Salicylic Acid-Induced Glutathione Status in Tomato Crop and Resistance to Root-Knot Nematode, Meloidogyne incognita (Kofoid & White) Chitwood
Abstract
:Introduction
Materials and Methods
Analytical standards, reagents and solvents
Field experiment
Evaluation of crop performance
Evaluation of glutathione status in tomato
Sample preparation for liquid Chromatography
Extraction
Clean up
Carboxymethylation
Derivatization
Liquid chromatography
LC apparatus
Chromatographic conditions
Peak identification and quantification
Recovery and matrix effect
Statistics
Results
Method validation
Effect of SA on GSH and GSSG levels in leaf and root
Effect of SA on PSSG levels in leaf and root
Effect of SA on GSH, GSSG and PSSG levels in fruits
Effect of SA on redox status of crop
Effect of SA on crop resistance to M. incognita
Effect of SA on crop growth and yield
Discussion
Analytical method
Changes in glutathione status
Redox status
Crop resistance
Crop growth and yield
Conclusions
Author Contributions
Acknowledgments
References
- Noctor, G.; Foyer, C.H. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 1998, 49, 249–79. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Redox regulation and photosynthetic organisms: signaling, acclimation, and practical implications. Antiox Redox Sign 2009, 11, 861–905. [Google Scholar] [CrossRef] [PubMed]
- Bostock, R.M. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 2005, 43, 545–80. [Google Scholar] [CrossRef]
- Heil, M.; Ton, J. Long-distance signalling in plant defence. Trends Plant Sci 2008, 13, 264–72. [Google Scholar] [CrossRef]
- Pieterse, C.M.J.; Leon-Reyes, A.; Van der Ent, S.; Van Wees, S.C. Networking by small-molecule hormones in plant immunity. Nat Chem Biol 2009, 5, 308–16. [Google Scholar] [CrossRef]
- Molinari, S.; Baser, N. Induction of resistance to root-knot nematodes by SAR elicitors in tomato. Crop Protec 2010, 29, 1354–62. [Google Scholar] [CrossRef]
- Tan, X.; Meyers, B.C.; Kozik, A.; West, M.A.; Morgante, M.; St Clair, D.A.; et al. Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biol 2007, 7, 56. [Google Scholar] [CrossRef]
- Ishikawa, T.; Shigeoka, S. Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 2008, 72, 1143–54. [Google Scholar] [CrossRef]
- Pastori, G.M.; Kiddle, G.; Antoniw, J.; Bernard, S.; Veljovic-Jovanovic, S.; Verrier, P.J.; et al. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 2003, 15, 939–51. [Google Scholar] [CrossRef]
- Wachter, A.; Rausch, T. Regulation of glutathione (GSH) synthesis in plants: Novel insight from Arabidopsis. FAL Agric Res 2005, 283, 149–55. [Google Scholar]
- Meher, H.C.; Koundal, K.R.; Gajbhiye, V.T. Reactive oxygen species, antioxidants, sulfur metabolites and their agro-biotechnological potential to enhance stress resistance of crop plants. Indian J Agric Biochem 2010, 23, 1–17. [Google Scholar]
- Shi, Q.; Zhu, Z. Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 2008, 63, 317–26. [Google Scholar] [CrossRef]
- Mills, B.J.; Stinson, C.T.; Liu, M.C.; Lang, C.A. Glutathione and cyst(e)ine profiles of veg-etables using high performance liquid chromatography with dual electrochemical detection. J Food Comp Anal 1997, 10, 90–1. [Google Scholar] [CrossRef]
- Silber, R.; Farber, C.M.; Papadopoulos, E.; Nervla, D.; Liebes, L.; Bruck, M.; et al. Glutathione depletion in chronic lymphocytic leukemia B lymphocytes. Blood 1992, 80, 2038–43. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, S.; Pundir, C.S.; Sharma, A. Decreased plasma glutathione in cancer of the uterine cervix. Cancer Lett 1995, 94, 107–11. [Google Scholar] [CrossRef]
- Cantin, A.M.; Hubbard, R.C.; Crystal, R.G. Glutathione deficiency in the epithelial lining fluid of the lower respiratory tract in idiopathic pulmonary fibrosis. Am Rev Respir Dis 1989, 139, 370–2. [Google Scholar] [CrossRef]
- Pacht, E.R.; Timemam, A.P.; Lykens, M.G.; Merola, A.J. Deficiency of alveolar fluid glutathione in patients with sepsis and the adult respiratory distress syndrome. Chest 1991, 100, 1397–403. [Google Scholar] [CrossRef]
- de Quay, B.; Malinverni, R.; Lauterburg, B.H. Glutathione depletion in HIV-infected patients: role of cysteine deficiency and effect of oral N-acetylcysteine. AIDS 1992, 6, 815–19. [Google Scholar] [CrossRef]
- Sasser, J.N.; Freckman, D.W. A world perspective on nematology: the role of the Society. In Vistas on Nematology. Hyattsville; Veech, J.A., Dickson, D.W., Eds.; Society of Nematologists: MD, 1978; pp. 7–14. [Google Scholar]
- Taylor, A.L.; Sasser, J.N. Biology, Identification and Control of Root-knot Nematodes (Meloidogyne Species); North Carolina State University Graphics: Raleigh, NC, 1978. [Google Scholar]
- Meher, H.C.; Gajbhiye, V.T.; Singh, G. A GC-ECD method for estimation of free and bound amino acids, γ-aminobutyric acid, salicylic acid and acetyl salicylic acid from Solanum lycopersicum (L. ). J AOAC Int 2011, 93, 232–42. [Google Scholar] [CrossRef]
- Siller-Cepeda, J.H.; Chen, T.H.H.; Fuchigami, L.H. H. High performance liquid chromatography analysis of reduced and oxidized glutathione in woody plant tissues. Plant Cell Physiol 1991, 32, 1179–85. [Google Scholar]
- Schofield, J.D.; Chen, X. Analysis of free reduced and free oxidized glutathione in wheat flour. J Cereal Sci 1995, 21, 127–36. [Google Scholar] [CrossRef]
- Fariss, M.W.; Reed, D.J. High-performance liquid chromatography of thiols and disulfides: Dinitrophenol derivatives. Methods Enzymol 1987, 143, 101–9. [Google Scholar] [PubMed]
- Chen, X.; Schofield, J.D. Determination of protein-glutathione mixed disulfides in wheat flour. J Agric Food Chem 1995, 43, 2362–68. [Google Scholar] [CrossRef]
- Alscher, R.G. Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 1989, 77, 457–64. [Google Scholar] [CrossRef]
- Rennenberg, H. Molecular approaches to glutathione biosynthesis. In Sulfur Metabolism in Higher Plants: Molecular, Ecophysiological and Nutritional Aspects; Cram, W.J., De Kok, L.J., Brunold, C., Rennenberg, H., Eds.; Backhuys Publishers: Leiden, 1997; pp. 59–70. [Google Scholar]
- Guo, C.J.; Cao, G.; Sofic, E.; Prior, R.L. High-performance liquid chromatography coupled with coulometric array detection of electroactive components in fruits and vegetables: relationship to oxygen radical absorbance capacity. J Agric Food Chem 1997, 45, 1787–96. [Google Scholar] [CrossRef]
- Chae, H.Z.; Kang, S.W.; Rhee, S.G. Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol 1999, 300, 219–26. [Google Scholar]
- Wagner, U.; Edwards, R.; Dixon DP and Mauch, F. ; Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 2002, 49, 515–32. [Google Scholar] [CrossRef]
- Chen, Z. and Gallie, D.R.; The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 2004, 16, 1143–62. [Google Scholar] [CrossRef]
- Carmel-Harel, O.; Stearman, R.; Gasch, A.P.; Botstein, D.; Brown, P.O.; Storz, G. Role of thioredoxin reductase in the Yap1pdependent response to oxidative stress in Saccharomyces cerevisiae. Mol Microbiol 2001, 39, 595–605. [Google Scholar] [CrossRef]
- Wachter, A.; Wolf, S.; Steininger, H.; Bogs, J.; Rausch, T. Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: Implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 2005, 41, 15–30. [Google Scholar] [CrossRef]
- Jez, J.M.; Cahoon, R.E.; Chen, S. Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J Biol Chem 2004, 279, 33463–70. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, A. Antioxidant functions of thioredoxin and glutaredoxin systems. Antioxid Redox Signal 2000, 2, 811–20. [Google Scholar] [CrossRef] [PubMed]
- Foyer, A.H.; Noctor, G. The molecular biology and metabolism of glutathione: Significance of Glutathione to Plant Adaptation to the Environment; Grill, D., Tausz, M., De Kok, L.J., Eds.; Kluwer Academic Publishers: Dordrecht, 2001; pp. 27–56. [Google Scholar]
- Zhu, Y.L.; Pilon-Smits, E.A.; Tarun, A.S.; Weber, S.U.; Jouanin, L.; Terry, N. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 1999, 121, 1169–78. [Google Scholar] [CrossRef] [PubMed]
- Zarate, S.I.; Kempema, L.A.; Walling, L.L. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 2007, 143, 866–75. [Google Scholar] [CrossRef]
- Li, J.; Brader, G.; Palva, E.T. The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediat-ed signals in plant defense. Plant Cell 2004, 16, 319–31. [Google Scholar] [CrossRef]
- Yoshida, S.; Tamaoki, M.; Ioki, M.; Ogawa, D.; Sato, Y.; Aono, M.; et al. Ethylene and salicylic acid control glutathione biosynthesis in ozone-exposed Arabidopsis thaliana. Physiol Plant 2009, 136, 284–98. [Google Scholar] [CrossRef]
- Torres, C.A.; Andrews, P.K. Developmental changes in antioxidant metabolites, enzymes, and pigments in fruit exocarp of four tomato (Lycopersicon esculentum Mill. ) genotypes: beta-carotene, high pigment-1, ripening inhibitor, and 'Rutgers'. Plant Physiol Biochem 2006, 44, 806–18. [Google Scholar]
- Williams, J.S.; Hall, S.A.; Hawkesford, M.J.; Beale, M.H.; Cooper, R.M. Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular pathogen. Plant Physiol 2002, 128, 150–9. [Google Scholar] [CrossRef]
- Höller, K.; Király, L.; Künstler, A.; Müller, M.; Gullner, G.; Fattinger, M.; et al. Enhanced glutathione metabolism is correlated with sulfur-induced resistance in Tobacco mosaic virus–infected genetically susceptible Nicotiana tabacum plants. Mol Plant Microbe Interact 2010, 23, 1448–59. [Google Scholar] [CrossRef]
- Induced plant defenses against pathogens and herbivores; Agrawal, A.A.; Tuzun, S.; Bent, E. (Eds.) APS Press: APS Press, 1999. [Google Scholar]
- Vernoux, T.; Wilson, R.C.; Seeley, K.A.; Reichheld, J.P.; Muroy, S.; Brown, S.; et al. The root meristemless1/cadmium sensitive2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 2000, 12, 97–110. [Google Scholar] [CrossRef]
- Heil, M.; Baldwin, I.T. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci 2002, 7, 61–7. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Hatano-Iwasaki, A.; Yanagida, M.; Iwabuchi, M. Level of glutathione is regulated by ATP dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering. Plant Cell Physiol 2004, 45, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.B.; Jin, Y.H.; Lee, J.; Miura, K.; Yoo, C.Y.; Kim, W.Y.; et al. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through it affects on FLC chromatin structure. Plant J 2008, 53, 530–40. [Google Scholar] [CrossRef] [PubMed]
- Martínez, C.; Pons, E.; Prats, G.; Leon, J. Salicylic acid regulates flowering time and links defense responses and reproductive development. Plant J 2004, 37, 209–17. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, R.; Ploss, K.; Heil, M. Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant Cell Envir 2005, 28, 211–22. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2011 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meher, H.C.; Gajbhiye, V.T.; Singh, G. Salicylic Acid-Induced Glutathione Status in Tomato Crop and Resistance to Root-Knot Nematode, Meloidogyne incognita (Kofoid & White) Chitwood. J. Xenobiot. 2011, 1, e5. https://doi.org/10.4081/xeno.2011.e5
Meher HC, Gajbhiye VT, Singh G. Salicylic Acid-Induced Glutathione Status in Tomato Crop and Resistance to Root-Knot Nematode, Meloidogyne incognita (Kofoid & White) Chitwood. Journal of Xenobiotics. 2011; 1(1):e5. https://doi.org/10.4081/xeno.2011.e5
Chicago/Turabian StyleMeher, Hari C., Vijay T. Gajbhiye, and Ghanendra Singh. 2011. "Salicylic Acid-Induced Glutathione Status in Tomato Crop and Resistance to Root-Knot Nematode, Meloidogyne incognita (Kofoid & White) Chitwood" Journal of Xenobiotics 1, no. 1: e5. https://doi.org/10.4081/xeno.2011.e5
APA StyleMeher, H. C., Gajbhiye, V. T., & Singh, G. (2011). Salicylic Acid-Induced Glutathione Status in Tomato Crop and Resistance to Root-Knot Nematode, Meloidogyne incognita (Kofoid & White) Chitwood. Journal of Xenobiotics, 1(1), e5. https://doi.org/10.4081/xeno.2011.e5