Otological Planning Software—OTOPLAN: A Narrative Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. What Is OTOPLAN and How Does It Work?
4.2. Different Uses of OTOPLAN
4.2.1. Anatomical Study
4.2.2. Surgical Planning
4.2.3. Postoperative Frequency Reallocation
4.2.4. Advantages and Disadvantages
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McRackan, T.R.; Bauschard, M.; Hatch, J.L.; Franko-Tobin, E.; Droghini, H.R.; Nguyen, S.A.; Dubno, J.R. Meta-Analysis of Quality-of-Life Improvement after Cochlear Implantation and Associations with Speech Recognition Abilities. Laryngoscope 2018, 128, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Olson, E.S.; Duifhuis, H.; Steele, C.R. Von Békésy and Cochlear Mechanics. Hear. Res. 2012, 293, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Helpard, L.; Ekeroot, J.; Rohani, S.A.; Zhu, N.; Rask-Andersen, H.; Ladak, H.M.; Agrawal, S. Three-Dimensional Tonotopic Mapping of the Human Cochlea Based on Synchrotron Radiation Phase-Contrast Imaging. Sci. Rep. 2021, 11, 4437. [Google Scholar] [CrossRef] [PubMed]
- Oxenham, A.J.; Bernstein, J.G.W.; Penagos, H. Correct Tonotopic Representation Is Necessary for Complex Pitch Perception. Proc. Natl. Acad. Sci. USA 2004, 101, 1421–1425. [Google Scholar] [CrossRef]
- Fontenot, T.E.; Giardina, C.K.; Dillon, M.; Rooth, M.A.; Teagle, H.F.; Park, L.R.; Brown, K.D.; Adunka, O.F.; Buchman, C.A.; Pillsbury, H.C.; et al. Residual Cochlear Function in Adults and Children Receiving Cochlear Implants: Correlations with Speech Perception Outcomes. Ear Hear. 2019, 40, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Holden, L.K.; Finley, C.C.; Firszt, J.B.; Holden, T.A.; Brenner, C.; Potts, L.G.; Gotter, B.D.; Vanderhoof, S.S.; Mispagel, K.; Heydebrand, G.; et al. Factors Affecting Open-Set Word Recognition in Adults with Cochlear Implants. Ear Hear. 2013, 34, 342–360. [Google Scholar] [CrossRef]
- O’Connell, B.P.; Hunter, J.B.; Haynes, D.S.; Holder, J.T.; Dedmon, M.M.; Noble, J.H.; Dawant, B.M.; Wanna, G.B. Insertion Depth Impacts Speech Perception and Hearing Preservation for Lateral Wall Electrodes. Laryngoscope 2017, 127, 2352–2357. [Google Scholar] [CrossRef]
- Chakravorti, S.; Noble, J.H.; Gifford, R.H.; Dawant, B.M.; O’Connell, B.P.; Wang, J.; Labadie, R.F. Further Evidence of the Relationship Between Cochlear Implant Electrode Positioning and Hearing Outcomes. Otol. Neurotol. 2019, 40, 617–624. [Google Scholar] [CrossRef]
- Shaul, C.; Dragovic, A.S.; Stringer, A.K.; O’Leary, S.J.; Briggs, R.J. Scalar Localisation of Peri-Modiolar Electrodes and Speech Perception Outcomes. J. Laryngol. Otol. 2018, 132, 1000–1006. [Google Scholar] [CrossRef]
- Berg, K.A.; Noble, J.H.; Dawant, B.M.; Dwyer, R.T.; Labadie, R.F.; Gifford, R.H. Speech Recognition with Cochlear Implants as a Function of the Number of Channels: Effects of Electrode Placement. J. Acoust. Soc. Am. 2020, 147, 3646. [Google Scholar] [CrossRef]
- Escudé, B.; James, C.; Deguine, O.; Cochard, N.; Eter, E.; Fraysse, B. The Size of the Cochlea and Predictions of Insertion Depth Angles for Cochlear Implant Electrodes. Audiol. Neurootol. 2006, 11 (Suppl. S1), 27–33. [Google Scholar] [CrossRef] [PubMed]
- Van de Heyning, P.; Roland, P.; Lassaletta, L.; Agrawal, S.; Atlas, M.; Baumgartner, W.-D.; Brown, K.; Caversaccio, M.; Dazert, S.; Gstoettner, W.; et al. Suitable Electrode Choice for Robotic-Assisted Cochlear Implant Surgery: A Systematic Literature Review of Manual Electrode Insertion Adverse Events. Front. Surg. 2022, 9, 823219. [Google Scholar] [CrossRef]
- Fu, Q.-J.; Shannon, R.V. Frequency Mapping in Cochlear Implants. Ear Hear. 2002, 23, 339–348. [Google Scholar] [CrossRef]
- Greenwood, D.D. A Cochlear Frequency-Position Function for Several Species—29 Years Later. J. Acoust. Soc. Am. 1990, 87, 2592–2605. [Google Scholar] [CrossRef]
- Kalkman, R.K.; Briaire, J.J.; Dekker, D.M.T.; Frijns, J.H.M. Place Pitch versus Electrode Location in a Realistic Computational Model of the Implanted Human Cochlea. Hear. Res. 2014, 315, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Aljazeeri, I.; Hamed, N.; Abdelsamad, Y.; Sharif, T.; Al-Momani, M.; Hagr, A. Anatomy-Based Frequency Allocation in Cochlear Implantation: The Importance of Cochlear Coverage. Laryngoscope 2022, 132, 2224–2231. [Google Scholar] [CrossRef]
- Dhanasingh, A.; Jolly, C. An Overview of Cochlear Implant Electrode Array Designs. Hear. Res. 2017, 356, 93–103. [Google Scholar] [CrossRef]
- Cooperman, S.P.; Aaron, K.A.; Fouad, A.; Tran, E.; Blevins, N.H.; Fitzgerald, M.B. Assessment of Inter- and Intra-Rater Reliability of Tablet-Based Software to Measure Cochlear Duct Length. Otol. Neurotol. 2021, 42, 558–565. [Google Scholar] [CrossRef]
- Ertas, Y.N.; Ozpolat, D.; Karasu, S.N.; Ashammakhi, N. Recent Advances in Cochlear Implant Electrode Array Design Parameters. Micromachines 2022, 13, 1081. [Google Scholar] [CrossRef] [PubMed]
- Rivas, A.; Cakir, A.; Hunter, J.B.; Labadie, R.F.; Zuniga, M.G.; Wanna, G.B.; Dawant, B.M.; Noble, J.H. Automatic Cochlear Duct Length Estimation for Selection of Cochlear Implant Electrode Arrays. Otol. Neurotol. 2017, 38, 339–346. [Google Scholar] [CrossRef]
- Kuthubutheen, J.; Grewal, A.; Symons, S.; Nedzelski, J.; Shipp, D.; Lin, V.; Chen, J. The Effect of Cochlear Size on Cochlear Implantation Outcomes. BioMed Res. Int. 2019, 2019, 5849871. [Google Scholar] [CrossRef]
- Timm, M.E.; Majdani, O.; Weller, T.; Windeler, M.; Lenarz, T.; Büchner, A.; Salcher, R.B. Patient Specific Selection of Lateral Wall Cochlear Implant Electrodes Based on Anatomical Indication Ranges. PLoS ONE 2018, 13, e0206435. [Google Scholar] [CrossRef]
- Khurayzi, T.; Almuhawas, F.; Sanosi, A. Direct Measurement of Cochlear Parameters for Automatic Calculation of the Cochlear Duct Length. Ann. Saudi Med. 2020, 40, 212–218. [Google Scholar] [CrossRef]
- Breitsprecher, T.; Dhanasingh, A.; Schulze, M.; Kipp, M.; Dakah, R.A.; Oberhoffner, T.; Dau, M.; Frerich, B.; Weber, M.-A.; Langner, S.; et al. CT Imaging-Based Approaches to Cochlear Duct Length Estimation—A Human Temporal Bone Study. Eur. Radiol. 2022, 32, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Schurzig, D.; Timm, M.E.; Batsoulis, C.; Salcher, R.; Sieber, D.; Jolly, C.; Lenarz, T.; Zoka-Assadi, M. A Novel Method for Clinical Cochlear Duct Length Estimation toward Patient-Specific Cochlear Implant Selection. OTO Open 2018, 2, 4. [Google Scholar] [CrossRef]
- Koch, R.W.; Ladak, H.M.; Elfarnawany, M.; Agrawal, S.K. Measuring Cochlear Duct Length—A Historical Analysis of Methods and Results. J. Otolaryngol.-Head. Neck Surg. J. Oto-Rhino-Laryngol. Chir. Cervico-Faciale 2017, 46, 19. [Google Scholar] [CrossRef]
- Alexiades, G.; Dhanasingh, A.; Jolly, C. Method to Estimate the Complete and Two-Turn Cochlear Duct Length. Otol. Neurotol. 2015, 36, 904–907. [Google Scholar] [CrossRef]
- Alanazi, A.; Alzhrani, F. Comparison of Cochlear Duct Length between the Saudi and Non-Saudi Populations. Ann. Saudi Med. 2018, 38, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Avci, E.; Nauwelaers, T.; Lenarz, T.; Hamacher, V.; Kral, A. Variations in Microanatomy of the Human Cochlea. J. Comp. Neurol. 2014, 522, 3245–3261. [Google Scholar] [CrossRef] [PubMed]
- Canfarotta, M.W.; Dillon, M.T.; Buss, E.; Pillsbury, H.C.; Brown, K.D.; O’Connell, B.P. Validating a New Tablet-Based Tool in the Determination of Cochlear Implant Angular Insertion Depth. Otol. Neurotol. 2019, 40, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, J.L.; Polterauer, D.; Hempel, J.-M.; Canis, M.; Spiro, J.E.; Müller, J. Variation of the Cochlear Anatomy and Cochlea Duct Length: Analysis with a New Tablet-Based Software. Eur. Arch. Otorhinolaryngol. 2022, 279, 1851–1861. [Google Scholar] [CrossRef] [PubMed]
- George-Jones, N.A.; Tolisano, A.M.; Kutz, J.W.; Isaacson, B.; Hunter, J.B. Comparing Cochlear Duct Lengths Between CT and MR Images Using an Otological Surgical Planning Software. Otol. Neurotol. 2020, 41, e1118–e1121. [Google Scholar] [CrossRef] [PubMed]
- Labadie, R.F.; Noble, J.H. Preliminary Results with Image-Guided Cochlear Implant Insertion Techniques. Otol. Neurotol. 2018, 39, 922–928. [Google Scholar] [CrossRef]
- Würfel, W.; Lanfermann, H.; Lenarz, T.; Majdani, O. Cochlear Length Determination Using Cone Beam Computed Tomography in a Clinical Setting. Hear. Res. 2014, 316, 65–72. [Google Scholar] [CrossRef]
- Müller-Graff, F.-T.; Ilgen, L.; Schendzielorz, P.; Voelker, J.; Taeger, J.; Kurz, A.; Hagen, R.; Neun, T.; Rak, K. Implementation of Secondary Reconstructions of Flat-Panel Volume Computed Tomography (FpVCT) and Otological Planning Software for Anatomically Based Cochlear Implantation. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 2309–2319. [Google Scholar] [CrossRef]
- Dhanasingh, A.E.; Weiss, N.M.; Erhard, V.; Altamimi, F.; Roland, P.; Hagr, A.; Van Rompaey, V.; Van de Heyning, P. A Novel Three-step Process for the Identification of Inner Ear Malformation Types. Laryngoscope Investig. Otolaryngol. 2022, 7, 2020–2028. [Google Scholar] [CrossRef]
- Li, J.; Kang, S.; Du, H.; Wang, S.; Wang, D.; Liu, M.; Yang, S. Analysis of Cochlear Parameters in Paediatric Inner Ears with Enlarged Vestibular Aqueduct and Patent Cochlea. J. Pers. Med. 2022, 12, 1666. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, J.; Tan, H.; Jiang, M.; Wu, Y.; Zhang, Z.; Li, Y.; Jia, H.; Wu, H. Cochlear Duct Length Calculation: Comparison Between Using Otoplan and Curved Multiplanar Reconstruction in Nonmalformed Cochlea. Otol. Neurotol. 2021, 42, e875–e880, Publish Ahead of Print. [Google Scholar] [CrossRef]
- Alahmadi, A.; Abdelsamad, Y.; Almuhawas, F.; Hamed, N.; Salamah, M.; Alsanosi, A. Cochlear Implantation: The Volumetric Measurement of Vestibular Aqueduct and Gusher Prediction. J. Pers. Med. 2023, 13, 171. [Google Scholar] [CrossRef]
- Mertens, G.; Van Rompaey, V.; Van de Heyning, P.; Gorris, E.; Topsakal, V. Prediction of the Cochlear Implant Electrode Insertion Depth: Clinical Applicability of Two Analytical Cochlear Models. Sci. Rep. 2020, 10, 3340. [Google Scholar] [CrossRef]
- Almuhawas, F.A.; Dhanasingh, A.E.; Mitrovic, D.; Abdelsamad, Y.; Alzhrani, F.; Hagr, A.; Al Sanosi, A. Age as a Factor of Growth in Mastoid Thickness and Skull Width. Otol. Neurotol. 2020, 41, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Paouris, D.; Kunzo, S.; Goljerová, I. Validation of Automatic Cochlear Measurements Using OTOPLAN® Software. J. Pers. Med. 2023, 13, 805. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.A.W.; Bergman, M.; Keith, J.P.; Powell, K.A.; Hittle, B.; Malhotra, P.; Wiet, G.J. Segmentation of Temporal Bone Anatomy for Patient-Specific Virtual Reality Simulation. Ann. Otol. Rhinol. Laryngol. 2021, 130, 724–730. [Google Scholar] [CrossRef]
- Dutrieux, N.; Quatre, R.; Péan, V.; Schmerber, S. Correlation Between Cochlear Length, Insertion Angle, and Tonotopic Mismatch for MED-EL FLEX28 Electrode Arrays. Otol. Neurotol. 2022, 43, 48. [Google Scholar] [CrossRef]
- Lovato, A.; de Filippis, C. Utility of OTOPLAN Reconstructed Images for Surgical Planning of Cochlear Implantation in a Case of Post-Meningitis Ossification. Otol. Neurotol. 2019, 40, e60–e61. [Google Scholar] [CrossRef] [PubMed]
- Lovato, A.; Marioni, G.; Gamberini, L.; Bonora, C.; Genovese, E.; de Filippis, C. OTOPLAN in Cochlear Implantation for Far-Advanced Otosclerosis. Otol. Neurotol. 2020, 41, e1024–e1028. [Google Scholar] [CrossRef]
- Ricci, G.; Lapenna, R.; Gambacorta, V.; Della Volpe, A.; Faralli, M.; Di Stadio, A. OTOPLAN, Cochlear Implant, and Far-Advanced Otosclerosis: Could the Use of Software Improve the Surgical Final Indication? J. Int. Adv. Otol. 2022, 18, 74–78. [Google Scholar] [CrossRef]
- Hajr, E.; Abdelsamad, Y.; Almuhawas, F.; Alashour, A.; Hagr, A. Cochlear Implantation: The Use of OTOPLAN Reconstructed Images in Trajectory Identification. Ear. Nose. Throat J. 2023, 7, 014556132211347. [Google Scholar] [CrossRef]
- Helpard, L.; Li, H.; Rohani, S.A.; Rask-Andersen, H.; Ladak, H.M.; Agrawal, S. Three-Dimensional Modeling and Measurement of the Human Cochlear Hook Region: Considerations for Tonotopic Mapping. Otol. Neurotol. 2021, 42, e658–e665. [Google Scholar] [CrossRef]
- Dhanasingh, A. The Rationale for FLEX (Cochlear Implant) Electrode with Varying Array Lengths. World J. Otorhinolaryngol. Head. Neck Surg. 2021, 7, 45–53. [Google Scholar] [CrossRef]
- Zhu, H.-Y.; Sun, J.-Q.; Sun, J.-W.; Guo, X.-T. The Effect of Cochlear Size on Electrically Evoked Auditory Brainstem Responses in Deaf Children. Laryngoscope Investig. Otolaryngol. 2023, 8, 532–537. [Google Scholar] [CrossRef]
- Canfarotta, M.W.; O’Connell, B.P.; Buss, E.; Pillsbury, H.C.; Brown, K.D.; Dillon, M.T. Influence of Age at Cochlear Implantation and Frequency-to-Place Mismatch on Early Speech Recognition in Adults. Otolaryngol. Head. Neck Surg. 2020, 162, 926–932. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, B.P.; Hunter, J.B.; Gifford, R.H.; Rivas, A.; Haynes, D.S.; Noble, J.H.; Wanna, G.B. Electrode Location and Audiologic Performance After Cochlear Implantation: A Comparative Study Between Nucleus CI422 and CI512 Electrode Arrays. Otol. Neurotol. 2016, 37, 1032–1035. [Google Scholar] [CrossRef] [PubMed]
- Canfarotta, M.W.; Dillon, M.T.; Brown, K.D.; Pillsbury, H.C.; Dedmon, M.M.; O’Connell, B.P. Insertion Depth and Cochlear Implant Speech Recognition Outcomes: A Comparative Study of 28- and 31.5-Mm Lateral Wall Arrays. Otol. Neurotol. 2022, 43, 183–189. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Jung Bae, Y.; Carandang, M.; Kim, Y.; Hee Han, J.; Huh, G.; Song, J.-J.; Koo, J.-W.; Ho Lee, J.; Ha Oh, S.; et al. Modiolar Proximity of Slim Modiolar Electrodes and Cochlear Duct Length: Correlation for Potential Basis of Customized Cochlear Implantation with Perimodiolar Electrodes. Ear Hear. 2021, 42, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Canfarotta, M.W.; Dillon, M.T.; Brown, K.D.; Pillsbury, H.C.; Dedmon, M.M.; O’Connell, B.P. Incidence of Complete Insertion in Cochlear Implant Recipients of Long Lateral Wall Arrays. Otolaryngol. Neck Surg. 2021, 165, 571–577. [Google Scholar] [CrossRef]
- Gatto, A.; Tofanelli, M.; Piccinato, A.; Antonio, J.K.; Zucchini, S.; Achilli, V.P.; Tirelli, G. Cochlear Implant Surgery: How to Fix Receiver/Stimulator Avoiding Extrusion. Ear. Nose. Throat J. 2021, 100, 212S–214S. [Google Scholar] [CrossRef]
- Di Maro, F.; Carner, M.; Sacchetto, A.; Soloperto, D.; Marchioni, D. Frequency Reallocation Based on Cochlear Place Frequencies in Cochlear Implants: A Pilot Study. Eur. Arch. Otorhinolaryngol. 2022, 279, 4719–4725. [Google Scholar] [CrossRef]
- Bhavana, K.; Timmaraju, S.; Kumar, V.; Kumar, C.; Bharti, B.; Prakash, R.; Sinha, U. OTOPLAN-Based Study of Intracochlear Electrode Position Through Cochleostomy and Round Window in Transcanal Veria Technique. Indian. J. Otolaryngol. Head. Neck Surg. 2022, 74, 575–581. [Google Scholar] [CrossRef]
- Mertens, G.; Van de Heyning, P.; Vanderveken, O.; Topsakal, V.; Van Rompaey, V. The Smaller the Frequency-to-Place Mismatch the Better the Hearing Outcomes in Cochlear Implant Recipients? Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 1875–1883. [Google Scholar] [CrossRef]
- Dillon, M.T.; O’Connell, B.P.; Canfarotta, M.W.; Buss, E.; Hopfinger, J. Effect of Place-Based Versus Default Mapping Procedures on Masked Speech Recognition: Simulations of Cochlear Implant Alone and Electric-Acoustic Stimulation. Am. J. Audiol. 2022, 31, 322–337. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatto, A.; Tofanelli, M.; Costariol, L.; Rizzo, S.; Borsetto, D.; Gardenal, N.; Uderzo, F.; Boscolo-Rizzo, P.; Tirelli, G. Otological Planning Software—OTOPLAN: A Narrative Literature Review. Audiol. Res. 2023, 13, 791-801. https://doi.org/10.3390/audiolres13050070
Gatto A, Tofanelli M, Costariol L, Rizzo S, Borsetto D, Gardenal N, Uderzo F, Boscolo-Rizzo P, Tirelli G. Otological Planning Software—OTOPLAN: A Narrative Literature Review. Audiology Research. 2023; 13(5):791-801. https://doi.org/10.3390/audiolres13050070
Chicago/Turabian StyleGatto, Annalisa, Margherita Tofanelli, Ludovica Costariol, Serena Rizzo, Daniele Borsetto, Nicoletta Gardenal, Francesco Uderzo, Paolo Boscolo-Rizzo, and Giancarlo Tirelli. 2023. "Otological Planning Software—OTOPLAN: A Narrative Literature Review" Audiology Research 13, no. 5: 791-801. https://doi.org/10.3390/audiolres13050070
APA StyleGatto, A., Tofanelli, M., Costariol, L., Rizzo, S., Borsetto, D., Gardenal, N., Uderzo, F., Boscolo-Rizzo, P., & Tirelli, G. (2023). Otological Planning Software—OTOPLAN: A Narrative Literature Review. Audiology Research, 13(5), 791-801. https://doi.org/10.3390/audiolres13050070