Sound Quality Factors Inducing the Autonomous Sensory Meridian Response
Abstract
:1. Introduction
2. Method
2.1. ASMR Triggers and Sound Quality Parameters
2.2. Participants
2.3. Tasks and Procedures
3. Results
4. Discussion
5. Conclusions
- (1)
- Human-generated sounds are more likely to trigger stronger ASMRs than nature-generated sounds.
- (2)
- Among possible ASMR auditory triggers, sounds perceived to be close to the listener are more likely to evoke the ASMR sensation.
- (3)
- In the case of nature-generated sounds, the ASMR triggers with higher loudness and roughness among Zwicker parameters are more likely to evoke the ASMR sensation.
- (4)
- In the case of human-generated sounds, the ASMR triggers with a lower IACC among the ACF/IACF parameters are more likely to evoke the ASMR sensation.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barratt, E.L.; Davis, N.J. Autonomous Sensory Meridian Response (ASMR): A flow-like mental state. PeerJ 2015, 3, e851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McErlean, A.B.J.; Banissy, M.J. Increased misophonia in self-reported Autonomous Sensory Meridian Response. PeerJ 2018, 6, e5351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGeoch, P.D.; Rouw, R. How everyday sounds can trigger strong emotion: ASMR, misophonia and the feeling of wellbeing. BioEssays. 2020, 42, 2000099. [Google Scholar] [CrossRef] [PubMed]
- Tada, K.; Hasegawa, R.; Kondo, H. Sensitivity to everyday sounds: ASMR, misophonia, and autistic traits. Jpn. J. Psychol. 2022, 93, 263–269. [Google Scholar] [CrossRef]
- Jastreboff, M.M.; Jastreboff, P.J. Components of decreased sound tolerance: Hyperacusis, misophonia, phonophobia. ITHS News Lett. 2001, 2, 5–7. [Google Scholar]
- Jastreboff, P.J.; Jastreboff, M.M. Treatments for decreased sound tolerance (hyperacusis and misophonia). In Seminars in Hearing; Thieme Medical Publishers: New York, NY, USA, 2014; Volume 35, pp. 105–120. [Google Scholar]
- Møller, A.R. Misophonia, phonophobia, and ‘exploding head’ syndrome. In Textbook of Tinnitus; Møller, A.R., Langguth, B., DeRidder, D., Kleinjung, T., Eds.; Springer: New York, NY, USA, 2011; pp. 25–27. [Google Scholar]
- Wu, M.S.; Lewin, A.B.; Murphy, T.K.; Storch, E.A. Misophonia: Incidence, phenomenology, and clinical correlates in an undergraduate student sample. J. Clin. Psychol. 2014, 70, 994–1007. [Google Scholar] [CrossRef]
- Barratt, E.L.; Spence, C.; Davis, N.J. Sensory determinants of the autonomous sensory meridian response (ASMR): Understanding the triggers. PeerJ. 2017, 5, e3846. [Google Scholar] [CrossRef] [Green Version]
- Fredborg, B.; Clark, J.; Smith, S.D. An examination of personality traits associated with autonomous sensory meridian response (ASMR). Front. Psychol. 2017, 8, 247. [Google Scholar] [CrossRef] [Green Version]
- Poerio, G.L.; Blakey, E.; Hostler, T.J.; Veltri, T. More than a feeling: Autonomous sensory meridian response (ASMR) in characterized by reliable changes in affect and physiology. PLoS ONE 2018, 13, e0196645. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.D.; Fredborg, B.; Kornelsen, J. Functional connectivity associated with different categories of autonomous sensory meridian response (ASMR) triggers. Conscious. Cogn. 2020, 85, 103021. [Google Scholar] [CrossRef]
- Swart, T.R.; Bowling, N.C.; Banissy, M.J. ASMR-experience questionnaire (AEQ): A data-driven step towards accurately classifying ASMR responders. Br. J. Psychol. 2022, 113, 68–83. [Google Scholar] [CrossRef]
- Zwicker, E.; Fastl, H. Psychoacoustics: Facts and Models; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- ISO 532-1; Acoustics—Methods for Calculating Loudness—Part 1: Zwicker Method. International Organization for Standardization: Geneva, Switzerland, 2017.
- DIN 45692; Measurement Technique for the Simulation of the Auditory Sensation of Sharpness. German Institute for Standardization: Berlin, Germany, 2009.
- Ando, Y. 5. Prediction of subjective preference in concert halls. In Concert Hall Acoustics; Springer: Berlin/Heidelberg, Germany, 1995; pp. 70–88. [Google Scholar]
- Cariani, P.A.; Delgutte, B. Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. J. Neurophysiol. 1996, 76, 1698–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cariani, P.A.; Delgutte, B. Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance. J. Neurophysiol. 1996, 76, 1717–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S.; You, J.; Jeon, J.Y. Sound quality characteristics of refrigerator noise in real living environments with relation to psychoacoustical and autocorrelation function parameters. J. Acoust. Soc. Am. 2007, 122, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Soeta, Y.; Shimokura, R. Sound quality evaluation of air-conditioner noise based on factors of the autocorrelation function. Appl. Acoust. 2017, 124, 11–19. [Google Scholar] [CrossRef]
- Ando, Y. Autocorrelation-based features for speech representation. Acta Acust. United Acust. 2015, 101, 145–154. [Google Scholar] [CrossRef]
- Shimokura, R.; Akasaka, S.; Nishimura, T.; Hosoi, H.; Matsui, T. Autocorrelation factors and intelligibility of Japanese monosyllables in individuals with sensorineural hearing loss. J. Acoust. Soc. Am. 2017, 141, 1065. [Google Scholar] [CrossRef]
- Kitamura, T.; Shimokura, R.; Sato, S.; Ando, Y. Measurement of temporal and spatial factors of a flushing toilet noise in a downstairs bedroom. J. Temp. Des. Archit. Environ. 2002, 2, 13–19. [Google Scholar]
- Fujii, K.; Soeta, Y.; Ando, Y. Acoustical properties of aircraft noise measured by temporal and spatial factors. J. Sound Vib. 2001, 241, 69–78. [Google Scholar] [CrossRef]
- Fujii, K.; Atagi, J.; Ando, Y. Temporal and spatial factors of traffic noise and its annoyance. J. Temp. Des. Archit. Environ. 2002, 2, 33–41. [Google Scholar]
- Soeta, Y.; Shimokura, R. Survey of interior noise characteristics in various types of trains. Appl. Acoust. 2013, 74, 1160–1166. [Google Scholar] [CrossRef]
- Smith, S.D.; Fredborg, B.K.; Kornelsen, J. An examination of the default mode network in individuals with autonomous sensory meridian response (AMSR). Soc. Neurosci. 2017, 12, 361–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lochte, B.C.; Guillory, S.A.; Richard, C.A.H.; Kelly, W.M. An fMRI investigation of neural correlates underlying the autonomous sensory median response (ASMR). BioImpacts 2018, 8, 295–304. [Google Scholar] [CrossRef]
- Audio Toolbox. Available online: https://jp.mathworks.com/help/audio/index.html?s_tid=CRUX_lftnav (accessed on 23 September 2022).
- Nikolov, M.E.; Blagoeva, M.E. Proximity effect frequency characteristics of directional microphones. In Proceedings of the Audio Engineering Society Convention 108, Paris, French, 19–22 February 2000. [Google Scholar]
- Fujii, K.; Hotehama, T.; Kato, K.; Shimokura, R.; Okamoto, Y.; Suzumura, Y.; Ando, Y. Spatial distribution of acoustical parameters in concert halls: Comparison of different scattered reflections. J. Temp. Des. Archit. Environ. 2004, 4, 59–68. [Google Scholar]
- Kurozumi, K.; Ohgushi, K. The relationship between the cross correlation coefficient of two-channel acoustic signals and sound image quality. J. Acoust. Soc. Am. 1983, 74, 1726–1733. [Google Scholar] [CrossRef]
- Gerzon, M.A. Signal processing for simulating realistic stereo images. In Proceedings of the Audio Engineering Society Convention 93, San Francisco, CA, USA, 1–4 October 1992. [Google Scholar]
- Kendall, G.S. The decorrelation of audio signals and its impact on spatial imagery. Comput. Music J. 1995, 19, 71–87. [Google Scholar] [CrossRef]
- Koyama, S.; Furuya, K.; Hiwasaki, Y.; Haneda, Y. Reproducing virtual sound sources in front of a loudspeaker array using inverse wave propagator. IEEE Trans. Audio Speech Lang. Process. 2012, 20, 1746–1758. [Google Scholar] [CrossRef]
- Jeon, S.W.; Park, Y.C.; Youn, D.H. Auditory distance rendering based on ICPD control for stereophonic 3D audio system. IEEE Signal Process. Lett. 2015, 22, 529–533. [Google Scholar] [CrossRef]
- Bernstein, R.E.; Angell, K.L.; Dehle, C.M. A brief course of cognitive behavioral therapy for the treatment of misophonia: A case example. Cogn. Behav. Ther. 2013, 6, e10. [Google Scholar] [CrossRef]
- Dozier, T.H. Counterconditioning treatment for misophonia. Clin. Case Stud. 2015, 14, 374–387. [Google Scholar] [CrossRef] [Green Version]
- Dozier, T.H. Treating the initial physical reflex of misophonia with the neural repatterning technique: A counterconditioning procedure. Psychol. Thought 2015, 8, 189–210. [Google Scholar] [CrossRef]
- McGuire, J.F.; Wu, M.S.; Storch, E.A. Cognitive-behavioral therapy for 2 youths with Misophonia. J. Clin. Psychiatry 2015, 76, 573–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, A.M.; Guzick, A.G.; Gernand, A.; Olsen, B. Intensive cognitive-behavioral therapy for comorbid misophonic and obsessive-compulsive symptoms: A systematic case study. J. Obsessive Compuls. Relat. Disord. 2016, 10, 1–9. [Google Scholar] [CrossRef]
- Schröder, A.E.; Vulink, N.C.; van Loon, A.J.; Denys, D.A. Cognitive behavioral therapy is effective in misophonia: An open trial. J. Affect. Disord. 2017, 217, 289–294. [Google Scholar] [CrossRef] [PubMed]
Sound Source | Zwicker’s Parameters | ACF/IACF Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Short Title | Contents | Loudness [sone] | Sharpness [acum] | Roughness [asper] | Fluctuation Strength [vacil] | τ1 [ms] | ϕ1 | WΦ(0) [ms] | IACC | |
Human-generated sound | Cutting | Cutting vegetable | 6.20 | 1.63 | 0.07 | 1.31 | 2.52 | 0.20 | 0.26 | 0.58 |
Fizzwater | Stirring carbonated water | 4.15 | 3.25 | 0.06 | 0.02 | 0.22 | 0.29 | 0.06 | 0.09 | |
Typing | Typing a keyboard | 5.75 | 2.22 | 0.10 | 0.59 | 0.86 | 0.15 | 0.09 | 0.19 | |
Heels | Footsteps of high heels | 5.58 | 1.58 | 0.05 | 0.43 | 1.56 | 0.19 | 0.36 | 0.37 | |
Book | Flipping a book | 6.01 | 1.94 | 0.07 | 0.06 | 1.40 | 0.13 | 0.13 | 0.23 | |
Brush | Brushing something | 6.79 | 1.78 | 0.07 | 0.05 | 1.99 | 0.15 | 0.14 | 0.49 | |
Shampoo | Washing hair with shampoo | 5.67 | 2.33 | 0.08 | 0.33 | 1.92 | 0.04 | 0.10 | 0.05 | |
Hair | Cutting hair | 6.34 | 2.17 | 0.01 | 0.39 | 0.93 | 0.42 | 0.09 | 0.33 | |
Pen | Writing with pen | 6.08 | 2.54 | 0.01 | 0.39 | 0.42 | 0.29 | 0.06 | 0.29 | |
Earpick | Earpick | 6.86 | 1.30 | 0.11 | 0.74 | 6.45 | 0.05 | 0.40 | 0.02 | |
Nature-generated sound | Fire | Building a fire | 7.28 | 1.88 | 0.13 | 0.03 | 3.32 | 0.11 | 0.12 | 0.86 |
Bubble | Bubbles under water | 6.23 | 0.70 | 0.06 | 0.07 | 6.74 | 0.21 | 0.77 | 0.40 | |
Brook | Murmur of a brook | 5.43 | 1.87 | 0.11 | 0.07 | 1.70 | 0.13 | 0.15 | 0.12 | |
Waves | Sound of waves | 5.83 | 1.43 | 0.05 | 0.06 | 3.63 | 0.05 | 0.30 | 0.38 | |
Rain | Sound of rain | 5.92 | 2.11 | 0.06 | 0.10 | 3.63 | 0.05 | 0.30 | 0.58 | |
Lava | Lava flowing | 5.90 | 2.53 | 0.15 | 0.02 | 0.68 | 0.09 | 0.07 | 0.72 | |
Cricket | Bell-ringing cricket | 3.78 | 3.19 | 0.06 | 0.02 | 0.48 | 0.84 | 0.07 | 0.76 | |
Cicada | Evening cicada | 2.77 | 2.69 | 0.02 | 0.02 | 0.28 | 0.95 | 0.09 | 0.93 | |
Volcano | Bubbles of mud volcano | 7.11 | 1.46 | 0.12 | 0.29 | 1.65 | 0.15 | 0.22 | 0.07 | |
Bamboo | Wind through bamboo forest | 4.98 | 3.13 | 0.07 | 0.06 | 3.76 | 0.02 | 0.06 | 0.26 |
Zwicker’s Parameters | ACF/IACF Parameters | Subjective Judgements | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Loudness | Sharpness | Roughness | Fluctuation Strength | τ1 | ϕ1 | WΦ(0) | IACC | Subjective Loudness | Pitch | Comfort | Closeness | |
ASMR (Total) | 0.42 | −0.21 | 0.27 | 0.15 | 0.12 | −0.36 | 0.06 | −0.67 ** | 0.64 ** | −0.29 | −0.38 | 0.93 ** |
ASMR (Human) | 0.04 | 0.11 | 0.32 | −0.30 | 0.39 | −0.32 | −0.04 | −0.89 ** | 0.38 | −0.20 | 0.02 | 0.93 ** |
ASMR (Nature) | 0.73 * | −0.61 | 0.77 ** | 0.47 | 0.14 | −0.46 | 0.34 | −0.41 | 0.92 ** | −0.53 | −0.17 | 0.96 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimokura, R. Sound Quality Factors Inducing the Autonomous Sensory Meridian Response. Audiol. Res. 2022, 12, 574-584. https://doi.org/10.3390/audiolres12050056
Shimokura R. Sound Quality Factors Inducing the Autonomous Sensory Meridian Response. Audiology Research. 2022; 12(5):574-584. https://doi.org/10.3390/audiolres12050056
Chicago/Turabian StyleShimokura, Ryota. 2022. "Sound Quality Factors Inducing the Autonomous Sensory Meridian Response" Audiology Research 12, no. 5: 574-584. https://doi.org/10.3390/audiolres12050056
APA StyleShimokura, R. (2022). Sound Quality Factors Inducing the Autonomous Sensory Meridian Response. Audiology Research, 12(5), 574-584. https://doi.org/10.3390/audiolres12050056