Deposition, Dietary Exposure and Human Health Risks of Heavy Metals in Mechanically Milled Maize Flours in Mbarara City, Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Context and Geographical Coverage
2.2. Chemicals and Reagents
2.3. Study Design
2.4. Sample Preparation and Analysis
2.5. Human Health Risk Assessment Models
2.6. Statistical Analysis
3. Results
3.1. Deposition and Distribution of Toxic Elements in the Samples by Processing Method
3.2. Non-Carcinogenic Health Risk Assessment Results
3.3. Cancer Health Risk Assessment Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munir, N.; Jahangeer, M.; Bouyahya, A.; El Omari, N.; Ghchime, R.; Balahbib, A.; Aboulaghras, S.; Mahmood, Z.; Akram, M.; Ali Shah, S.M.; et al. Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review. Sustainability 2022, 14, 161. [Google Scholar] [CrossRef]
- Kpoda, D.S.; Bandé, M.; Compaoré, A.M.; Bazié, R.B.S.; Meda, R.N.; Somda, S.; Meda, D.S.; Kpoda, H.B.N.; Some, S.A.; Sakana, L.; et al. Nutritional, Microbiological, and Toxicological Quality Assessment of Foods Sold in Urban and Suburban Markets in Burkina Faso. Health Secur. 2022, 20, 298–307. [Google Scholar] [CrossRef]
- Bazié, B.S.R.; Compaoré, M.K.A.; Bandé, M.; Kpoda, S.D.; Méda, N.S.B.R.; Kangambega, T.M.O.; Ilboudo, I.; Sandwidi, B.Y.; Nikiema, F.; Yakoro, A.; et al. Evaluation of metallic trace elements contents in some major raw foodstuffs in Burkina Faso and health risk assessment. Sci. Rep. 2022, 12, 4460. [Google Scholar] [CrossRef]
- WHO. WHO Estimates of the Global Burden of Foodborne Diseases. Foodborne Disease Burden Epidemiology Reference Group 2007–2015 (2015). 2015. Available online: https://apps.who.int/iris/bitstream/handle/10665/199350/?sequence=1 (accessed on 23 August 2022).
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [Green Version]
- Omara, T.; Kiprop, A.K.; Wangila, P.; Wacoo, A.P.; Kagoya, S.; Nteziyaremye, P.; Peter Odero, M.; Kiwanuka Nakiguli, C.; Baker Obakiro, S. The Scourge of Aflatoxins in Kenya: A 60-Year Review (1960 to 2020). J. Food Qual. 2021, 2021, 8899839. [Google Scholar] [CrossRef]
- Harada, M. Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Crit. Revs Toxicol. 1995, 25, 1–24. [Google Scholar] [CrossRef]
- Lee, A.; Vasavada, P. Safety and Risk Mitigation: Food Safety Hazards and Their Mitigation. In Encyclopedia of Dairy Sciences, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 785–794. [Google Scholar]
- Kobets, T.; Smith, B.P.C.; Williams, G.M. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022, 11, 2828. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar]
- Edelstein, M.; Ben-Hur, M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 2018, 234, 431–444. [Google Scholar] [CrossRef]
- Eid, R.; Arab, N.T.; Greenwood, M.T. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. Biochim. Biophys. Acta Mol. Cell. Res. 2017, 1864, 399–430. [Google Scholar] [CrossRef]
- Larsen, K.V.; Cobbina, S.J.; Ofori, S.A.; Addo, D. Quantification and health risk assessment of heavy metals in milled maize and millet in the Tolon District, Northern Ghana. Food Sci. Nutr. 2020, 8, 4205–4213. [Google Scholar] [CrossRef]
- Abrefah, R.G.; Mensimah, E.; Sogbadji, R.B.M.; Opata, N.S. The effects of milling on corn flour using instrumental neutron activation analyses: A case study of three selected corn millers within Accra metropolis, Ghana. Agriculture 2011, 39, 5000–5003. [Google Scholar]
- Dallatu, Y.A.; Shallangwa, G.A.; Ibrahim, W.A. Effect of Milling on the Level of Heavy Metal Contamination of Some Nigerian Foodstuffs. Int. J. Chem. Mat. Environ. Res. 2016, 3, 29–34. [Google Scholar]
- Oniya, E.O.; Olubi, O.E.; Ibitoye, A.; Agbi, J.I.; Agbeni, S.K.; Faweya, E.B. Effect of Milling Equipment on the Level of Heavy Metal Content of Foodstuff. Phys. Sci. Int. J. 2018, 20, 1–8. [Google Scholar] [CrossRef]
- Lebnebiso, J.S.; Chiroma, T.M.; Cornelius, J.; Abubakar, M. Product size-cut range for maize flour dry-milled using locally fabricated milling plates. Niger. J Eng. Sci. Technol. Res. 2020, 6, 1–5. [Google Scholar]
- Kalagbor, I.; Fyneface, D.; Korfii, U.; Ogaji, T.; Kpoonanyie, F. Estimation of the Levels of Fe in Wheat and Maize Flour Milled using Commercial Milling Machine and A Home Blender. J. Appl. Sci. Environ. Manag. 2017, 21, 341–344. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Armendáriz, C.; Gutiérrez, Á.J.; Gomes-Furtado, V.; González-Weller, D.; Revert, C.; Hardisson, A.; Paz, A. Essential Metals and Trace Elements in Cereals and Their Derivatives Commercialized and Consumed in Cape Verde. Biol. Trace Elem. Res. 2023, 201, 444–454. [Google Scholar] [CrossRef]
- Ofori, H.; Tortoe, C.; Akonor, P.T.; Ampah, J. Trace metal and aflatoxin concentrations in some processed cereal and root and tuber flour. Food Contam. 2016, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Nnaji, J.C.; Iweha, B.I.; Ogbuewu, I. Human health risk assessment of heavy metals in foodstuffs processed with diesel powered metallic disc grinders in Umuahia, Nigeria. J. Chem. Soc. Niger. 2020, 45, 458–468. [Google Scholar]
- Buteme, S.; Masanza, M.; Bwayo, M.F. Severity and prevalence of the destructive fall armyworm on maize in Uganda: A case of Bulambuli District. Afr. J. Agric. Res. 2020, 16, 777–784. [Google Scholar] [CrossRef]
- Mottaleba, K.A.; Fatah, A.F.; Kruseman, G.; Erenstein, O. Projecting food demand in 2030: Can Uganda attain the zero hunger goal? Sustain. Prod. Consump. 2021, 28, 1140–1163. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Animal Industry and Fisheries (MAAIF). Maize Training Manual for extension workers in Uganda partners. 2019. Available online: https://www.agriculture.go.ug/wp-content/uploads/2019/09/Maize-training-manual-for-extension-workers-in-Uganda.pdf (accessed on 21 January 2023).
- Bwambale, J.; Mourad, K.A. Modelling the impact of climate change on maize yield in Victoria Nile Sub-basin, Uganda. Arab J. Geosci. 2022, 15, 40. [Google Scholar] [CrossRef]
- USAID/SPRING. The Potential to Improve Nutrition through Use of Fortified Maize Flour in Schools in Uganda: Results of a Mix-methods Research Study. 2018. Available online: https://www.spring-nutrition.org/sites/default/files/publications/reports/uganda_fortified_maize_report_2018.pdf (accessed on 21 January 2023).
- USAID/SPRING. Uganda: Mapping of Maize Millers: A Road Map to Scaling Up Maize Flour Fortification. 2017. Available online: https://www.spring-nutrition.org/sites/default/files/publications/reports/spring_ug_mapping_maize_millers.pdf (accessed on 21 January 2023).
- Mugabi, R. Improving Performance of Locally Fabricated Hammer Mills Used in Uganda (2017). ETD Collection for University of Nebraska—Lincoln. 2017. Available online: https://digitalcommons.unl.edu/dissertations/AAI10271333/ (accessed on 21 January 2023).
- Kirunda, E. Design and Construction of a Small Scale Maize Hammer Mill. Bachelor’s Thesis, Busitema University, Tororo, Uganda, 2017. [Google Scholar]
- Tagumira, A.; Biira, S.; Amabayo, E.B. Concentrations and human health risk assessment of selected heavy metals in soils and food crops around Osukuru phosphate mine, Tororo District, Uganda. Toxicol. Rep. 2022, 9, 2042–2049. [Google Scholar] [CrossRef]
- Awino, F.B.; Maher, W.A.; Krikowa, F.; Lynch, A.J.J. Occurrence of Trace Metals in Food Crops Grown on the Mbale Dumpsite, Uganda, and Human Health Risks. Integr. Environ. Assess. Manag. 2020, 6, 362–377. [Google Scholar] [CrossRef]
- Mwesigye, A.R.; Young, S.D.; Bailey, E.H.; Tumwebaze, S.B. Uptake of trace elements by food crops grown within the Kilembe copper mine catchment, Western Uganda. J. Geochem. Explor. 2019, 207, 106377. [Google Scholar] [CrossRef]
- Ainebyona, D. Non-Cancer Risks and Mitigation Strategies of Fe, Mn, Cu and Cr in Milled Maize Flour. Master’s Thesis, Kyambogo University, Kampala, Uganda, 2021. [Google Scholar]
- Opolot, M.; Omara, T.; Adaku, C.; Ntambi, E. Pollution Status, Source Apportionment, Ecological and Human Health Risks of Potentially (Eco)toxic Element-Laden Dusts from Urban Roads, Highways and Pedestrian Bridges in Uganda. Pollutants 2023, 3, 74–88. [Google Scholar] [CrossRef]
- Nteziyaremye, P.; Omara, T. Bioaccumulation of priority trace metals in edible muscles of West African lungfish (Protopterus annectens Owen, 1839) from Nyabarongo River, Rwanda. Cogent. Environ. Sci. 2020, 6, 1779557. [Google Scholar] [CrossRef]
- Omara, T.; Karungi, S.; Kalukusu, R.; Nakabuye, B.; Kagoya, S.; Musau, B. Mercuric pollution of surface water, superficial sediments, Nile tilapia (Oreochromis nilotica Linnaeus 1758 [Cichlidae]) and yams (Dioscorea alata) in auriferous areas of Namukombe stream, Syanyonja, Busia, Uganda. PeerJ 2019, 7, e7919. [Google Scholar] [CrossRef] [Green Version]
- Bamuwamye, M.; Ogwok, P.; Tumuhairwe, V.; Eragu, R.; Nakisozi, H.; Ogwang, P. Dietary content and potential health risks of metals in commercial black tea in Kampala (Uganda). J. Food Res. 2017, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health. National guidelines for management of common conditions. In: Uganda clinical guidelines 2018. Available online: https://www.health.go.ug/sites/default/files/UgandaClinicalGuidelines2016_FINAL.pdf (accessed on 25 February 2023).
- US EPA. Risk Assessment Guide for Superfund. Human Health Evaluation Manual A (1); Office of Emergency and Remedial Response: Washington, DC, USA, 1989. [Google Scholar]
- US EPA. Exposure Factors Handbook; National Centre for Environment Assessment: Washington, DC, USA, 2011. [Google Scholar]
- US EPA. The Risk Assessment Information System. Available online: https://rais.ornl.gov/tools/tox_profiles.html (accessed on 27 February 2023).
- Omara, T.; Nteziyaremye, P.; Akaganyira, S.; Opio, D.W.; Karanja, L.N.; Nyangena, D.M.; Kiptui, B.J.; Ogwang, R.; Epiaka, S.M.; Jepchirchir, A.; et al. Physicochemical quality of water and health risks associated with consumption of African lung fish (Protopterus annectens) from Nyabarongo and Nyabugogo rivers, Rwanda. BMC Res Notes 2020, 13, 66. [Google Scholar] [CrossRef] [Green Version]
- Pirhadi, M.; Alikord, M.; Tajdar-Oranj, B.; Khaniki, G.J.; Nazmara, S.; Fathabad, A.E.; Ghalhari, M.R.; Sadighara, P. Potential toxic elements (PTEs) concentration in wheat and flour products in Iran: A probabilistic risk assessment. Heliyon 2022, 8, e11803. [Google Scholar] [CrossRef]
- Uganda National Bureau of Standards (UNBS). US EAS 44:2019. Milled Maize (Corn) Products—Specification. 2019. Available online: https://webstore.unbs.go.ug//store.php?src=US%20EAS%2044:2019&preview (accessed on 25 February 2023).
- ALINORM 10/12A: 1-289; Codex Alimentarius Commission. Food Additive and Contaminants. Joint FAO/WHO Food Standards Programme. WHO: Geneva, Switzerland; FAO: Rome, Italy, 2001.
- FAO/WHO Stan 153–1985; Food Standards Programme Codex Committee on Contaminants in Foods. Codex Alimentarius Commission: Rome, Italy, 1985.
- Codex Alimentarius Commission. Working Document for Information and Use in Discussion Related to Contaminants and Toxins in GSCTFF. In Proceedings of the Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods Fifth Session, The Hague, The Netherlands, 21–25 March 2011.
- Bucham, J.O.; Muktar, M.; Hassan, M.D. Design, Fabrication and Testing of a Direct Drive Electric Powered Hammer Mill Machine. J. Eng. Technol. 2022, 7, 200–204. [Google Scholar] [CrossRef]
Mortar/Mill | Fe | Cu | Ni | Mn | Zn | Pb | Cd | Cr | Co |
---|---|---|---|---|---|---|---|---|---|
Wooden mortar | 11.60 ± 0.04 | 0.50 ± 0.07 | 0.50 ± 0.00 | 0.70 ± 0.01 | 4.40 ± 0.05 | 0.55 ± 0.01 | 0.60 ± 0.08 | 0.50 ± 0.02 | 0.50 ± 0.00 |
Metallic mortar | 34.45 ± 0.95 | 8.10 ± 0.07 | 1.60 ± 0.10 | 25.40 ± 0.03 | 15.90 ± 0.08 | 10.20 ± 0.00 | 0.85 ± 0.01 | 1.53 ± 0.95 | 1.51 ± 0.06 |
Mill A | 15.80 ± 2.17 | 0.68 ± 0.29 | 0.63 ± 0.15 | 13.43 ± 3.60 | 12.20 ± 1.48 | 0.54 ± 0.07 | 0.60 ± 0.09 | 0.55 ± 0.09 | 0.53 ± 0.09 |
Mill B | 16.51 ± 1.12 | 0.58 ± 0.23 | 0.57 ± 0.11 | 11.05 ± 3.43 | 11.17 ± 1.11 | 0.55 ± 0.12 | 0.53 ± 0.06 | 0.55 ± 0.10 | 0.53 ± 0.06 |
Mill C | 16.48 ± 0.79 | 0.81 ± 0.53 | 0.56 ± 0.09 | 9.18 ± 3.98 | 11.60 ± 0.64 | 0.54 ± 0.08 | 0.51 ± 0.03 | 0.59 ± 0.09 | 0.52 ± 0.04 |
Mill D | 16.73 ± 0.86 | 0.63 ± 0.29 | 0.59 ± 0.10 | 9.23 ± 3.60 | 11.53 ± 0.57 | 0.53 ± 0.09 | 0.51 ± 0.03 | 0.52 ± 0.04 | 0.54 ± 0.07 |
Mill E | 19.33 ± 2.51 | 0.66 ± 0.34 | 0.60 ± 0.12 | 13.71 ± 4.65 | 11.68 ± 1.25 | 0.58 ± 0.08 | 0.59 ± 0.11 | 0.57 ± 0.14 | 0.57 ± 0.08 |
Mill F | 19.39 ± 2.58 | 0.52 ± 0.04 | 0.63 ± 0.15 | 12.08 ± 1.21 | 11.35 ± 0.49 | 0.53 ± 0.07 | 0.52 ± 0.04 | 0.56 ± 0.09 | 0.58 ± 0.10 |
Mill G | 19.23 ± 1.55 | 0.58 ± 0.29 | 0.62 ± 0.15 | 10.70 ± 0.39 | 11.53 ± 0.50 | 0.54 ± 0.07 | 0.53 ± 0.05 | 0.54 ± 0.12 | 0.56 ± 0.12 |
Mill H | 19.37 ± 0.40 | 0.61 ± 0.38 | 0.56 ± 0.10 | 11.28 ± 0.80 | 11.32 ± 0.84 | 0.54 ± 0.07 | 0.51 ± 0.03 | 0.57 ± 0.09 | 0.58 ± 0.08 |
National standard (US EAS 44:2019) [44] | — | — | — | — | — | 0.20 | 0.10 | — | — |
International guidelines [45,46,47] | 15.0 | 40.0 | 10.0 | 2.3 | 30.0 | 0.2 | 0.3–0.7 | 1.3 | — |
Age Group | Mortar/Mill | Fe | Cu | Ni | Mn | Zn | Pb | Cd | Cr | Co |
---|---|---|---|---|---|---|---|---|---|---|
Children | Wooden mortar | 77.33 | 3.33 | 3.33 | 4.67 | 29.34 | 3.67 | 4.00 | 3.33 | 3.33 |
Metallic mortar | 229.67 | 54.00 | 10.67 | 169.34 | 106.00 | 5.67 | 5.67 | 3.53 | 3.40 | |
Mill A | 105.34 | 4.53 | 4.20 | 89.54 | 81.34 | 3.60 | 4.00 | 3.67 | 3.53 | |
Mill B | 110.53 | 3.87 | 3.80 | 73.67 | 74.47 | 3.67 | 3.53 | 3.67 | 3.53 | |
Mill C | 109.87 | 5.40 | 3.60 | 61.20 | 77.34 | 3.60 | 3.40 | 3.93 | 3.47 | |
Mill D | 111.53 | 4.20 | 3.93 | 61.53 | 76.87 | 3.53 | 3.40 | 3.47 | 3.60 | |
Mill E | 128.87 | 4.40 | 4.00 | 91.40 | 77.87 | 3.87 | 3.93 | 3.80 | 3.80 | |
Mill F | 129.27 | 3.47 | 4.20 | 80.53 | 75.67 | 3.53 | 3.47 | 3.73 | 3.87 | |
Mill G | 128.20 | 3.87 | 4.13 | 71.34 | 76.87 | 3.60 | 3.53 | 3.60 | 3.73 | |
Mill H | 129.13 | 4.07 | 3.73 | 75.20 | 75.47 | 3.60 | 3.43 | 3.80 | 3.87 | |
Adults | Wooden mortar | 33.14 | 1.42 | 1.42 | 2.00 | 12.57 | 1.57 | 1.71 | 1.43 | 1.43 |
Metallic mortar | 98.43 | 23.1 | 4.57 | 72.57 | 45.42 | 29.14 | 2.43 | 4.37 | 4.31 | |
Mill A | 45.14 | 1.94 | 1.80 | 38.37 | 34.86 | 1.54 | 1.71 | 1.57 | 1.51 | |
Mill B | 47.17 | 1.66 | 1.63 | 31.57 | 31.91 | 1.57 | 1.51 | 1.57 | 1.51 | |
Mill C | 47.08 | 2.31 | 1.60 | 26.23 | 33.14 | 1.54 | 1.46 | 1.68 | 1.49 | |
Mill D | 47.80 | 1.80 | 1.68 | 26.37 | 32.94 | 1.51 | 1.46 | 1.49 | 1.54 | |
Mill E | 55.23 | 1.88 | 1.71 | 39.17 | 33.37 | 1.66 | 1.68 | 1.63 | 1.63 | |
Mill F | 55.40 | 1.49 | 1.80 | 34.05 | 32.43 | 1.51 | 1.49 | 160 | 1.66 | |
Mill G | 54.94 | 1.66 | 1.77 | 30.57 | 32.94 | 1.54 | 1.51 | 1.54 | 1.60 | |
Mill H | 55.34 | 1.74 | 1.60 | 32.23 | 32.34 | 1.54 | 1.46 | 1.63 | 1.66 |
Age Group | Mortar/Mill | Cancer Risk Value (×10−6) | Total Cancer Risk (×10−6) | |||
---|---|---|---|---|---|---|
Pb | Ni | Cr | Cd | |||
Children | Wooden mortar | 31.195 | 3.030 | 1.665 | 24.400 | 60.290 |
Metallic mortar | 48.195 | 9.710 | 1.765 | 34.587 | 94.257 | |
Mill A | 31.195 | 3.822 | 1.835 | 24.400 | 61.270 | |
Mill B | 31.195 | 3.458 | 1.835 | 21.533 | 58.039 | |
Mill C | 30.600 | 3.276 | 1.965 | 20.740 | 56.581 | |
Mill D | 30.005 | 3.576 | 1.735 | 20.740 | 56.056 | |
Mill E | 32.895 | 3.640 | 1.900 | 23.973 | 62.408 | |
Mill F | 30.005 | 3.822 | 1.865 | 21.167 | 56.859 | |
Mill G | 30.600 | 3.758 | 1.800 | 21.533 | 57.691 | |
Mill H | 30.600 | 3.394 | 1.900 | 20.923 | 56.824 | |
Adults | Wooden mortar | 13.345 | 1.292 | 0.715 | 10.431 | 25.783 |
Metallic mortar | 247.6901 | 4.158 | 2.185 | 14.823 | 268.8561 | |
Mill A | 13.090 | 1.638 | 0.785 | 10.431 | 25.944 | |
Mill B | 13.345 | 1.483 | 0.785 | 9.211 | 24.824 | |
Mill C | 13.090 | 1.456 | 0.840 | 8.906 | 24.292 | |
Mill D | 12.835 | 1.529 | 0.745 | 8.906 | 24.015 | |
Mill E | 14.110 | 1.556 | 0.815 | 10.248 | 26.729 | |
Mill F | 12.835 | 1.638 | 0.800 | 9.089 | 24.362 | |
Mill G | 13.090 | 1.611 | 0.770 | 9.211 | 24.682 | |
Mill H | 13.090 | 1.456 | 0.815 | 8.906 | 24.267 |
Area (Country) | Fe | Cu | Ni | Mn | Zn | Pb | Cd | Cr | Co | References |
---|---|---|---|---|---|---|---|---|---|---|
Mbarara (Uganda) | 11.60–34.45 | 0.50–8.10 | 0.50–1.60 | 0.70–25.40 | 4.40–15.90 | 0.53–10.20 | 0.51–0.85 | 0.50–1.53 | 0.50–1.51 | This study |
Kampala (Uganda) | 0.257–1.782 | 0.016–0.198 | — | BDL–1.151 | — | — | — | 0.122–0.501 | — | Ainebyona [33] |
Accra metropolis (Ghana) | — | 0.70–1.50 | 26.18–46.42 | 1.35–4.10 | 0.52–0.90 | — | 4.80–6.40 | — | — | Abrefah et al. [14] |
Tolon District (Ghana) | 1.3392 | — | 0.9502 | 0.3550 | 0.6809 | 2.2177 | — | 0.4359 | — | Larsen et al. [13] |
Markets in Umuahia (Nigeria) | 270.34–636.78 | — | BDL | — | — | BDL—2.75 | — | 4.8–12.6 | — | Nnaji et al. [21] |
Ondo State (Nigeria) | 50–368 | BDL–2.0 | — | — | 16.0–22.0 | BDL | BDL | 2.0–14.0 | — | Oniya et al. [16] |
Jimeta Modern Market (Nigeria) | 72.1–318.2 | — | — | — | — | — | — | — | — | Lebnebiso et al. [17] |
Port Harcourt (Nigeria) | 16.75–43.00 | — | — | — | — | — | — | — | — | Kalagbor et al. [18] |
Accra (Ghana) | 20.44 | 0.03 | — | — | 6.04 | <0.01 | — | — | — | Ofori et al. [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mugume, H.K.; Byamugisha, D.; Omara, T.; Ntambi, E. Deposition, Dietary Exposure and Human Health Risks of Heavy Metals in Mechanically Milled Maize Flours in Mbarara City, Uganda. J. Xenobiot. 2023, 13, 298-311. https://doi.org/10.3390/jox13030022
Mugume HK, Byamugisha D, Omara T, Ntambi E. Deposition, Dietary Exposure and Human Health Risks of Heavy Metals in Mechanically Milled Maize Flours in Mbarara City, Uganda. Journal of Xenobiotics. 2023; 13(3):298-311. https://doi.org/10.3390/jox13030022
Chicago/Turabian StyleMugume, Herbert Kariitu, Denis Byamugisha, Timothy Omara, and Emmanuel Ntambi. 2023. "Deposition, Dietary Exposure and Human Health Risks of Heavy Metals in Mechanically Milled Maize Flours in Mbarara City, Uganda" Journal of Xenobiotics 13, no. 3: 298-311. https://doi.org/10.3390/jox13030022
APA StyleMugume, H. K., Byamugisha, D., Omara, T., & Ntambi, E. (2023). Deposition, Dietary Exposure and Human Health Risks of Heavy Metals in Mechanically Milled Maize Flours in Mbarara City, Uganda. Journal of Xenobiotics, 13(3), 298-311. https://doi.org/10.3390/jox13030022