Association Between Nursing Diagnoses and Mortality in Hospitalized Patients with COVID-19: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Population
2.2. Data Collection
2.3. Study Variables
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations
4.2. Implications for Nursing Practice
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Public Involvement Statement
Guidelines and Standards Statement
Use of Artificial Intelligence
Conflicts of Interest
Abbreviations
ND | Nursing diagnosis |
NDs | Nursing diagnoses |
HJM | Hospital Juarez of Mexico |
DAGs | Directed acyclic graphs |
OR | Odds ratio |
aOR | Adjusted odds ratio |
IQR | Interquartile range |
References
- Baloch, S.; Baloch, M.A.; Zheng, T.; Pei, X. The Coronavirus Disease 2019 (COVID-19) Pandemic. Tohoku J. Exp. Med. 2020, 250, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef]
- Tavassoli, E.; Hesary, F.B. Knowledge, skill, and preventive behaviors regarding COVID-19 among the public in Shahrekord of Iran. J. Educ. Health Promot. 2021, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. J. 2020, 55, 2000607. [Google Scholar] [CrossRef]
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK554776/ (accessed on 26 September 2024).
- Lozano, R.; Montoya, A.; Razo, C.; Schumacher, A.; Confort, H.; Pease, S.; Jones, D.; Watson, S.; Naghavi, M. COVID-19 impact on life expectancy in Mexico. An analysis based on the Global Burden of Disease 2021 study. Gac. Med. Mex. 2023, 159, 465–473. [Google Scholar] [CrossRef]
- Fawaz, M.; Anshasi, H.; Samaha, A. Nurses at the Front Line of COVID-19: Roles, Responsibilities, Risks, and Rights. Am. J. Trop. Med. Hyg. 2020, 103, 1341–1342. [Google Scholar] [CrossRef] [PubMed]
- Ahmady, S.; Shahbazi, S. Impact of social problem-solving training on critical thinking and decision making of nursing students. BMC Nurs. 2020, 19, 94. [Google Scholar] [CrossRef]
- Ernstmeyer, K.; Christman, E. Chapter 4 Nursing Process. In Nursing Fundamentals [Internet]; Chippewa Valley Technical College; 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK591807/ (accessed on 7 October 2024).
- Toney-Butler, T.J.; Thayer, J.M. Nursing Process. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK499937/ (accessed on 4 September 2023).
- Lotfi, M.; Zamanzadeh, V.; Khodayari-Zarnaq, R.; Mobasseri, K. Nursing process from theory to practice: Evidence from the implementation of “Coming back to existence caring model” in burn wards. Nurs. Open 2021, 8, 2794–2800. [Google Scholar] [CrossRef]
- NANDA International. Diagnósticos Enfermeros. Definiciones y Clasificación. 2021–2023, 12th ed.; Elsevier: Amsterdam, The Netherlands, 2021; Available online: https://nanda.org/ (accessed on 5 September 2023).
- Company-Sancho, M.C.; Estupiñán-Ramírez, M.; Sánchez-Janáriz, H.; Tristancho-Ajamil, R. The connection between nursing diagnosis and the use of healthcare resources. Enferm. Clin. 2017, 27, 214–221. [Google Scholar] [CrossRef]
- Posos-Gonzále, M.; Jiménez-Sánchez, J. Estandarización del cuidado mediante el plan de cuidados de enfermería [Standardization of care through the nursing care plan]. Rev. Enferm. Inst. Mex. Seguro Soc. 2013, 21, 29–33. [Google Scholar]
- Pérez Delgado, R.; adilla Zárate, M.P.; érez Mendoza, M. Evolución del Modelo de Cuidado de Enfermería para una atención de calidad y seguridad [Evolution of the Nursing Care Model for quality and safety care]. Rev. CONAMED 2024, 29, 30–35. [Google Scholar]
- May-Uitz, S.; Salas-Ortegón, S.C.; Trinidad Tun-González, D.; Pacheco-Lizama, J.G.; Collí-Novelo, L.B.; del Socorro Puch-Ku, E.B. Evaluación de conocimientos, habilidades y actitudes sobre el proceso de enfermería [Assessment of knowledge, skills, and attitudes regarding the nursing process]. Rev. Enferm. Inst. Mex. Seguro Soc. 2014, 22, 13–18. [Google Scholar]
- Aristizabal, P.; Nigenda, G.; Squires, A.; Rosales, Y. Regulation of nursing in Mexico: Actors, processes and outcomes. Ciênc Saúde Coletiva 2019, 25, 233–242. [Google Scholar] [CrossRef]
- Rosenthal, G.E.; Halloran, E.J.; Kiley, M.; Pinkley, C.; Landefeld, C.S. Development and validation of the Nursing Severity Index. A new method for measuring severity of illness using nursing diagnoses. Nurses of University Hospitals of Cleveland. Med. Care 1992, 30, 1127–1141. [Google Scholar] [CrossRef]
- Rosenthal, G.E.; Halloran, E.J.; Kiley, M.; Landefeld, C.S. Predictive validity of the Nursing Severity Index in patients with musculoskeletal disease. Nurses of University Hospitals of Cleveland. J. Clin. Epidemiol. 1995, 48, 179–188. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, F.; Sanson, G.; Cocchieri, A.; Vellone, E.; Welton, J.; Maurici, M.; Alvaro, R.; Zega, M. Prevalence of nursing diagnoses as a measure of nursing complexity in a hospital setting. J. Adv. Nurs. 2017, 73, 2129–2142. [Google Scholar] [CrossRef]
- Castellan, C.; Sluga, S.; Spina, E.; Sanson, G. Nursing diagnoses, outcomes and interventions as measures of patient complexity and nursing care requirement in Intensive Care Unit. J. Adv. Nurs. 2016, 72, 1273–1286. [Google Scholar] [CrossRef]
- Morales-Asencio, J.M.; Morilla-Herrera, J.C.; Martín-Santos, F.J.; Gonzalo-Jiménez, E.; Cuevas-Fernández-Gallego, M.; Nieves, C.B.d.L.; Tobías-Manzano, A.; Rivas-Campos, A. The association between nursing diagnoses, resource utilisation and patient and caregiver outcomes in a nurse-led home care service: Longitudinal study. Int. J. Nurs. Stud. 2009, 46, 189–196. [Google Scholar] [CrossRef]
- Welton, J.M.; Halloran, E.J. Nursing diagnoses, diagnosis-related group, and hospital outcomes. J. Nurs. Adm. 2005, 35, 541–549. [Google Scholar] [CrossRef]
- Barioni, E.M.S.; do Nascimento Cda, S.; Amaral, T.L.M.; Ramalho, J.M.; do Prado, P.R. Clinical indicators, nursing diagnoses, and mortality risk in critically ill patients with COVID-19: A retrospective cohort. Rev. Esc. Enferm. USP 2022, 56, e20210568. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Cañón-Montañez, W.; Rodríguez-Acelas, A. Use of Causal Diagrams for Nursing Research: A Tool for Application in Epidemiological Studies—PMC. Investig. Educ. Enferm. 2019, 37, 1–9. [Google Scholar] [CrossRef]
- Digitale, J.C.; Martin, J.N.; Glymour, M.M. Tutorial on directed acyclic graphs. J. Clin. Epidemiol. 2022, 142, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Textor, J.; Hardt, J.; Knüppel, S. DAGitty: A Graphical Tool for Analyzing Causal Diagrams. Epidemiology 2011, 22, 745. [Google Scholar] [CrossRef]
- Bellan, M.; Patti, G.; Hayden, E.; Azzolina, D.; Pirisi, M.; Acquaviva, A.; Aimaretti, G.; Valletti, P.A.; Angilletta, R.; Arioli, R.; et al. Fatality rate and predictors of mortality in an Italian cohort of hospitalized COVID-19 patients. Sci. Rep. 2020, 10, 20731. [Google Scholar] [CrossRef] [PubMed]
- Hodges, G.; Pallisgaard, J.; Schjerning Olsen, A.M.; McGettigan, P.; Andersen, M.; Krogager, M.; Kragholm, K.; Køber, L.; Gislason, G.H.; Torp-Pedersen, C.; et al. Association between biomarkers and COVID-19 severity and mortality: A nationwide Danish cohort study. BMJ Open 2020, 10, e041295. [Google Scholar] [CrossRef]
- Pascual Gómez, N.F.; Lobo, I.M.; Cremades, I.G.; Tejerina, A.F.; Rueda, F.R.; Teleki, A.v.W.; Campos, F.M.A.; de Benito, M.Á.S. Potenciales biomarcadores predictores de mortalidad en pacientes COVID-19 en el Servicio de Urgencias. Rev. Esp. Quimioter. 2020, 33, 267–273. [Google Scholar] [CrossRef]
- Montero, S.; Maguiña, J.L.; Soto-Becerra, P.; Failoc-Rojas, V.E.; Chira-Sosa, J.; Apolaya-Segura, M.; Díaz-Vélez, C.; Tello-Vera, S. Laboratory biomarkers associated with COVID-19 mortality among inpatients in a Peruvian referral hospital. Heliyon 2024, 10, e27251. [Google Scholar] [CrossRef]
- Chaverra, R.A.M.; Ruiz-Jiménez, J.P.; Sotelo-Vergara, D.M.; Carrillo-Ramirez, M.V.; Jacome-Suarez, J.C.; Medina-Parra, J.; Alvarado-Sanchez, J.I.; Alarcón-Amaya, I.C. Risk factors associated with mortality in severely ill COVID-19 patients: Cohort study. RNCM 2023, 6, 5–13. [Google Scholar] [CrossRef]
- Oliveira RMAFde Gorzoni, M.L.; Rosa, R.F. Mortality predictors in a cohort of patients with COVID-19 admitted to a large tertiary hospital in the city of São Paulo, Brazil: A retrospective study. Sao Paulo Med. J. 2022, 141, e2021914. [Google Scholar] [CrossRef]
- Benítez, M.A.; Velasco, C.; Sequeira, A.R.; Henríquez, J.; Menezes, F.M.; Paolucci, F. Responses to COVID-19 in five Latin American countries. Health Policy Technol. 2020, 9, 525–559. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes-Faura, J. COVID-19 Mortality Rate and Its Incidence in Latin America: Dependence on Demographic and Economic Variables. Int. J. Environ. Res. Public Health 2021, 18, 6900. [Google Scholar] [CrossRef] [PubMed]
- Basheer, M.; Saad, E.; Assy, N. The Cytokine Storm in COVID-19: The Strongest Link to Morbidity and Mortality in the Current Epidemic. Covid 2022, 2, 540–552. [Google Scholar] [CrossRef]
- Montazersaheb, S.; Hosseiniyan Khatibi, S.M.; Hejazi, M.S.; Tarhriz, V.; Farjami, A.; Sorbeni, F.G.; Farahzadi, R.; Ghasemnejad, T. COVID-19 infection: An overview on cytokine storm and related interventions. Virol. J. 2022, 19, 92. [Google Scholar] [CrossRef]
- Li, C.; Islam, N.; Gutierrez, J.P.; Gutiérrez-Barreto, S.E.; Prado, A.C.; Moolenaar, R.L.; Lacey, B.; Richter, P. Associations of diabetes, hypertension and obesity with COVID-19 mortality: A systematic review and meta-analysis. BMJ Glob. Health 2023, 8, e012581. [Google Scholar] [CrossRef] [PubMed]
- Luca, M.C.; Loghin, I.I.; Mihai, I.F.; Popa, R.; Vâţă, A.; Manciuc, C. Liver Damage Associated with SARS-CoV-2 Infection—Myth or Reality? J. Pers. Med. 2023, 13, 349. [Google Scholar] [CrossRef]
- Sadeghi Dousari, A.; Hosseininasab, S.S.; Sadeghi Dousari, F.; Fuladvandi, M.; Satarzadeh, N. The impact of COVID-19 on liver injury in various age. World J. Virol. 2023, 12, 91–99. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Al-Gareeb, A.I.; Saad, H.M.; Al-Kuraishy, H.M. COVID-19 and corticosteroids: A narrative review. Inflammopharmacology 2022, 30, 1189–1205. [Google Scholar] [CrossRef]
- Fetters, K.B.; Judge, S.P.; Daar, E.S.; Hatlen, T.J. Burden of Hyperglycemia in Patients Receiving Corticosteroids for Severe COVID-19. Mayo Clin. Proc. Innov. Qual. Outcomes 2022, 6, 484–487. [Google Scholar] [CrossRef]
- Limbachia, V.; Nunney, I.; Page, D.J.; Barton, H.A.; Patel, L.K.; Thomason, G.N.; Green, S.L.; Lewis, K.F.; Dhatariya, K. The effect of different types of oral or intravenous corticosteroids on capillary blood glucose levels in hospitalized inpatients with and without diabetes. Clin. Ther. 2024, 46, e59–e63. [Google Scholar] [CrossRef]
- Chandrashekhar Joshi, S.; Pozzilli, P. COVID-19 induced Diabetes: A novel presentation. Diabetes Res. Clin. Pract. 2022, 191, 110034. [Google Scholar] [CrossRef]
- Yasari, F.; Akbarian, M.; Abedini, A.; Vasheghani, M. The role of electrolyte imbalances in predicting the severity of COVID-19 in the hospitalized patients: A cross-sectional study. Sci. Rep. 2022, 12, 14732. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; South, A.M.; Henry, B.M. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann. Clin. Biochem. 2020, 57, 262–265. [Google Scholar] [CrossRef]
- Genovesi, S.; Regolisti, G.; Rebora, P.; Occhino, G.; Belli, M.; Molon, G.; Citerio, G.; Beltrame, A.; Maloberti, A.; Generali, E.; et al. Negative prognostic impact of electrolyte disorders in patients hospitalized for COVID-19 in a large multicenter study. J. Nephrol. 2023, 36, 621–626. [Google Scholar] [CrossRef]
- Sabaghian, T.; Honarvar, M.; Safavi-Naini, S.A.A.; Sadeghi Fadaki, A.S.; Pourhoseingholi, M.A.; Hatamabadi, H. Effect of Electrolyte Imbalance on Mortality and Late Acute Kidney Injury in Hospitalized COVID-19 Patients. Iran. J. Kidney Dis. 2022, 16, 228–237. [Google Scholar] [PubMed]
- Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Carson-Chahhoud, K.; Ardalan, M.; Kolahi, A.-A.; Safiri, S. How SARS-CoV-2 might affect potassium balance via impairing epithelial sodium channels? Mol. Biol. Rep. 2021, 48, 6655–6661. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.; Sharma, S. Hypokalemia. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK482465/ (accessed on 24 September 2024).
- Empson, S.; Rogers, A.J.; Wilson, J.G. COVID-19 Acute Respiratory Distress Syndrome. Crit. Care Clin. 2022, 38, 505–519. [Google Scholar] [CrossRef]
- Diamond, M.; Peniston, H.L.; Sanghavi, D.K.; Mahapatra, S. Acute Respiratory Distress Syndrome. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK436002/ (accessed on 20 September 2024).
- Severin, R.; Franz, C.K.; Farr, E.; Meirelles, C.; Arena, R.; Phillips, S.A.; Bond, S.; Ferraro, F.; Faghy, M. The effects of COVID-19 on respiratory muscle performance: Making the case for respiratory muscle testing and training. Eur. Respir. Rev. 2022, 31, 220006. [Google Scholar] [CrossRef]
- Severin, R.; Arena, R.; Lavie, C.J.; Bond, S.; Phillips, S.A. Respiratory Muscle Performance Screening for Infectious Disease Management Following COVID-19: A Highly Pressurized Situation. Am. J. Med. 2020, 133, 1025–1032. [Google Scholar] [CrossRef]
- Farr, E.; Wolfe, A.R.; Deshmukh, S.; Rydberg, L.; Soriano, R.; Walter, J.M.; Boon, A.J.; Wolfe, L.F.; Franz, C.K. Diaphragm dysfunction in severe COVID-19 as determined by neuromuscular ultrasound. Ann. Clin. Transl. Neurol. 2021, 8, 1745–1749. [Google Scholar] [CrossRef]
- Shi, Z.; de Vries, H.J.; Vlaar, A.P.J.; van der Hoeven, J.; Boon, R.A.; Heunks, L.M.A.; Ottenheijm, C.A.C. Diaphragm Pathology in Critically Ill Patients With COVID-19 and Postmortem Findings From 3 Medical Centers. JAMA Intern. Med. 2021, 181, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Fahy, J.V.; Dickey, B.F. Airway mucus function and dysfunction. N. Engl. J. Med. 2010, 363, 2233–2247. [Google Scholar] [CrossRef] [PubMed]
- Dunican, E.M.; Watchorn, D.C.; Fahy, J.V. Autopsy and Imaging Studies of Mucus in Asthma. Lessons Learned about Disease Mechanisms and the Role of Mucus in Airflow Obstruction. Ann. Am. Thorac. Soc. 2018, 15 (Suppl. S3), S184–S191. [Google Scholar] [CrossRef] [PubMed]
- Kirkham, S.; Kolsum, U.; Rousseau, K.; Singh, D.; Vestbo, J.; Thornton, D.J. MUC5B is the major mucin in the gel phase of sputum in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2008, 178, 1033–1039. [Google Scholar] [CrossRef]
- Kumar, S.S.; Binu, A.; Devan, A.; Nath, L. Mucus targeting as a plausible approach to improve lung function in COVID-19 patients. Med. Hypotheses 2021, 156, 110680. [Google Scholar] [CrossRef]
- Shen, Y.; Huang, S.; Kang, J.; Lin, J.; Lai, K.; Sun, Y.; Xiao, W.; Yang, L.; Yao, W.; Cai, S.; et al. Management of airway mucus hypersecretion in chronic airway inflammatory disease: Chinese expert consensus (English edition). Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 399–407. [Google Scholar] [CrossRef]
- Li, X.; Ma, X. Acute respiratory failure in COVID-19: Is it “typical” ARDS? Crit. Care 2020, 24, 198. [Google Scholar] [CrossRef]
- Tajbakhsh, A.; Gheibi Hayat, S.M.; Taghizadeh, H.; Akbari, A.; Inabadi, M.; Savardashtaki, A.; Johnston, T.P.; Sahebkar, A. COVID-19 and cardiac injury: Clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev. Anti Infect. 2021, 19, 345–357. [Google Scholar] [CrossRef]
- Moayed, M.S.; Rahimi-Bashar, F.; Vahedian-Azimi, A.; Sathyapalan, T.; Guest, P.C.; Jamialahmadi, T.; Sahebkar, A. Cardiac Injury in COVID-19: A Systematic Review. Adv. Exp. Med. Biol. 2021, 1321, 325–333. [Google Scholar] [CrossRef]
- Basu-Ray, I.; Almaddah Nk Adeboye, A.; Vaqar, S.; Soos, M.P. Cardiac Manifestations of Coronavirus (COVID-19). In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK556152/ (accessed on 13 September 2024).
- Vu, V.H.; Nguyen, T.C.; Pham, Q.D.D.; Pham, D.N.; Le, L.B.; Le, K.M. Prevalence and impact of myocardial injury among patients hospitalized with COVID-19. Front. Cardiovasc. Med. 2023, 10, 1202332. [Google Scholar] [CrossRef]
- Hanson, P.J.; Liu-Fei, F.; Ng, C.; Minato, T.A.; Lai, C.; Hossain, A.R.; Chan, R.; Grewal, B.; Singhera, G.; Rai, H.; et al. Characterization of COVID-19-associated cardiac injury: Evidence for a multifactorial disease in an autopsy cohort. Lab. Investig. 2022, 102, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Que, Y.; Hu, C.; Wan, K.; Hu, P.; Wang, R.; Luo, J.; Li, T.; Ping, R.; Hu, Q.; Sun, Y.; et al. Cytokine release syndrome in COVID-19: A major mechanism of morbidity and mortality. Int. Rev. Immunol. 2021, 41, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Lindner, D.; Fitzek, A.; Bräuninger, H.; Aleshcheva, G.; Edler, C.; Meissner, K.; Scherschel, K.; Kirchhof, P.; Escher, F.; Schultheiss, H.-P.; et al. Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020, 5, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Nigoghossian, C.D.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef]
- Di Dedda, U.; Ascari, A.; Fantinato, A.; Fina, D.; Baryshnikova, E.; Ranucci, M. Microcirculatory Alterations in Critically Ill Patients with COVID-19-Associated Acute Respiratory Distress Syndrome. J. Clin. Med. 2022, 11, 1032. [Google Scholar] [CrossRef]
- Mesquida, J.; Caballer, A.; Cortese, L.; Vila, C.; Karadeniz, U.; Pagliazzi, M.; Zanoletti, M.; Pacheco, A.P.; Castro, P.; García-De-Acilu, M.; et al. Peripheral microcirculatory alterations are associated with the severity of acute respiratory distress syndrome in COVID-19 patients admitted to intermediate respiratory and intensive care units. Crit. Care 2021, 25, 381. [Google Scholar] [CrossRef]
- Fox, S.; Vashisht, R.; Siuba, M.; Dugar, S. Evaluation and management of shock in patients with COVID-19. Clevel. Clin. J. Med. 2020. Online ahead of print. [Google Scholar] [CrossRef]
- Hollenberg, S.M.; Safi, L.; Parrillo, J.E.; Fata, M.; Klinkhammer, B.; Gayed, N.; Glotzer, T.; Go, R.C.; Gourna-Paleoudis, E.; Landers, D.; et al. Hemodynamic Profiles of Shock in Patients With COVID-19. Am. J. Cardiol. 2021, 153, 135. [Google Scholar] [CrossRef]
- Koçak Tufan, Z.; Kayaaslan, B.; Mer, M. COVID-19 and Sepsis. Turk. J. Med. Sci. 2021, 51, 3301–3311. [Google Scholar] [CrossRef]
- Patil, M.; Singh, S.; Henderson, J.; Krishnamurthy, P. Mechanisms of COVID-19-induced cardiovascular disease: Is sepsis or exosome the missing link? J. Cell Physiol. 2021, 236, 3366–3382. [Google Scholar] [CrossRef]
- da Costa Sousa, V.; da Silva, M.C.; de Mello, M.P.; Guimarães, J.A.M.; Perini, J.A. Factors associated with mortality, length of hospital stay and diagnosis of COVID-19: Data from a field hospital. J. Infect. Public Health 2022, 15, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Graves, N.; Birrell, F.; Whitby, M. Effect of Pressure Ulcers on Length of Hospital Stay. Infect. Control Hosp. Epidemiol. 2005, 26, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Barja-Martínez, E.; García-González, S.; Jiménez-García, E.; Thuissard-Vasallo, I.J.; Arias-Rivera, S.; Blanco-Abril, S. Prone positioning in COVID-19 patients with acute respiratory distress syndrome and invasive mechanical ventilation. Enferm. Intensiv. (Engl. Ed.) 2023, 34, 70–79. [Google Scholar] [CrossRef]
- Fossali, T.; Locatelli, M.; Colombo, R.; Veronese, A.; Borghi, B.; Ballone, E.; Castelli, A.; Rech, R.; Catena, E.; Ottolina, D. Awake pronation with helmet CPAP in early COVID-19 ARDS patients: Effects on respiratory effort and distribution of ventilation assessed by EIT. Intern. Emerg. Med. 2024, 19, 2025–2034. [Google Scholar] [CrossRef]
- Kharat, A.; Simon, M.; Guérin, C. Prone position in COVID 19-associated acute respiratory failure. Curr. Opin. Crit. Care 2022, 28, 57–65. [Google Scholar] [CrossRef]
- Choron, R.L.; Butts, C.A.; Bargoud, C.; Krumrei, N.J.; Teichman, A.L.; Schroeder, M.E.; Manderski, M.T.B.; Cai, J.; Song, C.; Rodricks, M.B.; et al. Fever in the ICU: A Predictor of Mortality in Mechanically Ventilated COVID-19 Patients. J. Intensive Care Med. 2021, 36, 484–493. [Google Scholar] [CrossRef]
- Ding, F.-M.; Feng, Y.; Han, L.; Zhou, Y.; Ji, Y.; Hao, H.-J.; Xue, Y.-S.; Yin, D.-N.; Xu, Z.-C.; Luo, S.; et al. Early Fever Is Associated with Clinical Outcomes in Patients with Coronavirus Disease. Front. Public Health 2021, 9, 712190. [Google Scholar] [CrossRef]
- Uchiyama, S.; Sakata, T.; Tharakan, S.; Ishikawa, K. Body temperature as a predictor of mortality in COVID-19. Sci. Rep. 2023, 13, 13354. [Google Scholar] [CrossRef] [PubMed]
- Abdin, S.M.; Elgendy, S.M.; Alyammahi, S.K.; Alhamad, D.W.; Omar, H.A. Tackling the cytokine storm in COVID-19, challenges and hopes. Life Sci. 2020, 257, 118054. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.M.; Xu, G.; Wang, B.; Liu, B.C. Cytokine storm syndrome in coronavirus disease 2019: A narrative review. J. Intern. Med. 2021, 289, 147–161. [Google Scholar] [CrossRef]
- Abbasifard, M.; Khorramdelazad, H. The bio-mission of interleukin-6 in the pathogenesis of COVID-19: A brief look at potential therapeutic tactics. Life Sci. 2020, 257, 118097. [Google Scholar] [CrossRef]
- Netea, M.G.; Kullberg, B.J.; Van der Meer, J.W. Circulating cytokines as mediators of fever. Clin. Infect. Dis. 2000, 31 (Suppl. S5), S178–S184. [Google Scholar] [CrossRef]
- Dragoi, L.; Siuba, M.T.; Fan, E. Lessons Learned in Mechanical Ventilation/Oxygen Support in Coronavirus Disease 2019. Clin. Chest Med. 2023, 44, 321–333. [Google Scholar] [CrossRef]
- Tsikala Vafea, M.; Zhang, R.; Kalligeros, M.; Mylona, E.K.; Shehadeh, F.; Mylonakis, E. Mortality in mechanically ventilated patients with COVID-19: A systematic review. Expert Rev. Med. Devices 2021, 18, 457–471. [Google Scholar] [CrossRef]
- Hernández, A.D.; Márquez, D.L.D.; Muñiz, G.M.; Garcia, C.Á.T. Frecuencia de diagnósticos de enfermería en pacientes hospitalizados con infección COVID-19: Frequency of nursing diagnoses in hospitalized patients with COVID-19 infection. Rev. Enferm. Neurol. 2022, 21, 29–40. [Google Scholar] [CrossRef]
- Acelas, A.L.R.; Getial, D.Y.; Montañez, W.C. Correlación entre diagnósticos, resultados e intervenciones de enfermería en el cuidado al paciente hospitalizado por COVID-19. Rev. Cuid. 2021, 12. [Google Scholar] [CrossRef]
- Friedel, D.M.; Cappell, M.S. Diarrhea and Coronavirus Disease 2019 Infection. Gastroenterol. Clin. N. Am. 2023, 52, 59–75. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Zhang, Y.; Liu, Y.; Liu, Y. Are gastrointestinal symptoms associated with higher risk of Mortality in COVID-19 patients? A systematic review and meta-analysis. BMC Gastroenterol. 2022, 22, 106. [Google Scholar] [CrossRef]
- Romeiro, J.; Caldeira, S.; Herdman, T.H.; Lopes, C.T.; Vieira, M. Nursing diagnoses: What about NANDA-I syndromes? Int. Nurs. Rev. 2020, 67, 562–567. [Google Scholar] [CrossRef]
- Sanchez-Gómez, M.B.; Duarte Clímentsnts, G. Riesgo de deterioro de la función cardiovascular, nuevo diagnóstico NANDA [Risk for impaired cardiovascular function, new NANDA diagnosis]. ENE 2013, 7. Available online: https://ene-enfermeria.org/ojs/index.php/ENE/article/view/357 (accessed on 11 April 2025).
- Rodríguez-Suárez, C.A.; Hernández-y de Lui, M.I.; Mariscal-Crespo, M.I. Mapeo cruzado de los factores relacionados y de riesgo de NANDA-I con la Clasificación Internacional de Enfermedades [Cross-mapping of NANDA-I risk and related factors with the International Classification of Diseases]. Rev. Cuba. Enferm. 2019, 35, 1–14. Available online: https://revenfermeria.sld.cu/index.php/enf/article/view/2851 (accessed on 11 April 2025).
- Thomé Eda, S.; Centena, R.C.; Behenck Ada, S.; Marini, M.; Heldt, E. Applicability of the NANDA-I and Nursing Interventions Classification taxonomies to mental health nursing practice. Int. J. Nurs. Knowl. 2014, 25, 168–172. [Google Scholar] [CrossRef]
- Rodríguez-Suárez, C.A.; González-de la Torre, H.; Hernández-De Luis, M.N.; Fernández-Gutiérrez, D.Á.; Martínez-Alberto, C.E.; Brito-Brito, P.R. Effectiveness of a Standardized Nursing Process Using NANDA International, Nursing Interventions Classification and Nursing Outcome Classification Terminologies: A Systematic Review. Healthcare 2023, 11, 2449. [Google Scholar] [CrossRef]
- Cachón-Pérez, J.M.; Gonzalez-Villanueva, P.; Rodriguez-Garcia, M.; Oliva-Fernandez, O.; Garcia-Garcia, E.; Fernandez-Gonzalo, J.C. Use and Significance of Nursing Diagnosis in Hospital Emergencies: A Phenomenological Approach. Int. J. Environ. Res. Public Health 2021, 18, 9786. [Google Scholar] [CrossRef]
- D’Agostino, F.; Tuinman, A.; Lopes, C.T.; Leoni-Scheiber, C.; Widmann, M.; Barrientos-Trigo, S.; Batista-Santos, V.; Zeffiro, V. Review of nursing diagnoses prevalence in different populations and healthcare settings. Acta Paul. Enferm. 2024, 37, eAPE01173. [Google Scholar] [CrossRef]
- Moura, L.A.; Araújo, J.N.d.M.; Pitombeira, D.O.; Fernandes, A.P.N.d.L.; Botarelli, F.R.; Vitor, A.F. Risk factors of the nursing diagnosis in the safety/protection domain: Integrative. Cogitare Enferm. 2016, 21, 1–8. [Google Scholar] [CrossRef]
Characteristics | Total (N = 489) | Survivors N = 296 (60.5%) | Deaths N = 193 (39.5%) | p-Value a |
---|---|---|---|---|
Sex, f (%) | ||||
Women | 222 (45.4) | 151 (51.1) | 71 (36.8) | 0.002 |
Men | 267 (54.6) | 145 (58.9) | 122 (63.2) | |
Age (in years) | ||||
Median (IQR) | 53 (18) | 47 (16) | 63 (15) | <0.001 |
Marital status, f (%) | ||||
Unmarried | 155 (31.7) | 92 (31.1) | 63 (32.6) | 0.717 |
Married | 334 (68.3) | 204 (68.9) | 130 (67.4) | |
Educational level, f (%) | ||||
No education | 52 (10.6) | 31 (10.5) | 21 (10.9) | 0.009 |
Basic education | 135 (27.6) | 66 (22.3) | 69 (35.8) | |
Intermediate level | 190 (38.9) | 127 (42.9) | 63 (32.6) | |
Higher education | 112 (22.9) | 72 (24.3) | 40 (20.7) | |
Employment status, f (%) | ||||
Paid work | 296 (60.5) | 177 (59.8) | 119 (61.7) | 0.001 |
Retired | 43 (8.8) | 16 (5.4) | 27 (14.0) | |
Other | 150 (38.9) | 103 (34.8) | 47 (24.3) |
Clinical Characteristics | Total (N = 489) | Survivors N = 296 (60.5%) | Deaths N = 193 (39.5%) | p-Value a |
---|---|---|---|---|
SBP (mmHg) | ||||
Median (IQR) | 120 (10) | 120 (20) | 124 (20) | 0.053 |
DPB (mmHg) | ||||
Median (IQR) | 80 (12) | 78 (10) | 80 (14) | 0.057 |
Body temperature (degrees Celsius) | ||||
Median (IQR) | 37.5 (1.8) | 37.4 (1.4) | 38.0 (0.9) | 0.001 |
Heart rate | ||||
Median (IQR) | 80 (18) | 80 (18) | 82 (18) | 0.067 |
Respiratory rate | ||||
Median (IQR) | 24 (6) | 22. (5) | 24 (7) | <0.001 |
Oxygen saturation | ||||
Median (IQR) | 91 (3) | 92 (4) | 90 (4) | 0.002 |
Comorbidities, f (%) | ||||
No | 323 (66.1) | 220 (74.3) | 103 (53.4) | <0.001 |
Yes | 166 (33.9) | 76 (25.7) | 90 (46.6) | |
Length of hospital stay | ||||
Median (IQR) | 11 (8) | 10 (6.5) | 13.5 (12) | 0.002 |
Domains | Class and Diagnostic Label (Code) | Total (N = 489) | |
---|---|---|---|
f | % | ||
DOMAIN 1. Health promotion | Class 2. Health management | ||
(00043) Ineffective protection | 19 | 3.9 | |
DOMAIN 2. Nutrition | Class 4. Metabolism | ||
(00178) Risk of impaired liver function | 88 | 18.0 | |
(00179) Risk for unstable blood glucose level | 131 | 26.8 | |
Class 5. Hydration | |||
(00195) Risk for electrolyte imbalance | 63 | 12.8 | |
DOMAIN 3. Elimination and exchange | Class 2. Gastrointestinal function | ||
(00013) Diarrhea | 74 | 15.1 | |
Class 4. Respiratory function | |||
(00030) Impaired gas exchange | 251 | 51.3 | |
Class 2. Activity/Exercise | |||
(00085) Impaired physical mobility | 119 | 24.3 | |
DOMAIN 4. Activity/Exercise | Class 4. Cardiovascular-pulmonary responses | ||
(00029) Decreased cardiac output | 58 | 11.9 | |
(00032) Ineffective breathing pattern | 453 | 92.6 | |
(00033) Impaired spontaneous ventilation | 137. | 28.0 | |
(00204) Ineffective peripheral tissue perfusion | 48 | 9.8 | |
DOMAIN 9. Coping/stress tolerance | Class 2. Coping responses | ||
(00148) Fear | 240 | 49.1 | |
(00146) Anxiety | 370 | 75.7 | |
DOMAIN 11. Safety/Protection | Class 1. Infection | ||
(00004) Risk of infection | 116 | 23.7 | |
Class 2. Physical injury | |||
(00303) Risk for falls | 44 | 9.8 | |
(00205) Risk for shock | 40 | 8.2 | |
(00304) Risk for pressure injury in adults | 182 | 37.2 | |
(00312) Adult pressure injury | 87 | 17.9 | |
(00031) Ineffective airway clearance | 141 | 28.8 | |
Class 4. Thermoregulation | |||
(00007) Hyperthermia | 232 | 47.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Mariano, J.Á.; Mendoza-Macario, O.; Velázquez-Núñez, M.d.C.; Cedillo-Ordaz, M.d.C.; Cervantes-Guzmán, B.E.; Razo-Blanco-Hernández, D.M.; Landeros-Olvera, E.A.; Villa-Rivas, F.; Castillo-Díaz, R.; Cano-Verdugo, G. Association Between Nursing Diagnoses and Mortality in Hospitalized Patients with COVID-19: A Retrospective Cohort Study. Nurs. Rep. 2025, 15, 147. https://doi.org/10.3390/nursrep15050147
Hernández-Mariano JÁ, Mendoza-Macario O, Velázquez-Núñez MdC, Cedillo-Ordaz MdC, Cervantes-Guzmán BE, Razo-Blanco-Hernández DM, Landeros-Olvera EA, Villa-Rivas F, Castillo-Díaz R, Cano-Verdugo G. Association Between Nursing Diagnoses and Mortality in Hospitalized Patients with COVID-19: A Retrospective Cohort Study. Nursing Reports. 2025; 15(5):147. https://doi.org/10.3390/nursrep15050147
Chicago/Turabian StyleHernández-Mariano, José Ángel, Olivia Mendoza-Macario, María del Carmen Velázquez-Núñez, María del Carmen Cedillo-Ordaz, Blanca Estela Cervantes-Guzmán, Dulce Milagros Razo-Blanco-Hernández, Erick Alberto Landeros-Olvera, Fani Villa-Rivas, Rocío Castillo-Díaz, and Guillermo Cano-Verdugo. 2025. "Association Between Nursing Diagnoses and Mortality in Hospitalized Patients with COVID-19: A Retrospective Cohort Study" Nursing Reports 15, no. 5: 147. https://doi.org/10.3390/nursrep15050147
APA StyleHernández-Mariano, J. Á., Mendoza-Macario, O., Velázquez-Núñez, M. d. C., Cedillo-Ordaz, M. d. C., Cervantes-Guzmán, B. E., Razo-Blanco-Hernández, D. M., Landeros-Olvera, E. A., Villa-Rivas, F., Castillo-Díaz, R., & Cano-Verdugo, G. (2025). Association Between Nursing Diagnoses and Mortality in Hospitalized Patients with COVID-19: A Retrospective Cohort Study. Nursing Reports, 15(5), 147. https://doi.org/10.3390/nursrep15050147