Individual Noise-Tolerance Profiles and Neural Signal-to-Noise Ratio: Insights into Predicting Speech-in-Noise Performance and Noise-Reduction Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Task Design and Procedures
2.3. Quantification of NR Effects on Stimuli: SNR Enhancement and Speech Distortion
2.4. Data Acquisition and Preprocessing
2.5. Statistical Analysis
3. Results
3.1. Behavioral Performance
3.2. Relationship Between Neural SNR and Speech-in-Noise Performance and NR Outcomes
3.3. Noise-Tolerance Profiles and Speech-in-Noise Performance and NR Outcomes
4. Discussions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Babisch, W. Cardiovascular effects of noise. Noise Health 2011, 13, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Babisch, W. The Noise/Stress Concept, Risk Assessment and Research Needs. Noise Health 2002, 4, 1–11. [Google Scholar]
- Plomp, R. Noise, amplification, and compression: Considerations of three main issues in hearing aid design. Ear Hear. 1994, 15, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, G.; Martinez, C.D.; Beamer, S.; Bridges, J.; Noffsinger, D.; Sugiura, K.; Bratt, G.W.; Williams, D.W. Subjective measures of hearing aid benefit and satisfaction in the NIDCD/VA follow-up study. J. Am. Acad. Audiol. 2007, 18, 323–349. [Google Scholar] [CrossRef]
- Davidson, A.; Marrone, N.; Wong, B.; Musiek, F. Predicting Hearing Aid Satisfaction in Adults: A Systematic Review of Speech-in-noise Tests and Other Behavioral Measures. Ear Hear. 2021, 42, 1485–1498. [Google Scholar] [CrossRef]
- Nabelek, A.K.; Freyaldenhoven, M.C.; Tampas, J.W.; Burchfield, S.B.; Muenchen, R.A. Acceptable Noise Level as a Predictor of Hearing Aid Use. J. Am. Acad. Audiol. 2006, 17, 626–639. [Google Scholar] [CrossRef]
- Cox, R.M.; Alexander, G.C.; Gray, G.A. Personality, hearing problems, and amplification characteristics: Contributions to self-report hearing aid outcomes. Ear Hear. 2007, 28, 141–162. [Google Scholar] [CrossRef] [PubMed]
- Bentler, R.; Chiou, L.-K. Digital Noise Reduction: An Overview. Trends Amplif. 2006, 10, 67–82. [Google Scholar] [CrossRef]
- Bentler, R.; Wu, Y.-H.; Kettel, J.; Hurtig, R. Digital noise reduction: Outcomes from laboratory and field studies. Int. J. Audiol. 2008, 47, 447–460. [Google Scholar] [CrossRef]
- Hoetink, A.E.; Korossy, L.; Dreschler, W.A. Classification of steady state gain reduction produced by amplitude modulation based noise reduction in digital hearing aids. Int. J. Audiol. 2009, 48, 444–455. [Google Scholar] [CrossRef]
- Kates, J.M. Digital Hearing Aids; Plural Pub: San Diego, CA, USA, 2008. [Google Scholar]
- Arehart, K.; Souza, P.; Lunner, T.; Syskind Pedersen, M.; Kates, J.M. Relationship between distortion and working memory for digital noise-reduction processing in hearing aids. J. Acoust. Soc. Am. 2013, 133, 3382. [Google Scholar] [CrossRef]
- Brons, I.; Dreschler, W.A.; Houben, R. Detection threshold for sound distortion resulting from noise reduction in normal-hearing and hearing-impaired listeners. J. Acoust. Soc. Am. 2014, 136, 1375–1384. [Google Scholar] [CrossRef] [PubMed]
- Brons, I.; Houben, R.; Dreschler, W.A. Effects of Noise Reduction on Speech Intelligibility, Perceived Listening Effort, and Personal Preference in Hearing-Impaired Listeners. Trends Hear. 2014, 18, 2331216514553924. [Google Scholar] [CrossRef]
- Kubiak, A.M.; Rennies, J.; Ewert, S.D.; Kollmeier, B. Relation between hearing abilities and preferred playback settings for speech perception in complex listening conditions. Int. J. Audiol. 2022, 61, 965–974. [Google Scholar] [CrossRef]
- Neher, T. Relating hearing loss and executive functions to hearing aid users’ preference for, and speech recognition with, different combinations of binaural noise reduction and microphone directionality. Front. Neurosci. 2014, 8, 391. [Google Scholar] [CrossRef] [PubMed]
- Neher, T.; Grimm, G.; Hohmann, V.; Kollmeier, B. Do hearing loss and cognitive function modulate benefit from different binaural noise-reduction settings? Ear Hear. 2014, 35, e52–e62. [Google Scholar] [CrossRef]
- Neher, T.; Wagener, K.C. Investigating differences in preferred noise reduction strength among hearing aid users. Trends Hear. 2016, 20, 2331216516655794. [Google Scholar] [CrossRef]
- Neher, T.; Wagener, K.C.; Fischer, R.L. Directional processing and noise reduction in hearing aids: Individual and situational influences on preferred setting. J. Am. Acad. Audiol. 2016, 27, 628–646. [Google Scholar] [CrossRef]
- Mackersie, C.L.; Kim, N.K.; Lockshaw, S.A.; Nash, M.N. Subjective criteria underlying noise-tolerance in the presence of speech. Int. J. Audiol. 2021, 60, 89–95. [Google Scholar] [CrossRef]
- Recker, K.L.; Micheyl, C. Speech Intelligibility as a Cue for Acceptable Noise Levels. Ear Hear. 2017, 38, 465–474. [Google Scholar] [CrossRef]
- Brons, I.; Houben, R.; Dreschler, W.A. Perceptual effects of noise reduction with respect to personal preference, speech intelligibility, and listening effort. Ear Hear. 2013, 34, 29–41. [Google Scholar] [CrossRef]
- Wu, Y.H.; Stangl, E. The effect of hearing aid signal-processing schemes on acceptable noise levels: Perception and prediction. Ear Hear. 2013, 34, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Mueller, H.G.; Weber, J.; Hornsby, B.W. The effects of digital noise reduction on the acceptance of background noise. Trends Amplif. 2006, 10, 83–93. [Google Scholar] [CrossRef]
- Billings, C.J.; McMillan, G.P.; Penman, T.M.; Gille, S.M. Predicting perception in noise using cortical auditory evoked potentials. JARO 2013, 14, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Billings, C.J.; Penman, T.M.; McMillan, G.P.; Ellis, E. Electrophysiology and perception of speech in noise in older listeners: Effects of hearing impairment & age. Ear Hear. 2015, 36, 710–722. [Google Scholar]
- Benítez-Barrera, C.R.; Key, A.P.; Ricketts, T.A.; Tharpe, A.M. Central auditory system responses from children while listening to speech in noise. Hear. Res. 2021, 403, 108165. [Google Scholar] [CrossRef] [PubMed]
- Papesh, M.A.; Stefl, A.A.; Gallun, F.J.; Billings, C.J. Effects of Signal Type and Noise Background on Auditory Evoked Potential N1, P2, and P3 Measurements in Blast-Exposed Veterans. Ear Hear. 2021, 42, 106–121. [Google Scholar] [CrossRef]
- Li, J.-Y.; Wang, X.; Nie, S.; Zhu, M.-Y.; Liu, J.-X.; Wei, L.; Li, H.; Wang, N.-Y.; Zhang, J. Neural encoding for spatial release from informational masking and its correlation with behavioral metrics. J. Neurophysiol. 2024, 132, 1265–1277. [Google Scholar] [CrossRef]
- Vanthornhout, J.; Decruy, L.; Wouters, J.; Simon, J.Z.; Francart, T. Speech Intelligibility Predicted from Neural Entrainment of the Speech Envelope. JARO 2018, 19, 181–191. [Google Scholar] [CrossRef]
- Lesenfants, D.; Vanthornhout, J.; Verschueren, E.; Decruy, L.; Francart, T. Predicting individual speech intelligibility from the cortical tracking of acoustic- and phonetic-level speech representations. Hear. Res. 2019, 380, 1–9. [Google Scholar] [CrossRef]
- Etard, O.; Reichenbach, T. Neural Speech Tracking in the Theta and in the Delta Frequency Band Differentially Encode Clarity and Comprehension of Speech in Noise. J. Neurosci. 2019, 39, 5750–5759. [Google Scholar] [CrossRef]
- Gillis, M.; Van Canneyt, J.; Francart, T.; Vanthornhout, J. Neural tracking as a diagnostic tool to assess the auditory pathway. Hear. Res. 2022, 426, 108607. [Google Scholar] [CrossRef] [PubMed]
- Alickovic, E.; Elaine Hoi, N.N.; Fiedler, L.; Santurette, S.; Innes-Brown, H.; Graversen, C. Effects of Hearing Aid Noise Reduction on Early and Late Cortical Representations of Competing Talkers in Noise. Front. Neurosci. 2021, 15, 636060. [Google Scholar] [CrossRef] [PubMed]
- Alickovic, E.; Lunner, T.; Wendt, D.; Fiedler, L.; Hietkamp, R.; Ng, E.H.N.; Graversen, C. Neural Representation Enhanced for Speech and Reduced for Background Noise With a Hearing Aid Noise Reduction Scheme During a Selective Attention Task. Front. Neurosci. 2020, 14, 846. [Google Scholar] [CrossRef] [PubMed]
- Wilroth, J.; Alickovic, E.; Skoglund, M.A.; Signoret, C.; Rönnberg, J.; Enqvist, M. Improving Tracking of Selective Attention in Hearing Aid Users: The Role of Noise Reduction and Nonlinearity Compensation. eNeuro 2025, 12, ENEURO.0275-0224.2025. [Google Scholar] [CrossRef]
- Kim, S.; Wu, Y.H.; Bharadwaj, H.M.; Choi, I. Effect of noise reduction on cortical speech-in-noise processing and its variance due to individual noise tolerance. Ear Hear. 2022, 43, 849–861. [Google Scholar] [CrossRef]
- Kim, S.; Schwalje, A.T.; Liu, A.S.; Gander, P.E.; McMurray, B.; Griffiths, T.D.; Choi, I. Pre- and post-target cortical processes predict speech-in-noise performance. NeuroImage 2021, 228, 117699. [Google Scholar] [CrossRef]
- Mesgarani, N.; Chang, E.F. Selective cortical representation of attended speaker in multi-talker speech perception. Nature 2012, 485, 233–236. [Google Scholar] [CrossRef]
- Hillyard, S.A.; Vogel, E.K.; Luck, S.J. Sensory gain control (amplification) as a mechanism of selective attention: Electrophysiological and neuroimaging evidence. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1998, 353, 1257–1270. [Google Scholar] [CrossRef]
- Berger, J.I.; Gander, P.E.; Kim, S.; Schwalje, A.T.; Woo, J.; Na, Y.-m.; Holmes, A.; Hong, J.M.; Dunn, C.C.; Hansen, M.R.; et al. Neural Correlates of Individual Differences in Speech-in-Noise Performance in a Large Cohort of Cochlear Implant Users. Ear Hear. 2023, 44, 1107–1120. [Google Scholar] [CrossRef]
- Shim, H.; Kim, S.; Hong, J.; Na, Y.; Woo, J.; Hansen, M.; Gantz, B.; Choi, I. Differences in neural encoding of speech in noise between cochlear implant users with and without preserved acoustic hearing. Hear. Res. 2023, 427, 108649. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Arzac, S.; Dokic, N.; Donnelly, J.; Genser, N.; Nortwich, K.; Rooney, A. Cortical and Subjective Measures of Individual Noise Tolerance Predict Hearing Outcomes with Varying Noise Reduction Strength. Appl. Sci. 2024, 14, 6892. [Google Scholar] [CrossRef]
- Kishikawa, H.; Matsui, T.; Uchiyama, I.; Miyakawa, M.; Hiramatsu, K.; Stansfeld, S.A. The development of Weinstein’s noise sensitivity scale. Noise Health 2006, 8, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, N.D. Individual differences in reactions to noise: A longitudinal study in a college dormitory. J. Appl. Psychol. 1978, 63, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 1997, 10, 433–436. [Google Scholar] [CrossRef]
- Geller, J.; Holmes, A.; Schwalje, A.; Berger, J.I.; Gander, P.E.; Choi, I.; McMurray, B. Validation of the Iowa Test of Consonant Perception. J. Acoust. Soc. Am. 2021, 150, 2131–2153. [Google Scholar] [CrossRef]
- Ephraim, Y.; Malah, D. Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator. IEEE Trans. Acoust. Speech Signal Process 1984, 32, 1109–1121. [Google Scholar] [CrossRef]
- Ephraim, Y.; Malah, D. Speech enhancement using a minimum mean-square error log-spectral amplitude estimator. IEEE Trans. Acoust. Speech Signal Process 1985, 33, 443–445. [Google Scholar] [CrossRef]
- Sarampalis, A.; Kalluri, S.; Edwards, B.; Hafter, E. Objective measures of listening effort: Effects of background noise and noise reduction. J. Speech Lang. Hear. Res. 2009, 52, 1230–1240. [Google Scholar] [CrossRef]
- Stelmachowicz, P.; Lewis, D.; Hoover, B.; Nishi, K.; McCreery, R.; Woods, W. Effects of Digital Noise Reduction on Speech Perception for Children with Hearing Loss. Ear Hear. 2010, 31, 345–355. [Google Scholar] [CrossRef]
- Park, G.; Cho, W.; Kim, K.-S.; Lee, S. Speech Enhancement for Hearing Aids with Deep Learning on Environmental Noises. Appl. Sci. 2020, 10, 6077. [Google Scholar] [CrossRef]
- Mirsamadi, S.; Tashev, I. Causal Speech Enhancement Combining Data-Driven Learning and Suppression Rule Estimation. In Proceedings of the 17th Interspeech, San Francisco, CA, USA, 8–12 September 2016; pp. 2870–2874. [Google Scholar]
- Cappé, O. Elimination of the musical noise phenomenon with the Ephraim and Malah noise suppressor. IEEE Trans. Speech Audio Process 1994, 2, 345–349. [Google Scholar] [CrossRef]
- Marzinzik, M. Noise Reduction Schemes for Digital Hearing Aids and Their Use for the Hearing Impaired. Ph.D. Thesis, Universität Oldenburg, Oldenburg, Germany, 28 June 1970. [Google Scholar]
- Gustafson, S.; McCreery, R.; Hoover, B.; Kopun, J.G.; Stelmachowicz, P. Listening effort and perceived clarity for normal-hearing children with the use of digital noise reduction. Ear Hear. 2014, 35, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, B.; Olofsson, Å. A method to measure the effect of noise reduction algorithms using simultaneous speech and noise. Acta Acust. United Acust. 2004, 90, 356–361. [Google Scholar]
- Yun, D.; Shen, Y.; Lentz, J.J. Verification of Estimated Output Signal-to-Noise Ratios From a Phase Inversion Technique Using a Simulated Hearing Aid. Am. J. Audiol. 2023, 32, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.W.; Bentler, R.A.; Wu, Y.H.; Lewis, J.; Tremblay, K. Output signal-to-noise ratio and speech perception in noise: Effects of algorithm. Int. J. Audiol. 2017, 56, 568–579. [Google Scholar] [CrossRef]
- Kay, S.M. Modern Spectral Estimation: Theory and Application; Prentice-Hall Signal Processing Series; Prentice Hall: Englewood Cliffs, NJ, USA, 1988. [Google Scholar]
- Kates, J.; Arehart, K. Multichannel Dynamic-Range Compression Using Digital Frequency Warping. J. Adv. Signal Process. 2005, 2005, 483486. [Google Scholar] [CrossRef]
- Lewis, J.D.; Goodman, S.S.; Bentler, R.A. Measurement of hearing aid internal noise. J. Acoust. Soc. Am. 2010, 127, 2521–2528. [Google Scholar] [CrossRef]
- Fynn, M.; Nordholm, S.; Rong, Y. Coherence Function and Adaptive Noise Cancellation Performance of an Acoustic Sensor System for Use in Detecting Coronary Artery Disease. Sensors 2022, 22, 6591. [Google Scholar] [CrossRef]
- de Cheveigne, A.; Nelken, I. Filters: When, why, and how (not) to use them. Neuron 2019, 102, 280–293. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Makeig, S.; Bell, A.J.; Jung, T.-P.; Sejnowski, T.J. Independent component analysis of electroencephalographic data. Adv. Neural Inf. Process. Syst. 1996, 8, 145–151. [Google Scholar]
- Ricketts, T.; Hornsby, B. Sound quality measures for speech in noise through a commercial hearing aid implementing digital noise reduction. J. Am. Acad. Audiol. 2005, 16, 270–277. [Google Scholar] [CrossRef]
- Jamieson, D.G.; Brennan, R.L.; Cornelisse, L.E. Evaluation of a speech enhancement strategy with normal-hearing and hearing-impaired listeners. Ear Hear. 1995, 16, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Shahsavari Baboukani, P.; Graversen, C.; Alickovic, E.; Østergaard, J. Speech to noise ratio improvement induces nonlinear parietal phase synchrony in hearing aid users. Front. Neurosci. 2022, 16, 932959. [Google Scholar] [CrossRef]
- Wendt, D.; Hietkamp, R.K.; Lunner, T. Impact of noise and noise reduction on processing effort: A pupillometry study. Ear Hear. 2017, 38, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Ohlenforst, B.; Zekveld, A.A.; Lunner, T.; Wendt, D.; Naylor, G.; Wang, Y.; Versfeld, N.J.; Kramer, S.E. Impact of stimulus-related factors and hearing impairment on listening effort as indicated by pupil dilation. Hear. Res. 2017, 351, 68–79. [Google Scholar] [CrossRef]
- Akeroyd, M.A. Are individual differences in speech reception related to individual differences in cognitive ability? A survey of twenty experimental studies with normal and hearing-impaired adults. Int. J. Audiol. 2008, 47, 53–71. [Google Scholar] [CrossRef]
- Rönnberg, J.; Lunner, T.; Zekveld, A.; Sörqvist, P.; Danielsson, H.; Lyxell, B.; Dahlström, Ö.; Signoret, C.; Stenfelt, S.; Pichora-Fuller, K.; et al. The Ease of Language Understanding (ELU) model theoretical, empirical, and clinical advances. Front. Syst. Neurosci. 2013, 47, 31. [Google Scholar] [CrossRef]
- Mattys, S.L.; Davis, M.H.; Bradlow, A.R.; Scott, S.K. Speech recognition in adverse conditions: A review. Lang. Cogn. Process. 2012, 27, 953–978. [Google Scholar] [CrossRef]
- Anderson, S.; Parbery-Clark, A.; White-Schwoch, T.; Kraus, N. Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance. J. Speech Lang. Hear. Res. 2013, 56, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Billings, C.J.; Madsen, B.M. A perspective on brain-behavior relationships and effects of age and hearing using speech-in-noise stimuli. Hear. Res. 2018, 369, 90–102. [Google Scholar] [CrossRef] [PubMed]
Domain | Definition |
---|---|
Noise annoyance | The way the noise sounds is annoying. |
Speech interference | The noise causes me to miss portions of what I need to hear. |
Listening effort | The noise makes me put in more effort to hear. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Arzac, S.; Dokic, N.; Donnelly, J.; Genser, N.; Nortwich, K.; Rooney, A. Individual Noise-Tolerance Profiles and Neural Signal-to-Noise Ratio: Insights into Predicting Speech-in-Noise Performance and Noise-Reduction Outcomes. Audiol. Res. 2025, 15, 78. https://doi.org/10.3390/audiolres15040078
Kim S, Arzac S, Dokic N, Donnelly J, Genser N, Nortwich K, Rooney A. Individual Noise-Tolerance Profiles and Neural Signal-to-Noise Ratio: Insights into Predicting Speech-in-Noise Performance and Noise-Reduction Outcomes. Audiology Research. 2025; 15(4):78. https://doi.org/10.3390/audiolres15040078
Chicago/Turabian StyleKim, Subong, Susan Arzac, Natalie Dokic, Jenn Donnelly, Nicole Genser, Kristen Nortwich, and Alexis Rooney. 2025. "Individual Noise-Tolerance Profiles and Neural Signal-to-Noise Ratio: Insights into Predicting Speech-in-Noise Performance and Noise-Reduction Outcomes" Audiology Research 15, no. 4: 78. https://doi.org/10.3390/audiolres15040078
APA StyleKim, S., Arzac, S., Dokic, N., Donnelly, J., Genser, N., Nortwich, K., & Rooney, A. (2025). Individual Noise-Tolerance Profiles and Neural Signal-to-Noise Ratio: Insights into Predicting Speech-in-Noise Performance and Noise-Reduction Outcomes. Audiology Research, 15(4), 78. https://doi.org/10.3390/audiolres15040078