Exploring How Blood Cell Levels Influence Subjective Tinnitus: A Cross-Sectional Case-Control Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Laboratory Testing
2.3. Audiological Examinations
2.4. Tinnitus Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CI | confidence interval |
CRP | C-reactive protein |
EDTA | ethylenediaminetetraacetic acid |
G | giga |
Hb | haemoglobin |
Hct | haematocrit |
IBM | International Business Machines Corporation |
Il | interleukin |
IQR | interquartile range |
L | litre |
OR | odds ratio |
RBC | red blood cell |
SPSS | Statistical Package for the Social Sciences |
Std. | standard |
T | tera |
THI | Tinnitus Handicap Inventory |
Q1 | first quartile |
Q3 | third quartile |
WBC | white blood cell |
References
- Jarach, C.M.; Lugo, A.; Scala, M.; van den Brandt, P.A.; Cederroth, C.R.; Odone, A.; Garavello, W.; Schlee, W.; Langguth, B.; Gallus, S. Global Prevalence and Incidence of Tinnitus: A Systematic Review and Meta-analysis. JAMA Neurol. 2022, 79, 888–900, Erratum in: JAMA Neurol. 2023, 80, 216. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, B.; Böcking, B.; Dobel, C.; Rose, M.; Brüggemann, P. Tinnitus and Influencing Comorbidities. Tinnitus und beeinflussende Komorbiditäten. Laryngorhinootologie 2023, 102, S50–S58. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.M.; Lecluyse, W.; McFerran, D.; Meddis, R. Tinnitus and patterns of hearing loss. J. Assoc. Res. Otolaryngol. 2013, 14, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Han, B.I.; Lee, H.W.; Ryu, S.; Kim, J.S. Tinnitus Update. J. Clin. Neurol. 2021, 17, 1–10. [Google Scholar] [CrossRef]
- Aydin, N.; Searchfield, G.D. Changes in tinnitus and physiological biomarkers of stress in response to short-term broadband noise and sounds of nature. Complement. Ther. Med. 2019, 46, 62–68. [Google Scholar] [CrossRef]
- Bhatt, J.M.; Bhattacharyya, N.; Lin, H.W. Relationships between tinnitus and the prevalence of anxiety and depression. Laryngoscope 2017, 127, 466–469. [Google Scholar] [CrossRef]
- Patel, S.D.; Patel, S.; Finberg, A.; Shah, V.N.; Mittal, R.; Eshraghi, A.A. Association Between Tinnitus and Hypertension: A Cross-Sectional Analysis of the National Health and Nutrition Examination Survey. Otol. Neurotol. 2022, 43, 766–772. [Google Scholar] [CrossRef]
- Kocyigit, M.; Bezgin, S.U.; Cakabay, T.; Ortekin, S.G.; Yıldız, M.; Ozkaya, G.; Aydın, B. An Investigation of Hearing (250–20,000 Hz) in Children with Endocrine Diseases and Evaluation of Tinnitus and Vertigo Symptoms. Int. Arch. Otorhinolaryngol. 2020, 24, e198–e205. [Google Scholar] [CrossRef]
- Almeida, T.A.; Samelli, A.G.; Mecca Fdel, N.; De Martino, E.; Paulino, A.M. Tinnitus sensation pre and post nutritional intervention in metabolic disorders. Pro. Fono. 2009, 1, 291–297. [Google Scholar] [CrossRef]
- Fuentes-Santamaría, V.; Alvarado, J.C.; Melgar-Rojas, P.; Gabaldón-Ull, M.C.; Miller, J.M.; Juiz, J.M. The Role of Glia in the Peripheral and Central Auditory System Following Noise Overexposure: Contribution of TNF-α and IL-1β to the Pathogenesis of Hearing Loss. Front. Neuroanat. 2017, 11, 9. [Google Scholar] [CrossRef]
- Mennink, L.M.; Aalbers, M.W.; van Dijk, P.; van Dijk, J.M.C. The Role of Inflammation in Tinnitus: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 1000. [Google Scholar] [CrossRef] [PubMed]
- Bencsik, B.; Tamás, L.; Trimmel, K.; Stauder, A. Hungarian adaptation of the Tinnitus Handicap Inventory: Reliability and validity. Eur. Arch. Otorhinolaryngol. 2015, 272, 2243–2248. [Google Scholar] [CrossRef]
- Becker, L.; Keck, A.; Rohleder, N.; Müller-Voggel, N. Higher Peripheral Inflammation Is Associated With Lower Orbitofrontal Gamma Power in Chronic Tinnitus. Front. Behav. Neurosci. 2022, 6, 883926. [Google Scholar] [CrossRef]
- Shulman, A.; Wang, W.; Luo, H.; Bao, S.; Searchfield, G.; Zhang, J. Neuroinflammation and Tinnitus. Curr. Top. Behav. Neurosci. 2021, 51, 161–174. [Google Scholar] [CrossRef]
- Avcı, D. Can Mean Platelet Volume be Used as a Thrombosis Marker in Subjective Tinnitus? J. Clin. Pract. Res. 2020, 42, 157–162. [Google Scholar] [CrossRef]
- Ozbay, I.; Kahraman, C.; Balikci, H.H.; Kucur, C.; Kahraman, N.K.; Ozkaya, D.P.; Oghan, F. Neutrophil-to-lymphocyte ratio in patients with severe tinnitus: Prospective, controlled clinical study. J. Laryngol. Otol. 2015, 129, 544–547. [Google Scholar] [CrossRef]
- Bayram, A.; Yaşar, M.A.; Doğan, M.; Güneri, E.; Özcan, İ. Assessment of Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio and Mean Platelet Volume in Patients with Tinnitus. ENT Updates 2015, 5, 103–106. [Google Scholar] [CrossRef]
- Chrbolka, P.; Alušík, Š.; Kalátová, D.; Paluch, Z. Increased Platelet Activity in Tinnitus Patients. Neuroendocrinol. Lett. 2020, 41, 102–106. [Google Scholar] [PubMed]
- Savastano, M.; Celadin, M.; Pittoni, M.; Plebani, M.; Marioni, G. Western Blot Immunoassay for HSP-70 Antibodies in Idiopathic Tinnitus: A Preliminary Report. Ann. Otol. Rhinol. Laryngol. 2006, 115, 243–246. [Google Scholar] [CrossRef]
- Weber, C.; Arck, P.; Mazurek, B.; Klapp, B.F. Impact of a Relaxation Training on Psychometric and Immunologic Parameters in Tinnitus Sufferers. J. Psychosom. Res. 2002, 52, 29–33. [Google Scholar] [CrossRef]
- Haider, H.F.; Ribeiro, S.F.; Martins, C.; Ribeiro, D.; Trigueiros, N.; Szczepek, A.J.; Caria, H.; Hoare, D.J.; Paço, J.; Borrego, L.M. Tinnitus, Hearing Loss and Inflammatory Processes in an Older Portuguese Population. Int. J. Audiol. 2020, 59, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Sunwoo, W.; Lee, D.Y.; Lee, J.Y.; Lee, M.; Kang, Y.; Park, M.H.; Kim, Y.H. Characteristics of tinnitus found in anemia patients and analysis of population-based survey. Auris Nasus Larynx 2018, 45, 11521158. [Google Scholar] [CrossRef] [PubMed]
- Olzowy, B.; von Gleichenstein, G.; Canis, M.; Plesnila, N.; Mees, K. Complex level alterations of the 2f (1)-f (2) distortion product due to hypoxia in the guinea pig. Eur. Arch. Otorhinolaryngol. 2008, 265, 1329–1333. [Google Scholar] [CrossRef]
- Mazurek, B.; Haupt, H.; Georgiewa, P.; Klapp, B.F.; Reisshauer, A. A model of peripherally developing hearing loss and tinnitus based on the role of hypoxia and ischemia. Med. Hypotheses 2006, 67, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Cochran, J.H., Jr.; Kosmicki, P.W. Tinnitus as a presenting symptom in pernicious anemia. Ann. Otol. Rhinol. Laryngol. 1979, 88, 297. [Google Scholar] [CrossRef]
- Shi, X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear. Res. 2016, 338, 52–63. [Google Scholar] [CrossRef]
- Simpson, J.J.; Davies, W.E. A review of evidence in support of a role for 5-HT in the perception of tinnitus. Hear. Res. 2000, 145, 1–7. [Google Scholar] [CrossRef]
- Yüksel, F.; Karataş, D. Can Platelet Indices Be New Biomarkers for Subjective Tinnitus? J. Craniofac. Surg. 2016, 27, e420–e424. [Google Scholar] [CrossRef]
- Ralli, M.; D’Aguanno, V.; Di Stadio, A.; De Virgilio, A.; Croce, A.; Longo, L.; Greco, A.; de Vincentiis, M. Audiovestibular Symptoms in Systemic Autoimmune Diseases. J. Immunol. Res. 2018, 2018, 5798103. [Google Scholar] [CrossRef]
Tinnitus Group (n = 439) | Control Group (n = 274) | p-Value | |
---|---|---|---|
Age (median years; IQR, Q1–Q3) | 51 (25; 40–65) | 48 (13.5; 41–54.5) | 0.06 * |
Sex (men/women) | 187/252 | 116/158 | 0.81 ** |
Tinnitus onset (median years; IQR, Q1–Q3) | 12 (33; 3–36) | ||
Tinnitus location | |||
Right, n (%) | 110 (25%) | ||
Left, n (%) | 138 (31.4%) | ||
Bilateral, n (%) | 191 (43.6%) | ||
Hearing level (median dB; IQR, Q1–Q3) | 30 (25; 20–45) |
Dependent | Predictor | β | Std. Error | p-Value | OR | 95% CI (Lower Bound) | 95% CI (Upper Bound) |
---|---|---|---|---|---|---|---|
Total THI (moderate to severe handicap) | Haemoglobin | 15.349 | 0.410 | 0.000 * | 4,635,442.945 | 2,076,573.101 | 10,347,495.73 |
Platelets | 14.983 | 1.266 | 0.000 * | 3,213,479.382 | 268,575.428 | 38,448,974.32 | |
Bilateral tinnitus | Haemoglobin | −0.590 | 0.304 | 0.04 * | 0.554 | 0.306 | 1.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maihoub, S.; Mavrogeni, P.; Répássy, G.D.; Molnár, A. Exploring How Blood Cell Levels Influence Subjective Tinnitus: A Cross-Sectional Case-Control Study. Audiol. Res. 2025, 15, 72. https://doi.org/10.3390/audiolres15030072
Maihoub S, Mavrogeni P, Répássy GD, Molnár A. Exploring How Blood Cell Levels Influence Subjective Tinnitus: A Cross-Sectional Case-Control Study. Audiology Research. 2025; 15(3):72. https://doi.org/10.3390/audiolres15030072
Chicago/Turabian StyleMaihoub, Stefani, Panayiota Mavrogeni, Gábor Dénes Répássy, and András Molnár. 2025. "Exploring How Blood Cell Levels Influence Subjective Tinnitus: A Cross-Sectional Case-Control Study" Audiology Research 15, no. 3: 72. https://doi.org/10.3390/audiolres15030072
APA StyleMaihoub, S., Mavrogeni, P., Répássy, G. D., & Molnár, A. (2025). Exploring How Blood Cell Levels Influence Subjective Tinnitus: A Cross-Sectional Case-Control Study. Audiology Research, 15(3), 72. https://doi.org/10.3390/audiolres15030072