Comparison of Psychometric Functions Measured Using Remote Testing and Laboratory Testing †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimuli
2.3. Procedure
2.3.1. Remote Testing
2.3.2. Laboratory Testing
2.3.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bokolo, A. Application of telemedicine and eHealth technology for clinical services in response to COVID-19 pandemic. Health Technol. 2021, 11, 359–366. [Google Scholar]
- Kim, J.; Jeon, S.; Kim, D.; Shin, Y. A review of contemporary teleaudiology: Literature review, technology, and considerations for practicing. J. Audiol. Otol. 2021, 24, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.E.; Waz, S.; Buss, E.; Shen, Y.; Richards, V.; Bharadwaj, H.; Stecker, G.C.; Beim, J.A.; Bosen, A.K.; Braza, M.D.; et al. FORUM: Remote testing for psychological and physiological acoustics. J. Acost. Soc. Am. 2022, 151, 3116–3128. [Google Scholar] [CrossRef] [PubMed]
- Woods, A.T.; Velasco, C.; Levitan, C.A.; Wan, X.; Spence, C. Conducting perception research over the internet: A tutorial review. PeerJ 2015, 3, e1058. [Google Scholar] [CrossRef] [PubMed]
- Lelo de Larrea-Mancera, E.S.; Stavropoulos, T.; Carrillo, A.A.; Cheung, S.; He YJEddins, D.A.; Molis, M.R.; Gallun, F.J.; Seitz, A.R. Remote auditory assessment using portable automated rapid testing (PART) and participant-owned devices. J. Acost. Soc. Am. 2022, 152, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Merchant, G.R.; Dorey, C.; Porter, H.L.; Buss, E.; Leibold, L.J. Feasibility of remote assessment of the binaural intelligibility level difference in school-age children. JASA Express Lett. 2021, 1, 014405. [Google Scholar] [CrossRef] [PubMed]
- Mok, B.A.; Viswanathan, V.; Borjigin, A.; Singh, R.; Kafi, H.; Bharadwaj, H.M. Web-based psychoacoustics: Hearing screening, infrastructure, and validation. Behav. Res. 2023, 56, 1433–1448. [Google Scholar] [CrossRef] [PubMed]
- Paglialonga, A.; Schiavo, M.; Caiani, E.G. Automated characterization of mobile health apps’ features by extracting information from the web: An exploratory study. Am. J. Audiol. 2018, 27, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Whitton, J.P.; Hancock, K.E.; Shannon, J.M.; Polley, D.B. Validation of a self-administered audiometry application: An equivalence study. Laryngoscope 2016, 126, 2382–2388. [Google Scholar] [CrossRef]
- De Graff, F.; Huysmans, E.; Merkus, P.; Goverts, S.T.; Smits, C. Assessment of speech recognition abilities in quiet and in noise: A comparison between self-administered home testing and testing in the clinic for adult cochlear implant users. Int. J. Auidol. 2018, 57, 872–880. [Google Scholar] [CrossRef]
- De Graff, F.; Huysmans, E.; Qazi, O.U.R.; Vanpoucke, F.J.; Merkus, P.; Goverts, S.T.; Smits, C. The development of remote speech recognition tests for adult cochlear implant users: The effect of presentation mode of the noise and a reliable method to delover sound in home envitonments. Audiol. Neurotol. 2016, 21, 48–54. [Google Scholar] [CrossRef]
- Shafiro, V.; Hebb, M.; Walker, C.; Oh, J.; Hsiao, Y.; Brown, K.; Sheft, S.; Li, Y.; Vasil, K.; Moberly, A.C. Development of the basic auditory skills evaluation battery for online testing of cochlear implants listeners. Am. J. Audiol. 2020, 29, 577–590. [Google Scholar] [CrossRef]
- Van der Mescht, Z.; le Roux, T.; Mahomed-Asmail, F.; De Sousa, K.C.; Swanepoel, D.W. Remote monitoring of adult cochlear implant recipients using digits-in-noise self-testing. Am. J. Audiol. 2022, 21, 223–935. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.C.; Veeranna, S.A.; Parsa, V.; Allan, C.; Ly, W.; Duong, M.; Folkeard, P.; Moodie, S.; Allen, P. Verification of a mobile psychoacoustic test system. Audiol. Rsh. 2021, 11, 673–690. [Google Scholar] [CrossRef] [PubMed]
- Bolia, R.S.; Nelson, W.T.; Ericson, M.A.; Simpson, B.D. A speech corpus for multitalker communications research. J. Acost. Soc. Am. 2000, 107, 1065–1066. [Google Scholar] [CrossRef] [PubMed]
- Zahorik, P. Perceptually relevant parameters for virtual listening simulation of small room acoustics. J. Acost. Soc. Am. 2009, 126, 776–791. [Google Scholar] [CrossRef] [PubMed]
- Milne, A.C.; Bianco, R.; Poole, K.C.; Zhao, A.; Oxenham, A.J.; Billig, A.J.; Chait, M. An online headphone screening test based on dichotic pitch. Behav. Res. 2021, 56, 1551–1562. [Google Scholar] [CrossRef]
- Chait, M.; Poeppel, D.; Simon, J.Z. Neural response correlates of detection of monaurally and binaurally created pitches in humans. Cerebral Cortex 2006, 16, 825–858. [Google Scholar] [CrossRef] [PubMed]
- Cramer, E.M.; Huggins, W.H. Creation of pitch through binaural interaction. J. Acost. Soc. Am. 1958, 30, 412–417. [Google Scholar] [CrossRef]
- Yost, W.A.; Harder, P.J.; Dye, R.H. Complex spectral patterns with interaural differences: Dichotic pitch and the ‘central spectrum’. In Auditory Processing of Complex Sounds, 1st ed.; Yost, W.A., Watson, C.S., Eds.; Routelage: Hillsdale, NJ, USA, 1987; pp. 190–201. [Google Scholar]
- Wichmann, F.A.; Hill, N.J. The psychometric function: I. Fitting, sampling, and goodness of fit. Percept. Psychophys. 2001, 63, 1293–1313. [Google Scholar] [CrossRef]
- Wichmann, F.A.; Hill, N.J. The psychometric function: II. Bootstrap-based confidence intervals and sampling. Percept. Psychophys. 2001, 63, 1314–1329. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Measurement in medicine: The analysis of method comparison studies. J. Royal. Stat. Soc. Ser. D 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef]
- Brungart, D.S. Evaluation of speech intelligibility with the coordinate response measure. J. Acost. Soc. Am. 2001, 109, 2276–2279. [Google Scholar] [CrossRef] [PubMed]
- Brungart, D.S.; Simpson, B.D.; Ericson, M.A.; Scott, K.R. Informational and energetic masking effects in the perception of multiple simultaneous talkers. J. Acost. Soc. Am. 2001, 110, 2527–2538. [Google Scholar] [CrossRef] [PubMed]
- Eddins, D.A.; Liu, C. Psychometric properties of the coordinate response measure corpus with various types of background interference. J. Acost. Soc. Am. 2012, 131, EL177–EL183. [Google Scholar] [CrossRef] [PubMed]
- Gallun, F.J.; Diedesch, A.C.; Kampel, S.D.; Jakien, K.M. Independent impacts of age and hearing loss on spatial release in a complex auditory environment. Front. Neurosci. 2013, 7, 252. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, N.; Holtz, A.; Gallun, F.J. Comparing spatial release from masking using traditional methods and portable automated rapid testing iPad app. Am. J. Audiol. 2020, 29, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Gallun, F.J.; Seitz, A.; Eddins, D.A.; Molis, M.R.; Stavropoulos, T.; Jakien, K.M.; Kampel, S.D.; Diedesch, A.C.; Hoover, E.C.; Bell, K.; et al. Development and validation of Portable Automated Rapid Testing (PART) measures for auditory research. Proc. Mtgs. Acost. J. Acost. Soc. Am. 2018, 33, 050002. [Google Scholar]
- Glyde, H.; Cameron, S.; Dillon, H.; Hickson, L.; Seeto, M. The effects of hearing impairment and aging on spatial processing. Ear Hear. 2013, 34, 15–28. [Google Scholar] [CrossRef]
- Jakien, K.M.; Kampel, S.D.; Gordon, S.Y.; Gallun, F.J. The benefits of increased sensation level and bandwidth for spatial release from masking. Ear Hear. 2017, 38, e13–e21. [Google Scholar] [CrossRef]
- Marrone, N.; Mason, C.R.; Kidd, G., Jr. Tuning in the spatial dimension: Evidence from a masked speech identification task. J. Acost. Soc. Am. 2008, 124, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, N.; Jakien, K.M.; Gallun, F.J. Release from making for small spatial separations: Effects of age and hearing loss. J. Acost. Soc. Am. 2016, 140, EL73–EL78. [Google Scholar] [CrossRef] [PubMed]
- Patro, C.; Srinivasan, N. Assessing subclinical hearing loss in musicians and nonmusicians using auditory brainstem responses and speech perception measures. JASA Express Lett. 2023, 3, 074401. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Friggle, P.; Kinder, J.; Tilbrook, G.; Bridges, S.E. Effects of presentation level on speech-on-speech masking by voice-gender difference and spatial separation between talkers. Front. Neurosci. 2023, 17, 1282764. [Google Scholar] [CrossRef]
Noise Masker | |||||
---|---|---|---|---|---|
Source | df | MS | F | p | partial η2 |
Condition (A) | (1,48) | 0.014 | 0.778 | 0.382 | 0.016 |
TMR (B) | (11,528) | 9.082 | 555.072 | < 0.001 | 0.92 |
A × B | (11,528) | 0.025 | 1.526 | 0.118 | 0.031 |
Colocated Masker | |||||
Source | df | MS | F | p | partial η2 |
Condition (A) | (1,48) | 0.014 | 0.719 | 0.401 | 0.015 |
TMR (B) | (11,528) | 8.905 | 770.655 | <0.001 | 0.941 |
A × B | (11,528) | 0.004 | 0.385 | 0.962 | 0.008 |
Separated Masker | |||||
Source | df | MS | F | p | partial η2 |
Condition (A) | (1,48) | 0.014 | 0.001 | 0.976 | 0.000 |
TMR (B) | (11,528) | 7.844 | 784.438 | <0.001 | 0.942 |
A × B | (11,528) | 0.004 | 0.438 | 0.942 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinivasan, N.; Patro, C.; Kansangra, R.; Trotman, A. Comparison of Psychometric Functions Measured Using Remote Testing and Laboratory Testing. Audiol. Res. 2024, 14, 469-478. https://doi.org/10.3390/audiolres14030039
Srinivasan N, Patro C, Kansangra R, Trotman A. Comparison of Psychometric Functions Measured Using Remote Testing and Laboratory Testing. Audiology Research. 2024; 14(3):469-478. https://doi.org/10.3390/audiolres14030039
Chicago/Turabian StyleSrinivasan, Nirmal, Chhayakanta Patro, Radhika Kansangra, and Angelica Trotman. 2024. "Comparison of Psychometric Functions Measured Using Remote Testing and Laboratory Testing" Audiology Research 14, no. 3: 469-478. https://doi.org/10.3390/audiolres14030039
APA StyleSrinivasan, N., Patro, C., Kansangra, R., & Trotman, A. (2024). Comparison of Psychometric Functions Measured Using Remote Testing and Laboratory Testing. Audiology Research, 14(3), 469-478. https://doi.org/10.3390/audiolres14030039