The Reliability of Contralateral Suppression of Otoacoustic Emissions Is Greater in Women than in Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopez-Poveda, E.A. Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance. Front. Neurol. 2018, 9, 197. [Google Scholar] [CrossRef] [Green Version]
- Berlin, C.; Hood, L.; Wen, H.; Szabo, P.; Cecola, R.; Rigby, P.; Jackson, D. Contralateral suppression of non-linear click-evoked otoacoustic emissions. Hear. Res. 1993, 71, 1–11. [Google Scholar] [CrossRef]
- Sliwinska-Kowalska, M.; Kotylo, P. Occupational exposure to noise decreases otoacoustic emission efferent suppression. Int. J. Audiol. 2002, 41, 113–119. [Google Scholar]
- Lalaki, P.; Hatzopoulos, S.; Lorito, G.; Kochanek, K.; Sliwa, L.; Skarżyński, H. A connection between the Efferent Auditory System and Noise-Induced Tinnitus Generation. Reduced contralateral suppression of TEOAEs in patients with noise-induced tinnitus. Med. Sci. Monit. 2011, 17, MT56–MT62. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K. The role of efferents in human auditory development: Efferent inhibition predicts frequency discrimination in noise for children. J. Neurophysiol. 2020, 123, 2437–2448. [Google Scholar] [CrossRef] [PubMed]
- Mertes, I.B.; Johnson, K.M.; Dinger, Z.A. Olivocochlear efferent contributions to speech-in-noise recognition across signal-to-noise ratios. J. Acoust. Soc. Am. 2019, 145, 1529–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marian, V.; Lam, T.Q.; Hayakawa, S.; Dhar, S. Spontaneous Otoacoustic Emissions Reveal an Efficient Auditory Efferent Network. J. Speech Lang. Hear. Res. 2018, 61, 2827–2832. [Google Scholar] [CrossRef] [PubMed]
- Dragicevic, C.D.; Marcenaro, B.; Navarrete, M.; Robles, L.; Delano, P.H. Oscillatory infrasonic modulation of the cochlear amplifier by selective attention. PLoS ONE 2019, 14, e0208939. [Google Scholar] [CrossRef] [Green Version]
- Jedrzejczak, W.W.; Milner, R.; Olszewski, L.; Skarzyński, H. Heightened visual attention does not affect inner ear function as measured by otoacoustic emissions. PeerJ 2017, 5, e4199. [Google Scholar] [CrossRef] [Green Version]
- Jedrzejczak, W.; Milner, R.; Ganc, M.; Pilka, E.; Skarzynski, H. No Change in Medial Olivocochlear Efferent Activity during an Auditory or Visual Task: Dual Evidence from Otoacoustic Emissions and Event-Related Potentials. Brain Sci. 2020, 10, 894. [Google Scholar] [CrossRef]
- Boothalingam, S.; Allan, C.; Allen, P.; Purcell, D.W. The Medial Olivocochlear Reflex Is Unlikely to Play a Role in Listening Difficulties in Children. Trends Hear. 2019, 23, 2331216519870942. [Google Scholar] [CrossRef] [PubMed]
- Robinette, M.S. Clinical observations with evoked otoacoustic emissions at Mayo Clinic. J. Am. Acad. Audiol. 2003, 14, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.K.; Probst, R.; Lonsbury-Martin, B.L. Otoacoustic Emissions in Human Ears: Normative findings. Ear Hear. 1990, 11, 106–120. [Google Scholar] [CrossRef]
- Stuart, A.; Kerls, A.N. Does Contralateral Inhibition of Transient Evoked Otoacoustic Emissions Suggest Sex or Ear Laterality Effects? Am. J. Audiol. 2018, 27, 272–282. [Google Scholar] [CrossRef]
- Jedrzejczak, W.W.; Pilka, E.; Skarzynski, P.H.; Skarzynski, H. Contralateral suppression of otoacoustic emissions in pre-school children. Int. J. Pediatr. Otorhinolaryngol. 2020, 132, 109915. [Google Scholar] [CrossRef]
- Jedrzejczak, W.W.; Pilka, E.; Skarzynski, P.H.; Skarzynski, H. Reliability of contralateral suppression of otoacoustic emissions in children. Int. J. Audiol. 2021, 60, 438–445. [Google Scholar] [CrossRef]
- Jedrzejczak, W.W.; Pilka, E.; Kochanek, K.; Skarzynski, H. Does the Presence of Spontaneous Components Affect the Reliability of Contralateral Suppression of Evoked Otoacoustic Emissions? Ear Hear. 2021, 42, 990–1005. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D. Synchronized Spontaneous Otoacoustic Emissions Provide a Signal-to-Noise Ratio Advantage in Medial-Olivocochlear Reflex Assays. J. Assoc. Res. Otolaryngol. 2017, 19, 53–65. [Google Scholar] [CrossRef]
- Mertes, I.B. Medial olivocochlear reflex effects on synchronized spontaneous otoacoustic emissions. J. Acoust. Soc. Am. 2020, 147, EL235–EL240. [Google Scholar] [CrossRef] [Green Version]
- Marshall, L.; Miller, J.L.; Guinan, J.J.; Shera, C.A.; Reed, C.; Perez, Z.D.; Delhorne, L.A.; Boege, P. Otoacoustic-emission-based medial-olivocochlear reflex assays for humans. J. Acoust. Soc. Am. 2014, 136, 2697–2713. [Google Scholar] [CrossRef] [Green Version]
- Stuart, A.; Cobb, K.M. Reliability of measures of transient evoked otoacoustic emissions with contralateral suppression. J. Commun. Disord. 2015, 58, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Mertes, I.B.; Goodman, S.S. Within- and Across-Subject Variability of Repeated Measurements of Medial Olivocochlear-Induced Changes in Transient-Evoked Otoacoustic Emissions. Ear Hear. 2016, 37, e72–e84. [Google Scholar] [CrossRef] [PubMed]
- Killan, E.C.; Brooke, R.E.; Farrell, A.; Merrett, J. Clinically relevant long-term reliability of contralateral suppression of click-evoked otoacoustic emissions. J. Hear. Sci. 2017, 7, 27–36. [Google Scholar] [CrossRef]
- Swamy, S.P.; Yathiraj, A. Short-Term Reliability of Different Methods of Contralateral Suppression of Transient Evoked Otoacoustic Emission in Children and Adults. Am. J. Audiol. 2019, 28, 495–507. [Google Scholar] [CrossRef]
- Keppler, H.; Degeest, S.; Vinck, B. Short-Term Test–Retest Reliability of Contralateral Suppression of Click-Evoked Otoacoustic Emissions in Normal-Hearing Subjects. J. Speech Lang. Hear. Res. 2021, 64, 1062–1072. [Google Scholar] [CrossRef]
- De Boer, J.; Thornton, A.R.D. Neural Correlates of Perceptual Learning in the Auditory Brainstem: Efferent Activity Predicts and Reflects Improvement at a Speech-in-Noise Discrimination Task. J. Neurosci. 2008, 28, 4929–4937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backus, B.C.; Guinan, J.J. Measurement of the Distribution of Medial Olivocochlear Acoustic Reflex Strengths across Normal-Hearing Individuals via Otoacoustic Emissions. J. Assoc. Res. Otolaryngol. 2007, 8, 484–496. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.D. The Effect of Otoacoustic Emission Stimulus Level on the Strength and Detectability of the Medial Olivocochlear Reflex. Ear Hear. 2019, 40, 1391–1403. [Google Scholar] [CrossRef]
- Francis, N.A.; Guinan, J.J. Acoustic stimulation of human medial olivocochlear efferents reduces stimulus-frequency and click-evoked otoacoustic emission delays: Implications for cochlear filter bandwidths. Hear. Res. 2010, 267, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Jedrzejczak, W.W.; Pilka, E.; Olszewski, L.; Skarzynski, H. Short-term repeatability of contralateral suppression of transiently evoked otoacoustic emissions: Preliminary results. J. Hear. Sci. 2016, 6, 51–57. [Google Scholar]
- Moleti, A.; Longo, F.; Sisto, R. Time-frequency domain filtering of evoked otoacoustic emissions. J. Acoust. Soc. Am. 2012, 132, 2455–2467. [Google Scholar] [CrossRef]
- Sisto, R.; Moleti, A.; Shera, C.A. On the spatial distribution of the reflection sources of different latency components of otoacoustic emissions. J. Acoust. Soc. Am. 2015, 137, 768–776. [Google Scholar] [CrossRef] [Green Version]
- Jedrzejczak, W.W.; Kochanek, K.; Skarzyński, H. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks. PLoS ONE 2018, 13, e0192930. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.B.; Cone, B. The medial olivocochlear reflex in children during active listening. Int. J. Audiol. 2015, 54, 518–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMillan, G.P.; Hanson, T.E. Sample Size Requirements for Establishing Clinical Test–Retest Standards. Ear Hear. 2014, 35, 283–286. [Google Scholar] [CrossRef]
- Bell, A.; Jedrzejczak, W.W. Muscles in and around the ear as the source of “physiological noise” during auditory selective attention: A review and novel synthesis. Eur. J. Neurosci. 2021, 53, 2726–2739. [Google Scholar] [CrossRef]
- Mertes, I.B. Establishing critical differences in ear-canal stimulus amplitude for detecting middle ear muscle reflex activation during olivocochlear efferent measurements. Int. J. Audiol. 2019, 59, 140–147. [Google Scholar] [CrossRef] [PubMed]
N | Response Level (dB SPL) | SNR (dB) | ||||||
---|---|---|---|---|---|---|---|---|
Group | Men | Women | Men | Women | p-Value | Men | Women | p-Value |
All | 20 | 20 | 9.3 (4.9) | 13.0 (4.9) | 0.021 | 18.3 (4.5) | 21.9 (5.1) | 0.031 |
SSOAE+ | 10 | 10 | 12.9 (3.3) | 16.9 (3.5) | 0.018 | 21.3 (4.1) | 26.0 (3.3) | 0.017 |
SSOAE− | 10 | 10 | 5.6 (3.0) | 9.1 (2.2) | 0.0079 | 15.2 (2.3) | 17.7 (2.2) | 0.023 |
N | MOCR Raw (dB) | MOCR Total (%) | ||||
---|---|---|---|---|---|---|
Group | Men | Women | Men | Women | Men | Women |
All | 20 | 20 | 0.7 (0.4) | 0.7 (0.5) | 23.0 (10.0) | 21.4 (7.8) |
SSOAE+ | 10 | 10 | 0.8 (0.5) | 0.9 (0.6) | 22.6 (14.1) | 25.5 (8.5) |
SSOAE− | 10 | 10 | 0.7 (0.4) | 0.5 (0.4) | 23.3 (3.3) | 17.4 (4.3) |
MOCR Raw (dB) | MOCR Total (%) | ||||
---|---|---|---|---|---|
Group | Measure | Men | Women | Men | Women |
All | ICC | 0.83 | 0.97 | 0.96 | 0.98 |
SEM | 0.17 | 0.08 | 2.00 | 1.05 | |
MDC | 0.48 | 0.22 | 5.55 | 2.92 | |
N | 20 | 20 | 20 | 20 | |
SSOAE+ | ICC | 0.88 | 0.98 | 0.99 | 0.98 |
SEM | 0.18 | 0.08 | 1.34 | 1.11 | |
MDC | 0.49 | 0.22 | 3.73 | 3.07 | |
N | 10 | 10 | 10 | 10 | |
SSOAE− | ICC | 0.70 | 0.97 | 0.61 | 0.94 |
SEM | 0.16 | 0.08 | 2.47 | 0.97 | |
MDC | 0.45 | 0.21 | 6.85 | 2.68 | |
N | 10 | 10 | 10 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jedrzejczak, W.W.; Pilka, E.; Pastucha, M.; Kochanek, K.; Skarzynski, H. The Reliability of Contralateral Suppression of Otoacoustic Emissions Is Greater in Women than in Men. Audiol. Res. 2022, 12, 79-86. https://doi.org/10.3390/audiolres12010008
Jedrzejczak WW, Pilka E, Pastucha M, Kochanek K, Skarzynski H. The Reliability of Contralateral Suppression of Otoacoustic Emissions Is Greater in Women than in Men. Audiology Research. 2022; 12(1):79-86. https://doi.org/10.3390/audiolres12010008
Chicago/Turabian StyleJedrzejczak, W. Wiktor, Edyta Pilka, Malgorzata Pastucha, Krzysztof Kochanek, and Henryk Skarzynski. 2022. "The Reliability of Contralateral Suppression of Otoacoustic Emissions Is Greater in Women than in Men" Audiology Research 12, no. 1: 79-86. https://doi.org/10.3390/audiolres12010008
APA StyleJedrzejczak, W. W., Pilka, E., Pastucha, M., Kochanek, K., & Skarzynski, H. (2022). The Reliability of Contralateral Suppression of Otoacoustic Emissions Is Greater in Women than in Men. Audiology Research, 12(1), 79-86. https://doi.org/10.3390/audiolres12010008