Effect of Auditory Distraction on Working Memory, Attention Switching, and Listening Comprehension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimuli and General Procedure
2.3. Speech Intelligibility Tests to Determine SNR for 90% Intelligibility
2.4. Attention and Memory Tasks
2.5. Auditory Attention Switching
2.6. Auditory Working Memory
2.7. Listening Comprehension Test
3. Results
3.1. Auditory Attention Switching Task
3.2. Auditory Working Memory Task
3.3. Correlation Analysis between WM and Attention Switching
3.4. Listening Comprehension
4. Discussion
4.1. Effect of Noise on Auditory Attention Switching and Working Memory
4.2. Effect of Noise on Listening Comprehension
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, D.M.; Macken, W. Irrelevant Tones Produce an Irrelevant Speech Effect—Implications for Phonological Coding in Working Memory. J. Exp. Psychol. Learn. Mem. Cogn. 1993, 19, 369–381. [Google Scholar] [CrossRef]
- Jones, D.M.; Morris, N. Irrelevant Speech and Serial Recall: Implications for Theories of Attention and Working Memory. Scand. J. Psychol. 1992, 33, 212–229. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.; Wogalter, M.; Forlano, J. Reading-Comprehension in the Presence of Unattended Speech and Music. J. Mem. Lang. 1988, 27, 382–398. [Google Scholar] [CrossRef]
- Oswald, C.J.P.; Tremblay, S.; Jones, D.M. Disruption of Comprehension by the Meaning of Irrelevant Sound. Memory 2000, 8, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Colle, H.; Welsh, A. Acoustic Masking in Primary Memory. J. Verbal Learn. Verbal Behav. 1976, 15, 17–31. [Google Scholar] [CrossRef]
- Ellermeier, W.; Zimmer, K. Individual Differences in Susceptibility to the “irrelevant Speech Effect”. J. Acoust. Soc. Am. 1997, 102, 2191–2199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neath, I. Modeling the Effects of Irrelevant Speech on Memory. Psychon. Bull. Rev. 2000, 7, 403–423. [Google Scholar] [CrossRef]
- Salame, P.; Baddeley, A. Disruption of Short-Term-Memory by Unattended Speech—Implications for the Structure of Working Memory. J. Verbal Learn. Verbal Behav. 1982, 21, 150–164. [Google Scholar] [CrossRef]
- Divin, W.; Coyle, K.; James, D.T.T. The Effects of Irrelevant Speech and Articulatory Suppression on the Serial Recall of Silently Presented Lipread Digits. Br. J. Psychol. 2001, 92, 593–616. [Google Scholar] [CrossRef]
- Hughes, R.W.; Tremblay, S.; Jones, D.M. Disruption by Speech of Serial Short-Term Memory: The Role of Changing-State Vowels. Psychon. Bull. Rev. 2005, 12, 886–890. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.M.; Madden, C.; Miles, C. Privileged Access by Irrelevant Speech to Short-Term-Memory—The Role. Q. J. Exp. Psychol. Sect. A Hum. Exp. Psychol. 1992, 44, 645–669. [Google Scholar] [CrossRef]
- Buchner, A.; Irmen, L.; Erdfelder, E. On the Irrelevance of Semantic Information for the “‘irrelevant Speech’” Effect. Q. J. Exp. Psychol. Sect. A Hum. Exp. Psychol. 1996, 49, 765–779. [Google Scholar] [CrossRef]
- Buchner, A.; Rothermund, K.; Wentura, D.; Mehl, B. Valence of Distractor Words Increases the Effects of Irrelevant Speech on Serial Recall. Mem. Cogn. 2004, 32, 722–731. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, S.; Nicholls, A.P.; Alford, D.; Jones, D.M. The Irrelevant Sound Effect: Does Speech Play a Special Role? J. Exp. Psychol. Learn. Mem. Cogn. 2000, 26, 1750–1754. [Google Scholar] [CrossRef]
- Jones, D.M.; Miles, C.; Page, J. Disruption of Proofreading by Irrelevant Speech: Effects of Attention, Arousal or Memory? Appl. Cogn. Psychol. 1990, 4, 89–108. [Google Scholar] [CrossRef]
- Perham, N.; Banbury, S.; Jones, D.M. Auditory Distraction Impairs Analytical Reasoning Performance. Aust. J. Psychol. 2005, 57, 242. [Google Scholar]
- Sörqvist, P.; Nöstl, A.; Halin, N. Disruption of Writing Processes by the Semanticity of Background Speech. Scand. J. Psychol. 2012, 53, 97–102. [Google Scholar] [CrossRef]
- Alain, C.; Quan, J.; McDonald, K.; Van Roon, P. Noise-Induced Increase in Human Auditory Evoked Neuromagnetic Fields. Eur. J. Neurosci. 2009, 30, 132–142. [Google Scholar] [CrossRef]
- Ries, D.T. The Influence of Noise Type and Level upon Stochastic Resonance in Human Audition. Hear. Res. 2007, 228, 136–143. [Google Scholar] [CrossRef]
- Zeng, F.G.; Fu, Q.J.; Morse, R. Human Hearing Enhanced by Noise. Brain Res. 2000, 869, 251–255. [Google Scholar] [CrossRef]
- Beaman, C.P. The Irrelevant Sound Phenomenon Revisited: What Role for Working Memory Capacity? J. Exp. Psychol. Learn. Mem. Cogn. 2004, 30, 1106–1118. [Google Scholar] [CrossRef]
- Elliott, E.M.; Barrilleaux, K.; Cowan, N. Individual Differences in the Ability to Avoid Distracting Sounds. Eur. J. Cogn. Psychol. 2006, 18, 90–108. [Google Scholar] [CrossRef]
- Elliott, E.M.; Briganti, A.M. Investigating the Role of Attentional Resources in the Irrelevant Speech Effect. Acta Psychol. 2012, 140, 64–74. [Google Scholar] [CrossRef]
- Sorqvist, P. High Working Memory Capacity Attenuates the Deviation Effect but Not the Changing-State Effect: Further Support for the Duplex-Mechanism Account of Auditory Distraction. Mem. Cogn. 2010, 38, 651–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sörqvist, P. The Role of Working Memory Capacity in Auditory Distraction: A Review. Noise Health 2010, 12, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Sörqvist, P.; Halin, N.; Hygge, S. Individual Differences in Susceptibility to the Effects of Speech on Reading Comprehension. Appl. Cognit. Psychol. 2010, 24, 67–76. [Google Scholar] [CrossRef]
- Conway, A.R.A.; Kane, M.J.; Engle, R.W. Working Memory Capacity and Its Relation to General Intelligence. Trends Cogn. Sci. (Regul. Ed.) 2003, 7, 547–552. [Google Scholar] [CrossRef]
- Daneman, M.; Carpenter, P.A. Individual Differences in Working Memory and Reading. J. Verbal Learn. Verbal Behav. 1980, 19, 450–466. [Google Scholar] [CrossRef]
- Daneman, M.; Merikle, P.M. Working Memory and Language Comprehension: A Meta-Analysis. Psychon. Bull. Rev. 1996, 3, 422–433. [Google Scholar] [CrossRef] [Green Version]
- Kane, M.J.; Hambrick, D.Z.; Tuholski, S.W.; Wilhelm, O.; Payne, T.W.; Engle, R.W. The Generality of Working Memory Capacity: A Latent-Variable Approach to Verbal and Visuospatial Memory Span and Reasoning. J. Exp. Psychol. Gen. 2004, 133, 189–217. [Google Scholar] [CrossRef]
- Unsworth, N.; Engle, R.W. On the Division of Short-Term and Working Memory: An Examination of Simple and Complex Span and Their Relation to Higher Order Abilities. Psychol. Bull. 2007, 133, 1038–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unsworth, N.; Redick, T.S.; Heitz, R.P.; Broadway, J.M.; Engle, R.W. Complex Working Memory Span Tasks and Higher-Order Cognition: A Latent-Variable Analysis of the Relationship between Processing and Storage. Memory 2009, 17, 635–654. [Google Scholar] [CrossRef] [PubMed]
- Barrouillet, P.; Camos, V. Working Memory and Executive Control: A Time-Based Resource-Sharing Account. Psychol. Belg. 2010, 50, 353–382. [Google Scholar] [CrossRef] [Green Version]
- Colflesh, G.J.H.; Conway, A.R.A. Individual Differences in Working Memory Capacity and Divided Attention in Dichotic Listening. Psychon. Bull. Rev. 2007, 14, 699–703. [Google Scholar] [CrossRef]
- Cowan, N. Attention and Memory: An Integrated Framework; Oxford University Press, Clarendon Press: New York, NY, USA; Oxford, UK, 1995. [Google Scholar]
- Garavan, H. Serial Attention within Working Memory. Mem. Cogn. 1998, 26, 263–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, M.J.; Conway, A.R.A.; Hambrick, D.Z.; Engle, R.W. Variation in Working Memory Capacity as Variation in Executive Attention and Control. In Variation in Working Memory; Conway, A., Jarrold, C., Kane, M., Miyake, A., Towse, J., Eds.; Oxford University Press: Oxford, UK, 2008; pp. 21–48. [Google Scholar]
- Kane, M.J.; Engle, R.W. Working-Memory Capacity and the Control of Attention: The Contributions of Goal Neglect, Response Competition, and Task Set to Stroop Interference. J. Exp. Psychol. Gen. 2003, 132, 47–70. [Google Scholar] [CrossRef] [PubMed]
- Redick, T.S.; Heitz, R.P.; Engle, R.W. Working Memory Capacity and Inhibition: Cognitive and Social Consequences. In Inhibition in Cognition; Gorfein, D.S., MacLeod, C.M., Eds.; American Psychological Association: Washington, DC, USA, 2007; pp. 125–142. [Google Scholar]
- Baddeley, A.D. Working Memory: Theories, Models, and Controversies. Annu. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Barrouillet, P.; Bernardin, S.; Camos, V. Time Constraints and Resource Sharing in Adults’ Working Memory Spans. J. Exp. Psychol. Gen. 2004, 133, 83–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrouillet, P.; Bernardin, S.; Portrat, S.; Vergauwe, E.; Camos, V. Time and Cognitive Load in Working Memory. J. Exp. Psychol. Learn. Mem. Cogn. 2007, 33, 570–585. [Google Scholar] [CrossRef] [Green Version]
- Barrouillet, P.; Portrat, S.; Camos, V. On the Law Relating Processing to Storage in Working Memory. Psychol. Rev. 2011, 118, 175–192. [Google Scholar] [CrossRef] [Green Version]
- Jarrold, C.; Tam, H.; Baddeley, A.D.; Harvey, C.E. How Does Processing Affect Storage in Working Memory Tasks? Evidence for Both Domain-General and Domain-Specific Effects. J. Exp. Psychol. Learn. Mem. Cogn. 2011, 37, 688–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Towse, J.N.; Hitch, G.J. Is There a Relationship between Task Demand and Storage Space in Tests of Working Memory Capacity? Q. J. Exp. Psychol. A 1995, 48, 108–124. [Google Scholar] [CrossRef] [PubMed]
- Clifton, C., Jr.; Meyer, A.S.; Wurm, L.H.; Treiman, R.; Proctor, R.W. Language Comprehension and Production. In Handbook of Psychology, Experimental Psychology, 2nd ed.; Healy, A., Ed.; Wiley: Hoboken, NJ, USA, 2013; Volume 4, pp. 523–547. [Google Scholar]
- Craik, F.I.M.; Lockhart, R.S. Levels of Processing: A Framework for Memory Research. J. Verbal Learn. Verbal Behav. 1972, 11, 671–684. [Google Scholar] [CrossRef]
- Rönnberg, J.; Lunner, T.; Zekveld, A.; Sörqvist, P.; Danielsson, H.; Lyxell, B.; Dahlström, O.; Signoret, C.; Stenfelt, S.; Pichora-Fuller, M.K.; et al. The Ease of Language Understanding (ELU) Model: Theoretical, Empirical, and Clinical Advances. Front. Syst. Neurosci. 2013, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Rönnberg, J.; Rudner, M.; Lunner, T.; Zekveld, A.A. When Cognition Kicks in: Working Memory and Speech Understanding in Noise. Noise Health 2010, 12, 263–269. [Google Scholar] [CrossRef]
- Stenfelt, S.; Rönnberg, J. The Signal-Cognition Interface: Interactions between Degraded Auditory Signals and Cognitive Processes. Scand. J. Psychol. 2009, 50, 385–393. [Google Scholar] [CrossRef]
- Arlinger, S.; Lunner, T.; Lyxell, B.; Pichora-Fuller, M.K. The Emergence of Cognitive Hearing Science. Scand. J. Psychol. 2009, 50, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Holt, L.L.; Lotto, A.J. Speech Perception Within an Auditory Cognitive Science Framework. Curr. Dir. Psychol. Sci. 2008, 17, 42–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Just, M.A.; Carpenter, P.A. A Capacity Theory of Comprehension: Individual Differences in Working Memory. Psychol. Rev. 1992, 99, 122–149. [Google Scholar] [CrossRef]
- Conway, A.R.; Cowan, N.; Bunting, M.F. The Cocktail Party Phenomenon Revisited: The Importance of Working Memory Capacity. Psychon. Bull. Rev. 2001, 8, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Engle, R.W. Working Memory Capacity as Executive Attention. Curr. Dir. Psychol. Sci. 2002, 11, 19–23. [Google Scholar] [CrossRef]
- Shinn-Cunningham, B.G.; Best, V. Selective Attention in Normal and Impaired Hearing. Trends Amplif. 2008, 12, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Conway, A.R.A.; Kane, M.J.; Bunting, M.F.; Hambrick, D.Z.; Wilhelm, O.; Engle, R.W. Working Memory Span Tasks: A Methodological Review and User’s Guide. Psychon. Bull. Rev. 2005, 12, 769–786. [Google Scholar] [CrossRef] [PubMed]
- Oberauer, K.; Lewandowsky, S. Modeling Working Memory: A Computational Implementation of the Time-Based Resource-Sharing Theory. Psychon. Bull. Rev. 2011, 18, 10–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callahan, C.M.; Unverzagt, F.W.; Hui, S.L.; Perkins, A.J.; Hendrie, H.C. Six-Item Screener to Identify Cognitive Impairment among Potential Subjects for Clinical Research. Med. Care 2002, 40, 771–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salthouse, T.A.; Babcock, R.L. Decomposing Adult Age Differences in Working Memory. Dev. Psychol. 1991, 27, 763–777. [Google Scholar] [CrossRef]
- Peterson, G.E.; Lehiste, I. Revised CNC Lists for Auditory Tests. J. Speech Hear. Disord. 1962, 27, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Tillman, T.W.; Carhart, R. An Expanded Test for Speech Discrimination Utilizing CNC Monosyllabic Words. Northwestern University Auditory Test No. 6. SAM-TR-66-55. Tech. Rep. SAM-TR 1966, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Dreschler, W.A.; Verschuure, H.; Ludvigsen, C.; Westermann, S. ICRA Noises: Artificial Noise Signals with Speech-like Spectral and Temporal Properties for Hearing Instrument Assessment. International Collegium for Rehabilitative Audiology. Audiology 2001, 40, 148–157. [Google Scholar] [CrossRef]
- Wilson, R.H.; McArdle, R.A.; Smith, S.L. An Evaluation of the BKB-SIN, HINT, QuickSIN, and WIN Materials on Listeners with Normal Hearing and Listeners with Hearing Loss. J. Speech Lang. Hear. Res. 2007, 50, 844–856. [Google Scholar] [CrossRef]
- Killion, M.C.; Niquette, P.A.; Gudmundsen, G.I.; Revit, L.J.; Banerjee, S. Development of a Quick Speech-in-Noise Test for Measuring Signal-to-Noise Ratio Loss in Normal-Hearing and Hearing-Impaired Listeners. J. Acoust. Soc. Am. 2004, 116, 2395–2405. [Google Scholar] [CrossRef] [PubMed]
- Boothroyd, A.; Mulhearn, B.; Gong, J.; Ostroff, J. Effects of Spectral Smearing on Phoneme and Word Recognition. J. Acoust. Soc. Am. 1996, 100, 1807–1818. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, N.; Engle, R.W. Speed and Accuracy of Accessing Information in Working Memory: An Individual Differences Investigation of Focus Switching. J. Exp. Psychol. Learn. Mem. Cogn. 2008, 34, 616–630. [Google Scholar] [CrossRef] [Green Version]
- Lépine, R.; Bernardin, S.; Barrouillet, P. Attention Switching and Working Memory Spans. Eur. J. Cogn. Psychol. 2005, 17, 329–345. [Google Scholar] [CrossRef] [Green Version]
- Friedman, N.P.; Miyake, A. The Reading Span Test and Its Predictive Power for Reading Comprehension Ability. J. Mem. Lang. 2004, 51, 136–158. [Google Scholar] [CrossRef]
- Turley-Ames, K.J.; Whitfield, M.M. Strategy Training and Working Memory Task Performance. J. Mem. Lang. 2003, 49, 446–468. [Google Scholar] [CrossRef]
- Friedman, N.P.; Miyake, A. Comparison of Four Scoring Methods for the Reading Span Test. Behav. Res. Methods 2005, 37, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Sommers, M.S.; Hale, S.; Myerson, J.; Rose, N.; Tye-Murray, N.; Spehar, B. Listening Comprehension across the Adult Lifespan. Ear Hear. 2011, 32, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Tye-Murray, N.; Sommers, M.; Spehar, B.; Myerson, J.; Hale, S.; Rose, N.S. Auditory-Visual Discourse Comprehension by Older and Young Adults in Favorable and Unfavorable Conditions. Int. J. Audiol. 2008, 47 (Suppl. 2), S31–S37. [Google Scholar] [CrossRef] [Green Version]
- Broadbent, D.E. Decisión and Stress; Academic Press: St Louis, MI, USA, 1971. [Google Scholar]
- Hebb, D.O. Drives and the C.N.S. (Conceptual Nervous System). Psychol. Rev. 1955, 62, 243–254. [Google Scholar] [CrossRef]
- Hockey, R. Stress and Fatigue in Human Performance; Wiley: Chichester, UK; New York, NY, USA, 1983. [Google Scholar]
- Easterbrook, J.A. The Effect of Emotion on Cue Utilization and the Organization of Behavior. Psychol. Rev. 1959, 66, 183–201. [Google Scholar] [CrossRef]
- Kryter, K.D. The Effects of Noise on Man; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Yerkes, R.M.; Dodson, J.D. The Relation of Strength of Stimulus to Rapidity of Habit-Formation. J. Comp. Neurol. Psychol. 1908, 18, 459–482. [Google Scholar] [CrossRef] [Green Version]
- Posner, M.I.; Boies, S.J. Components of Attention. Psychol. Rev. 1971, 78, 391–408. [Google Scholar] [CrossRef]
- Posner, M.I.; Klein, R.; Summers, J.; Buggie, S. On the Selection of Signals. Mem. Cogn. 1973, 1, 2–12. [Google Scholar] [CrossRef]
- Fisher, S. “Pessimistic Noise Effects”: The Perception of Reaction Times in Noise. Can. J. Psychol. 1983, 37, 258–271. [Google Scholar] [CrossRef]
- Lavie, N. Perceptual Load as a Necessary Condition for Selective Attention. J. Exp. Psychol. Hum. Percept. Perform. 1995, 21, 451–468. [Google Scholar] [CrossRef]
- Lavie, N. Attention, Distraction, and Cognitive Control Under Load. Curr. Dir. Psychol. Sci. 2010, 19, 143–148. [Google Scholar] [CrossRef]
- Oberauer, K. Selective Attention to Elements in Working Memory. Exp. Psychol. 2003, 50, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Oberauer, K. Access to Information in Working Memory: Exploring the Focus of Attention. J. Exp. Psychol. Learn. Mem. Cogn. 2002, 28, 411–421. [Google Scholar] [CrossRef]
- Unsworth, N.; Spillers, G.J. Working Memory Capacity: Attention Control, Secondary Memory, or Both? A Direct Test of the Dual-Component Model. J. Mem. Lang. 2010, 62, 392–406. [Google Scholar] [CrossRef]
- Verhaeghen, P.; Basak, C. Ageing and Switching of the Focus of Attention in Working Memory: Results from a Modified N-Back Task. Q. J. Exp. Psychol. A 2005, 58, 134–154. [Google Scholar] [CrossRef]
- Potts, G.R.; Keenan, J.M. Assessing the Occurrence of Elaborative Inferences: Lexical Decision versus Naming. J. Mem. Lang. 1988, 27, 399–415. [Google Scholar] [CrossRef]
- Karasinski, C.; Ellis Weismer, S. Comprehension of Inferences in Discourse Processing by Adolescents with and without Language Impairment. J. Speech Lang. Hear. Res. 2010, 53, 1268–1279. [Google Scholar] [CrossRef] [Green Version]
- Kintsch, W. The Role of Knowledge in Discourse Comprehension: A Construction-Integration Model. Psychol. Rev. 1988, 95, 163–182. [Google Scholar] [CrossRef] [Green Version]
- McKoon, G.; Ratcliff, R. Inference during Reading. Psychol. Rev. 1992, 99, 440–466. [Google Scholar] [CrossRef]
- Daneman, M.; Hannon, B. What Do Working Memory Span Tasks like Reading Span Really Measure. In The Cognitive Neuroscience of Working Memory; Osaka, N., Logie, R.H., D’Esposito, M., Eds.; Oxford University Press: Oxford, UK; New York, NY, USA, 2007; pp. 21–42. [Google Scholar]
Measure | Condition | M (SD) | Range | Skew | Kurtosis |
---|---|---|---|---|---|
Attention Switching | |||||
Updating Acc | Q | 0.76 (0.20) | [0.11, 1] | −1.3 | 1.5 |
N | 0.68 (0.21) | [0.16, 0.96] | −0.72 | −0.31 | |
Switch RT (ms) | Q | 1141.9 (224.1) | [683.7, 1579.1] | −0.06 | −0.99 |
N | 1084.3 (171.7) | [701.1, 1422.4] | −0.16 | −0.65 | |
Nonswitch RT (ms) | Q | 1007.0 (180.4) | [701.1, 1497.1] | 0.32 | −0.48 |
N | 997.8 (142.4) | [699.8, 1319.3] | −0.02 | −0.76 | |
Working Memory | |||||
Recall Acc | Q | 0.68 (0.16) | [0.19, 0.95] | −0.54 | 0.26 |
N | 0.73 (0.15) | [0.38, 0.97] | −0.49 | −0.63 | |
Processing Acc | Q | 0.84 (0.11) | [0.52, 1.0] | −1.0 | 0.95 |
N | 0.86 (0.09) | [0.56, 0.99] | −0.96 | 0.65 | |
Processing RT (ms) | Q | 1220.3 (275.5) | [541.0, 1676.1] | −0.35 | −0.64 |
N | 1134.3 (203.1) | [694.8, 1524.5] | −0.02 | −0.55 | |
Listening Comprehension | |||||
Information Acc | Q | 0.70 (0.18) | [0.33, 1] | 0.00 | −0.87 |
N | 0.66 (0.21) | [0.08, 1] | −0.58 | −0.08 | |
Integration Acc | Q | 0.66 (0.19) | [0.17, 1] | −0.14 | −0.52 |
N | 0.60 (0.18) | [0.25, 1] | 0.28 | −0.17 | |
Inference Acc | Q | 0.60 (0.15) | [0.33, 0.92] | −0.16 | −0.58 |
N | 0.70 (0.14) | [0.25, 0.92] | −0.67 | 0.75 | |
Overall Acc | Q | 0.65 (0.15) | [0.33, 0.94] | −0.32 | −0.76 |
N | 0.65 (0.15) | [0.25, 0.92] | −0.25 | −0.45 |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|
1 | WM Recall | 1 | 0.76 ** | −0.24 | 0.44 ** | −0.21 | −0.08 |
2 | WM RT | 0.66 ** | 1 | −0.43 ** | 0.29 * | −0.34 * | −0.27 * |
3 | WM Acc | −0.26 | −0.53 ** | 1 | 0.02 | 0.54 ** | 0.35 ** |
4 | AS Updating | 0.47 ** | 0.35 ** | 0.02 | 1 | 0.24 | 0.44 ** |
5 | AS Sw RT | −0.20 | −0.39 ** | 0.48 ** | 0.41 ** | 1 | 0.88 ** |
6 | AS Nsw RT | −0.27 * | −0.50 ** | 0.61 ** | 0.23 | 0.87 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagaraj, N.K. Effect of Auditory Distraction on Working Memory, Attention Switching, and Listening Comprehension. Audiol. Res. 2021, 11, 227-243. https://doi.org/10.3390/audiolres11020021
Nagaraj NK. Effect of Auditory Distraction on Working Memory, Attention Switching, and Listening Comprehension. Audiology Research. 2021; 11(2):227-243. https://doi.org/10.3390/audiolres11020021
Chicago/Turabian StyleNagaraj, Naveen K. 2021. "Effect of Auditory Distraction on Working Memory, Attention Switching, and Listening Comprehension" Audiology Research 11, no. 2: 227-243. https://doi.org/10.3390/audiolres11020021
APA StyleNagaraj, N. K. (2021). Effect of Auditory Distraction on Working Memory, Attention Switching, and Listening Comprehension. Audiology Research, 11(2), 227-243. https://doi.org/10.3390/audiolres11020021