External Validation and Extension of a Cochlear Implant Performance Prediction Model: Analysis of the Oldenburg Cohort
Abstract
:1. Introduction
2. Patients and Methods
- Preoperative 4FPTA ≤ 80 dB HL.
- Native language: German.
- Sensory neural hearing loss.
- At least 6 months of CI rehabilitation.
- Experience of hearing with hearing aids.
- Manufacturer: Cochlear.
2.1. Audiometry
2.2. Prediction Model
2.3. Data Analysis
3. Results
3.1. Characteristics of the Different Patient Subcohorts
3.2. Patients with a 4FPTA ≤ 80 dB HL
3.3. All Patients Regardless of 4FPTA
3.4. Comparison of Coefficients After Recomputing the GLM with Our Cohort
3.5. Exploring Maximum and Minimum Model Outputs
4. Discussion
4.1. Prediction Model for Cochlear™ Recipients with a 4FPTA ≤ 80 dB HL
4.2. Application of the Model to Patients with Profound Hearing Loss and Different Manufacturers
4.3. Influence of CI Manufacturer
4.4. Generalizability of the Prediction Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DGHNO-KHC. S2k-Leitlinie Cochlea-Implantat Versorgung; AWMF-Register-Nr. 017/071; AWMF: Frankfurt am Main, Germany, 2020. [Google Scholar]
- Blamey, P.; Arndt, P.; Bergeron, F.; Bredberg, G.; Brimacombe, J.; Facer, G.; Larky, J.; Lindstrom, B.; Nedzelski, J.; Peterson, A.; et al. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants. Audiol. Neurootol. 1996, 1, 293–306. [Google Scholar]
- Blamey, P.; Artieres, F.; Baskent, D.; Bergeron, F.; Beynon, A.; Burke, E.; Dillier, N.; Dowell, R.; Fraysse, B.; Gallego, S.; et al. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: An update with 2251 patients. Audiol. Neurootol. 2013, 18, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Favaretto, N.; Marioni, G.; Brotto, D.; Sorrentino, F.; Gheller, F.; Castiglione, A.; Montino, S.; Giacomelli, L.; Trevisi, P.; Martini, A.; et al. Cochlear implant outcomes in the elderly: A uni- and multivariate analyses of prognostic factors. Eur. Arch. Otorhinolaryngol. 2019, 276, 3089–3094. [Google Scholar] [CrossRef] [PubMed]
- James, C.J.; Karoui, C.; Laborde, M.L.; Lepage, B.; Molinier, C.E.; Tartayre, M.; Escude, B.; Deguine, O.; Marx, M.; Fraysse, B. Early Sentence Recognition in Adult Cochlear Implant Users. Ear Hear. 2019, 40, 905–917. [Google Scholar] [CrossRef] [PubMed]
- Kraaijenga, V.J.; Smit, A.L.; Stegeman, I.; Smilde, J.J.; van Zanten, G.A.; Grolman, W. Factors that influence outcomes in cochlear implantation in adults, based on patient-related characteristics—A retrospective study. Clin. Otolaryngol. 2016, 41, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Roditi, R.E.; Poissant, S.F.; Bero, E.M.; Lee, D.J. A predictive model of cochlear implant performance in postlingually deafened adults. Otol. Neurotol. 2009, 30, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Dziemba, O.C.; Merz, S.; Hocke, T. Evaluative audiometry after cochlear implant provision. HNO 2024, 72 (Suppl. S1), 56–62. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, U.; Hast, A.; Hocke, T. Validation of a predictive model for speech discrimination after cochlear impIant provision. HNO 2023, 71 (Suppl. S1), 53–59. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, U.; Hast, A.; Hornung, J.; Hocke, T. Evolving a Model for Cochlear Implant Outcome. J. Clin. Med. 2023, 12, 6215. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, U.; Hocke, T.; Hast, A.; Iro, H. Cochlear Implantation in Candidates With Moderate-to-Severe Hearing Loss and Poor Speech Perception. Laryngoscope 2021, 131, E940–E945. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kang, W.S.; Park, H.J.; Lee, J.Y.; Park, J.W.; Kim, Y.; Seo, J.W.; Kwak, M.Y.; Kang, B.C.; Yang, C.J.; et al. Cochlear Implantation in Postlingually Deaf Adults Is Time-Sensitive Towards Positive Outcome: Prediction using Advanced Machine Learning Techniques. Sci. Rep. 2018, 8, 18004. [Google Scholar] [CrossRef] [PubMed]
- Shafieibavani, E.; Goudey, B.; Kiral, I.; Zhong, P.; Jimeno-Yepes, A.; Swan, A.; Gambhir, M.; Buechner, A.; Kludt, E.; Eikelboom, R.H.; et al. Predictive models for cochlear implant outcomes: Performance, generalizability, and the impact of cohort size. Trends Hear. 2021, 25, 23312165211066174. [Google Scholar] [CrossRef] [PubMed]
- Lazard, D.S.; Vincent, C.; Venail, F.; Van de Heyning, P.; Truy, E.; Sterkers, O.; Skarzynski, P.H.; Skarzynski, H.; Schauwers, K.; O’Leary, S.; et al. Pre-, per- and postoperative factors affecting performance of postlinguistically deaf adults using cochlear implants: A new conceptual model over time. PLoS ONE 2012, 7, e48739. [Google Scholar] [CrossRef] [PubMed]
- International Telecommunication Union. G.227: Conventional Telephone Signal, 1993. Available online: https://www.itu.int/rec/T-REC-G.227-198811-I/en (accessed on 9 June 2025).
- Posit Team. RStudio: Integrated Development Environment for R. Posit Software, PBC; Posit Team: Boston, MA, USA, 2025; Available online: http://posit.co/ (accessed on 29 May 2025).
- Deutsches Institut für Normung. DIN EN ISO 8253-3 Akustik–Audiometrische Prüfverfahren Teil3: Sprachaudiometrie; Beuth: Berlin, Germany, 2012. [Google Scholar]
- Winkler, A.; Holube, I. Test-retest reliability of the Freiburg monosyllabic speech test. HNO 2016, 64, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, U.; Hocke, T.; Hast, A.; Iro, H. Maximum preimplantation monosyllabic score as predictor of cochlear implant outcome. HNO 2019, 67 (Suppl. S2), 62–68. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, K.; Nitzge, M.; Weiss, R.M.; Mueller-Mazzotta, J.; Stuck, B.A.; Reimann, K. Role of cochlear reserve in adults with cochlear implants following post-lingual hearing loss. Eur. Arch. Otorhinolaryngol. 2023, 280, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Tyler, R.S.; Summerfield, A.Q. Cochlear implantation: Relationships with research on auditory deprivation and acclimatization. Ear Hear. 1996, 17 (Suppl. S3), 38S–50S. [Google Scholar] [CrossRef] [PubMed]
- Holden, L.K.; Finley, C.C.; Firszt, J.B.; Holden, T.A.; Brenner, C.; Potts, L.G.; Gotter, B.D.; Vanderhoof, S.S.; Mispagel, K.; Heydebrand, G.; et al. Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear. 2013, 34, 342–360. [Google Scholar] [CrossRef] [PubMed]
- Spahr, A.J.; Dorman, M.F.; Loiselle, L.H. Performance of patients using different cochlear implant systems: Effects of input dynamic range. Ear Hear. 2007, 28, 260–275. [Google Scholar] [CrossRef] [PubMed]
Estimate | Std. Error | t-Statistics | p-Value | [β] | |
---|---|---|---|---|---|
β0 | 0.84 | 0.18 | 4.59 | 4 × 10−6 | |
β1 | 0.012 | 0.0015 | 8.07 | 7 × 10−16 | 1/% |
β2 | −0.0094 | 0.0025 | −3.72 | 2 × 10−4 | 1/year |
β3 | 0.0059 | 0.0026 | 2.30 | 2 × 10−2 | 1/% |
Number of Patients (n) | Age at Implantation (Years) (Median [Min–Max]) | 4FPTA (dB HL) (Median [Min–Max]) | WRSmax (%) (Median [Min–Max]) | WRS65(HA) (%) (Median [Min–Max]) | WRS65(CI) (%) (Median [Min–Max]) | |
---|---|---|---|---|---|---|
Patients with a 4FPTA ≤ 80 dB HL | ||||||
Cochlear | 24 | 66 [41–79] | 73.13 [55–80] | 52.50 [10–100] | 25 [0–65] | 80 [35–95] |
MED-EL | 25 | 66 [47–82] | 73.75 [63.75–80] | 55 [5–95] | 25 [0–75] | 70 [5–95] |
AB | 2 | 70 [68–72] | 78.13 [77.5–78.75] | 35 [35–35] | 15 [5–25] | 75 [70–80] |
all | 51 | 66 [41–82] | 73.75 [55–80] | 55 [5–100] | 25 [0–75] | 75 [5–95] |
All patients regardless of 4FPTA | ||||||
Cochlear | 113 | 64 [21–87] | 93.75 [55–120] | 20 [0–100] | 5 [0–95] | 75 [0–100] |
MED-EL | 111 | 69 [36–84] | 91.25 [63.75–120] | 25 [0–95] | 10 [0–75] | 70 [0–100] |
AB | 14 | 70 [49–78] | 90.63 [77.5–117.5] | 20 [0–65] | 7.5 [0–40] | 62.5 [0–95] |
all | 238 | 67 [21–87] | 92.5 [55–120] | 22.5 [0–100] | 5 [0–95] | 75 [0–100] |
Patient Group | Estimate | Std. Error | t Statistics | p-Value | [β] | ||
---|---|---|---|---|---|---|---|
Parameters from Hoppe et al. [11] | Cochlear (n = 128) | β0 | 0.84 | 0.18 | 4.59 | 4 × 10−6 | |
β1 | 0.012 | 0.0015 | 8.07 | 7 × 10−16 | 1/% | ||
β2 | −0.0094 | 0.0025 | −3.72 | 2 × 10−4 | 1/year | ||
β3 | 0.0059 | 0.0026 | 2.30 | 2 × 10−2 | 1/% | ||
5120 observations; error degrees of freedom: 5116; χ2 statistics versus constant model: 157; p-value = 9 × 10−34 | |||||||
4FPTA ≤ 80 dB HL | Cochlear (n = 24) | β0 | 2.850196 | 0.504685 | 5.647 | 1.63 × 10−8 *** | |
β1 | 0.006701 | 0.003365 | 1.992 | 0.0464 * | 1/% | ||
β2 | −0.029820 | 0.006562 | −4.544 | 5.52 × 10−6 *** | 1/year | ||
β3 | −0.010084 | 0.004138 | −2.437 | 0.0148 * | 1/% | ||
960 observations; error degrees of freedom: 956; χ2 statistics versus constant model: 26.04117; p-value = 9.349953 × 10−6 | |||||||
MED-EL (n = 25) | β0 | 1.111776 | 0.514790 | 2.160 | 0.03080 * | ||
β1 | 0.008846 | 0.004062 | 2.178 | 0.02943 * | 1/% | ||
β2 | −0.018061 | 0.006831 | −2.644 | 0.00819 ** | 1/year | ||
β3 | 0.003403 | 0.004851 | 0.702 | 0.48290 | 1/% | ||
1000 observations; error degrees of freedom: 996; χ2 statistics versus constant model: 31.068; p-value = 8.224792 × 10−7 | |||||||
All manufacturers (n = 51) | β0 | 1.985175 | 0.344830 | 5.757 | 8.56 × 10−9 *** | ||
β1 | 0.008836 | 0.002423 | 3.646 | 0.000266 *** | 1/% | ||
β2 | −0.024309 | 0.004590 | −5.297 | 1.18 × 10−7 *** | 1/year | ||
β3 | −0.004243 | 0.002971 | −1.428 | 0.153241 | 1/% | ||
2040 observations; error degrees of freedom: 2036; χ2 statistics versus constant model: 50.07659; p-value = 7.694683 × 10−11 | |||||||
Entire cohort | (n = 238) | β0 | 1.284117 | 0.132794 | 9.670 | <2 × 10−16 *** | |
β1 | 0.003240 | 0.001021 | 3.174 | 0.0015 ** | 1/% | ||
β2 | −0.012392 | 0.001889 | −6.561 | 5.36 × 10−11 *** | 1/year | ||
β3 | 0.008952 | 0.001643 | 5.450 | 5.04 × 10−8 *** | 1/% | ||
9520 observations; error degrees of freedom: 9516; χ2 statistics versus constant model: 171.5774; p-value = 5.809114 × 10−37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ollermann, R.; Böscke, R.; Neidhardt, J.; Radeloff, A. External Validation and Extension of a Cochlear Implant Performance Prediction Model: Analysis of the Oldenburg Cohort. Audiol. Res. 2025, 15, 69. https://doi.org/10.3390/audiolres15030069
Ollermann R, Böscke R, Neidhardt J, Radeloff A. External Validation and Extension of a Cochlear Implant Performance Prediction Model: Analysis of the Oldenburg Cohort. Audiology Research. 2025; 15(3):69. https://doi.org/10.3390/audiolres15030069
Chicago/Turabian StyleOllermann, Rieke, Robert Böscke, John Neidhardt, and Andreas Radeloff. 2025. "External Validation and Extension of a Cochlear Implant Performance Prediction Model: Analysis of the Oldenburg Cohort" Audiology Research 15, no. 3: 69. https://doi.org/10.3390/audiolres15030069
APA StyleOllermann, R., Böscke, R., Neidhardt, J., & Radeloff, A. (2025). External Validation and Extension of a Cochlear Implant Performance Prediction Model: Analysis of the Oldenburg Cohort. Audiology Research, 15(3), 69. https://doi.org/10.3390/audiolres15030069