Artificial Intelligence in Nursing Decision-Making: A Bibliometric Analysis of Trends and Impacts
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
2.3. Data Processing
3. Results
3.1. Overview of Publication Status
3.2. Contribution of Countries to Publications
3.3. Contribution of Institutions to Publications
3.4. Contribution of Authors to Publications
3.5. Contribution of Journals to Publications
3.6. Keyword Clusters and Evolution
3.6.1. Keyword Clusters Analysis
3.6.2. Keyword Evolution Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Public Involvement Statement
Guidelines and Standards Statement
Use of Artificial Intelligence
Conflicts of Interest
References
- Lauri, S.; Salanterä, S. Decision-making models in different fields of nursing. Res. Nurs. Health 1998, 21, 443–452. [Google Scholar] [CrossRef]
- Tanner, C.A. Thinking like a nurse: A research-based model of clinical judgment in nursing. J. Nurs. Educ. 2006, 45, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Clarke, V.; Lehane, E.; Mulcahy, H.; Cotter, P. Nurse Practitioners’ Implementation of Evidence-Based Practice Into Routine Care: A Scoping Review. Worldviews Evid.-Based Nurs. 2021, 18, 180–189. [Google Scholar] [CrossRef]
- Buccheri, R.K.; Sharifi, C. Critical Appraisal Tools and Reporting Guidelines for Evidence-Based Practice. Worldviews Evid.-Based Nurs. 2017, 14, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Nibbelink, C.W.; Brewer, B.B. Decision-making in nursing practice: An integrative literature review. J. Clin. Nurs. 2018, 27, 917–928. [Google Scholar] [CrossRef]
- Patel, M.; Gulati, S.; Iqbal, F.; Hayee, B. Rapid development of accurate artificial intelligence scoring for colitis disease activity using applied data science techniques. Endosc. Int. Open 2022, 10, E539–E543. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Seibert, K.; Domhoff, D.; Bruch, D.; Schulte-Althoff, M.; Fürstenau, D.; Biessmann, F.; Wolf-Ostermann, K. Application Scenarios for Artificial Intelligence in Nursing Care: Rapid Review. J. Med. Internet Res. 2021, 23, e26522. [Google Scholar] [CrossRef]
- Akbar, S.; Lyell, D.; Magrabi, F. Automation in nursing decision support systems: A systematic review of effects on decision making, care delivery, and patient outcomes. J. Am. Med. Inform. Assoc. JAMIA 2021, 28, 2502–2513. [Google Scholar] [CrossRef]
- Lukkien, D.R.M.; Stolwijk, N.E.; Ipakchian Askari, S.; Hofstede, B.M.; Nap, H.H.; Boon, W.P.C.; Peine, A.; Moors, E.H.M.; Minkman, M.M.N. AI-Assisted Decision-Making in Long-Term Care: Qualitative Study on Prerequisites for Responsible Innovation. JMIR Nurs. 2024, 7, e55962. [Google Scholar] [CrossRef]
- Sim, J.A.; Huang, X.; Horan, M.R.; Stewart, C.M.; Robison, L.L.; Hudson, M.M.; Baker, J.N.; Huang, I.C. Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review. Artif. Intell. Med. 2023, 146, 102701. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, A.; Alfaro, M.C.; Pérez, M.C.P.; Gallardo-Antolín, A.; Martínez, J.M.M. Building a Decision Support System for Inpatient Admission Prediction with the Manchester Triage System and Administrative Check-in Variables. Cin-Comput. Inform. Nurs. 2016, 34, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, O.; Wolf, L.; Brecher, D.; Lewis, E.; Masek, K.; Montgomery, K.; Andrieiev, Y.; McLaughlin, M.; Liu, S.; Dunne, R.; et al. Improving ED Emergency Severity Index Acuity Assignment Using Machine Learning and Clinical Natural Language Processing. J. Emerg. Nurs. 2021, 47, 265–278.e7. [Google Scholar] [CrossRef] [PubMed]
- Saban, M.; Dubovi, I. A comparative vignette study: Evaluating the potential role of a generative AI model in enhancing clinical decision-making in nursing. J. Adv. Nurs. 2024. [Google Scholar] [CrossRef]
- Hassan, W.; Duarte, A.E. Bibliometric analysis: A few suggestions. Curr. Probl. Cardiol. 2024, 49, 102640. [Google Scholar] [CrossRef]
- Davidson, P.M.; Newton, P.J.; Ferguson, C.; Daly, J.; Elliott, D.; Homer, C.; Duffield, C.; Jackson, D. Rating and ranking the role of bibliometrics and webometrics in nursing and midwifery. Sci. World J. 2014, 2014, 135812. [Google Scholar] [CrossRef]
- Kahwa, E.; Dodd, A.; Conklin, J.L.; Woods Giscombe, C.; Leak Bryant, A.; Munroe, D.; Henry Ferguson, V.; Gordon Singh, S.; Lynch, M.; Bolton, A. A bibliometric analysis of nursing and midwifery research in the Caribbean. J. Nurs. Scholarsh. Off. Publ. Sigma Theta Tau Int. Honor Soc. Nurs. 2022, 54, 226–233. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Shi, Q.; Wang, M. Bibliometric Analysis of Nursing Informatics Research. Stud. Health Technol. Inform. 2021, 284, 47–49. [Google Scholar] [CrossRef]
- Mezquita, B.; Alfonso-Arias, C.; Martínez-Jaimez, P.; Borrego, Á. The use of bibliometrics in nursing science: Topics, data sources and contributions to research and practice. Nurs. Open 2024, 11, e70036. [Google Scholar] [CrossRef] [PubMed]
- Oermann, M.H.; Bailey, H.E.; Carter-Templeton, H.; Condy, C.; Wrigley, J.; Ledbetter, L.S. Bibliometric analysis of nursing education reviews. Nurse Educ. Today 2024, 139, 106217. [Google Scholar] [CrossRef]
- Williams, J.K.; Tripp-Reimer, T.; Daack-Hirsch, S.; DeBerg, J. Five-Year Bibliometric Review of Genomic Nursing Science Research. J. Nurs. Scholarsh. Off. Publ. Sigma Theta Tau Int. Honor Soc. Nurs. 2016, 48, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liang, Y.; Cao, S.; Cai, P.; Fan, Y. Application of Artificial Intelligence in Geriatric Care: Bibliometric Analysis. J. Med. Internet Res. 2023, 25, e46014. [Google Scholar] [CrossRef]
- Luo, C.; Mao, B.; Wu, Y.; He, Y. The research hotspots and theme trends of artificial intelligence in nurse education: A bibliometric analysis from 1994 to 2023. Nurse Educ. Today 2024, 141, 106321. [Google Scholar] [CrossRef]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101 (Suppl. S1), 5303–5310. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Horng, S.; Sontag, D.A.; Halpern, Y.; Jernite, Y.; Shapiro, N.I.; Nathanson, L.A. Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PLoS ONE 2017, 12, e0174708. [Google Scholar] [CrossRef]
- Halpern, Y.; Horng, S.; Choi, Y.; Sontag, D. Electronic medical record phenotyping using the anchor and learn framework. J. Am. Med. Inform. Assoc. 2016, 23, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Topaz, M.; Lai, K.; Dowding, D.; Lei, V.J.; Zisberg, A.; Bowles, K.H.; Zhou, L. Automated identification of wound information in clinical notes of patients with heart diseases: Developing and validating a natural language processing application. Int. J. Nurs. Stud. 2016, 64, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Woo, K.; Adams, V.; Wilson, P.; Fu, L.H.; Cato, K.; Rossetti, S.C.; McDonald, M.; Shang, J.J.; Topaz, M. Identifying Urinary Tract Infection-Related Information in Home Care Nursing Notes. J. Am. Med. Dir. Assoc. 2021, 22, 1015–1021.e2. [Google Scholar] [CrossRef]
- Chae, S.; Song, J.Y.; Ojo, M.; Bowles, K.H.; McDonald, M.V.; Barrón, Y.; Hobensack, M.; Kennedy, E.; Sridharan, S.; Evans, L.; et al. Factors associated with poor self-management documented in home health care narrative notes for patients with heart failure. Heart Lung 2022, 55, 148–154. [Google Scholar] [CrossRef]
- Chae, S.; Davoudi, A.; Song, J.Y.; Evans, L.; Bowles, K.H.; McDonald, M.V.; Barrón, Y.; Min, S.H.; Oh, S.; Scharp, D.; et al. Developing a clinical decision support framework for integrating predictive models into routine nursing practices in home health care for patients with heart failure. J. Nurs. Scholarsh. 2025, 57, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.D.; Evans, L.; Song, J.Y.; Chae, S.; Davoudi, A.; Bowles, K.H.; McDonald, M.; Topaz, M. Exploring home healthcare clinicians’ needs for using clinical decision support systems for early risk warning. J. Am. Med. Inform. Assoc. 2024, 31, 2641–2650. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, F.C.; Johnson, L.G.; Madandola, O.O.; Priola, K.J.B.; Yao, Y.W.; Macieira, T.G.R.; Keenan, G.M. An example of leveraging AI for documentation: ChatGPT-generated nursing care plan for an older adult with lung cancer. J. Am. Med. Inform. Assoc. 2024, 31, 2089–2096. [Google Scholar] [CrossRef] [PubMed]
- Levin, C.; Suliman, M.; Naimi, E.; Saban, M. Augmenting intensive care unit nursing practice with generative AI: A formative study of diagnostic synergies using simulation-based clinical cases. J. Clin. Nurs. 2024. [Google Scholar] [CrossRef]
- Johnson, L.G.; Madandola, O.O.; Dos Santos, F.C.; Priola, K.J.B.; Yao, Y.W.; Macieira, T.G.R.; Keenan, G.M. Creating Perinatal Nursing Care Plans Using ChatGPT. J. Perinat. Neonatal Nurs. 2025, 39, 10–19. [Google Scholar] [CrossRef]
- Aoki, N. The importance of the assurance that “humans are still in the decision loop” for public trust in artificial intelligence: Evidence from an online experiment. Comput. Hum. Behav. 2021, 114, 106572. [Google Scholar] [CrossRef]
- Amini, M.M.; Jesus, M.; Sheikholeslami, D.F.; Alves, P.; Benam, A.H.; Hariri, F. Artificial Intelligence Ethics and Challenges in Healthcare Applications: A Comprehensive Review in the Context of the European GDPR Mandate. Mach. Learn. Knowl. Extr. 2023, 5, 1023–1035. [Google Scholar] [CrossRef]
Organization | Documents | Citations | Total Link Strength |
---|---|---|---|
Columbia University | 15 | 223 | 59 |
University of Toronto | 10 | 142 | 53 |
University of Pennsylvania | 9 | 86 | 26 |
Harvard Medical School | 8 | 236 | 36 |
Mayo Clinic College of Medicine and Science | 7 | 97 | 15 |
University of Minnesota Twin Cities | 6 | 120 | 36 |
Vanderbilt University | 5 | 33 | 36 |
University of Ottawa | 5 | 4 | 35 |
University of British Columbia | 5 | 166 | 31 |
Brigham and Women’s Hospital | 5 | 58 | 24 |
Author | Documents | Citations | Total Link Strength |
---|---|---|---|
Halpern, Yoni | 2 | 262 | 8 |
Horng, Steven | 2 | 262 | 8 |
Jernite, Yacine | 1 | 174 | 5 |
Nathanson, Larry A. | 1 | 174 | 5 |
Shapiro, Nathan I. | 1 | 174 | 5 |
Sontag, David A. | 1 | 174 | 5 |
Topaz, Maxim | 7 | 162 | 49 |
Chu, Charlene H. | 2 | 122 | 20 |
Moen, Hans | 2 | 105 | 19 |
Peltonen, Laura-Maria | 2 | 105 | 19 |
Sources | Papers | IF | JCR |
---|---|---|---|
Cin-Computers Informatics Nursing | 11 | 1.3 | Q3 |
Journal of Nursing Management | 9 | 3.7 | Q1 |
Applied Clinical Informatics | 6 | 2.1 | Q4 |
Journal of Medical Internet Research | 6 | 5.8 | Q1 |
Journal of The American Medical Informatics Association | 6 | 4.7 | Q1 |
Cureus Journal of Medical Science | 5 | 1 | Q3 |
International Journal of Medical Informatics | 5 | 3.7 | Q1 |
International Journal of Nursing Studies | 5 | 7.5 | Q1 |
Jmir Research Protocols | 5 | 1.4 | Q3 |
Journal of Biomedical Informatics | 5 | 4 | Q2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Wang, Y.; Liu, Y.; Cai, B.; Kong, F.; Zheng, Q.; Zhao, D.; Gao, G.; Hui, Z. Artificial Intelligence in Nursing Decision-Making: A Bibliometric Analysis of Trends and Impacts. Nurs. Rep. 2025, 15, 198. https://doi.org/10.3390/nursrep15060198
Hu M, Wang Y, Liu Y, Cai B, Kong F, Zheng Q, Zhao D, Gao G, Hui Z. Artificial Intelligence in Nursing Decision-Making: A Bibliometric Analysis of Trends and Impacts. Nursing Reports. 2025; 15(6):198. https://doi.org/10.3390/nursrep15060198
Chicago/Turabian StyleHu, Mengdie, Yan Wang, Yunsong Liu, Bingqing Cai, Fanjing Kong, Qian Zheng, Dan Zhao, Guanghui Gao, and Zhouguang Hui. 2025. "Artificial Intelligence in Nursing Decision-Making: A Bibliometric Analysis of Trends and Impacts" Nursing Reports 15, no. 6: 198. https://doi.org/10.3390/nursrep15060198
APA StyleHu, M., Wang, Y., Liu, Y., Cai, B., Kong, F., Zheng, Q., Zhao, D., Gao, G., & Hui, Z. (2025). Artificial Intelligence in Nursing Decision-Making: A Bibliometric Analysis of Trends and Impacts. Nursing Reports, 15(6), 198. https://doi.org/10.3390/nursrep15060198