumab + pegzilarginase | Safety, ORR | NCT03371979 | |
1/2 | Refractory to standard therapy | INCAGN01876 + pembrolizumab + epacadostat | Safety, ORR | NCT03277352 | |
1 | 3L 2L platinum refractory, resistant, sensitive | Itacitinib + pembrolizumab | Safety | NCT02646748 | |
1/2 | LUPER | Relapsed after 1L chemotherapy-based regimen | Lurbinectedin + pembrolizumab | Safety, ORR | NCT04358237 |
1/2 | 2L resistant to standard therapy | Galinpepimut-S (vaccine) + pembrolizumab | PFS, OS | NCT03761914 | |
1b/2a | KEYNOTE A60 | SCLC refractory to checkpoint inhibitor | NT-I7 (hyleukin-7) + pembrolizumab | Safety, ORR | NCT04332653 |
1 | 1L ES SCLC consolidation setting | AMG 757 + pembrolizumab | Safety | NCT03319940 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riano, I.; Patel, S.R.; Liu, S.V.; Duma, N. Evidence to Date: Evaluating Pembrolizumab in the Treatment of Extensive-Stage Small-Cell Lung Cancer. Clin. Pract. 2021, 11, 441-454. https://doi.org/10.3390/clinpract11030059
Riano I, Patel SR, Liu SV, Duma N. Evidence to Date: Evaluating Pembrolizumab in the Treatment of Extensive-Stage Small-Cell Lung Cancer. Clinics and Practice. 2021; 11(3):441-454. https://doi.org/10.3390/clinpract11030059
Chicago/Turabian StyleRiano, Ivy, Shruti R. Patel, Stephen V. Liu, and Narjust Duma. 2021. "Evidence to Date: Evaluating Pembrolizumab in the Treatment of Extensive-Stage Small-Cell Lung Cancer" Clinics and Practice 11, no. 3: 441-454. https://doi.org/10.3390/clinpract11030059
APA StyleRiano, I., Patel, S. R., Liu, S. V., & Duma, N. (2021). Evidence to Date: Evaluating Pembrolizumab in the Treatment of Extensive-Stage Small-Cell Lung Cancer. Clinics and Practice, 11(3), 441-454. https://doi.org/10.3390/clinpract11030059