Review of Bone Conduction Hearing Devices
Abstract
1. Introduction
2. Bone Conduction Physiology
3. Currently Available Devices
3.1. Surgically Implanted Devices
3.1.1. Percutaneous Devices
3.1.2. Passive Transcutaneous Devices
3.1.3. Active Transcutaneous Devices
3.2. Extrinsic Devices
Device | Processor | Size | Weight | Battery Type | Average Battery Life | IP Rating [53] | |
---|---|---|---|---|---|---|---|
Percutaneous | Ponto [15,21] | Ponto 3 | 3.4 × 2.1 × 1.4 cm | 14 g (without battery) | 13 | 70–130 h | IP 57 |
Ponto 3 Power | 17 g (without battery) | 675 | 70–150 h | IP 57 | |||
Ponto 3 Superpower | 17 g (without battery) | 675 HP | 35–80 h | IP 57 | |||
Ponto 4 | 2.6 × 1.9 × 1.1 cm | 13.2 g (without battery) | 312 | 48–70 h | IP 57 | ||
Baha® Connect [16,17,54,55] | Baha® 5 | 2.6 × 1.9 × 1.2 cm | 9.8 g (without battery) | 312 | 36–100 h | IP 63 | |
Baha® 5 Power | 3.6 × 2.2 × 1.3 cm | 17 g (without battery) | 675 | 80–220 h | IP 63 | ||
Baha® 5 SuperPower | 3.9 × 4.8 × 0.9 cm | 14.4 g (actuator); 9.8 −12.7 g (processing unit + battery) | Rechargeable lithium | ≤16 h (mini) ≤32 h (standard) | IP 63 | ||
Baha® 6 Max | 2.6 × 1.9 × 1.2 cm | 11.5 g (without battery) | 312 | 44–132 h | IP 68 | ||
Transcutaneous Passive | Alpha 2 MPO [23] | Alpha 2 MPO ePlusTM | 4.1 cm × 1.63 cm | 13 or rechargeable | 320 h or 32 h (rechargeable) | IP 22 | |
Baha® Attract [16,17,24] | Same as Baha® Connect | Same as above | |||||
Transcutaneous Active | Osia® [22,25,26,27] | Osia® 2 | 3.6 × 3.2 x 1.04 | 7.8 g (with magnet; without battery) | 675 HP | IP 52; IP 68 (with cover) | |
BonebridgeTM [28,29,30] | SAMBA 2 | 3.0 × 3.5 × 1.0 cm | 7.5 g (with magnet; without battery) * | 675 | 133–210 h | IP 54; IP 68 (with cover) | |
Adhesive | ADHEAR [31] | ADHEAR | 0.6 × 3.0 cm (adhesive) 1.5 × 3.5 cm (processor) | 13.5 g (without battery) | 13 | Up to 300 h |
Device | Processor | Wireless Accessories | Streaming Method | Direct iPhone Streaming | Direct Android Streaming | |
---|---|---|---|---|---|---|
Percutaneous | Ponto [15,53,56] | Ponto 3 | Ponto 3
| NFMI on neck loop; 2.4 GHz to devices | ||
Ponto 3 Power | ||||||
Ponto 3 Superpower | ||||||
Ponto 4 | 2.4 GHz | X | ||||
Baha® Connect [16,17,21,54,55,57] | Baha® 5, Baha® 5 Power, and Baha® 5 SuperPower | Baha 5 and 6
| 2.4 GHz | X | ||
Baha® 6 Max | 2.4 GHz; Bluetooth LE | X | X | |||
Transcutaneous Passive | Alpha 2 MPO [23] | Alpha 2 MPO ePlusTM | None Note that DAI can be used for wired streaming and FM systems | DAI | ||
Baha® Attract [7,16,17,24] | Baha® 5, Baha® 5 Power, and Baha® 5 SuperPower; Baha® 6 Max | Same as above | ||||
Transcutaneous Active | Osia® [25,26,27,58] | Osia® 2 | Osia® Smart App TrueWirelessTM Phone Clip Mini mic 2 Remote control 2 TV streamer | 2.4 GHz | X | |
BONEBRIDGETM [9,28,29,30,59] | SAMBA 2 | SAMBA2GO SAMBA 2 Remote App Note that DAI can be used for wired streaming and FM systems | NFMI on neck loop; Bluetooth or DAI to devices | |||
Adhesive | ADHEAR [31,60] | ADHEAR | None Note that DAI can be used for wired streaming and FM systems | DAI |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mudry, A.; Tjellström, A. Historical background of bone conduction hearing devices and bone conduction hearing aids. Adv. Otorhinolaryngol. 2011, 71, 1–9. [Google Scholar]
- Tjellström, A.; Lindström, J.; Hallén, O.; Albrektsson, T.; Brånemark, P.I. Osseointegrated titanium implants in the temporal bone. A clinical study on bone-anchored hearing aids. Am. J. Otol. 1981, 2, 304–310. [Google Scholar] [PubMed]
- Brånemark, P.I.; Hansson, B.O.; Adell, R.; Breine, U.; Lindström, J.; Hallén, O.; Ohman, A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand. J. Plast Reconstr. Surg. Suppl. 1977, 16, 1–132. [Google Scholar] [PubMed]
- Dun, C.A.J.; Faber, H.T.; de Wolf, M.J.F.; Cremers, C.W.R.J.; Hol, M.K.S. An overview of different systems: The bone-anchored hearing aid. Adv. Otorhinolaryngol. 2011, 71, 22–31. [Google Scholar] [PubMed]
- Stenfelt, S. Acoustic and physiologic aspects of bone conduction hearing. Adv. Otorhinolaryngol. 2011, 71, 10–21. [Google Scholar] [PubMed]
- Stenfelt, S.; Goode, R.L. Bone-conducted sound: Physiological and clinical aspects. Otol. Neurotol. 2005, 26, 1245–1261. [Google Scholar] [CrossRef] [PubMed]
- Verstraeten, N.; Zarowski, A.J.; Somers, T.; Riff, D.; Offeciers, E.F. Comparison of the audiologic results obtained with the bone-anchored hearing aid attached to the headband, the testband, and to the “snap” abutment. Otol. Neurotol. 2009, 30, 70–75. [Google Scholar] [CrossRef]
- Calon, T.G.A.; Johansson, M.L.; de Brujin, A.J.; Berge, H.V.D.; Wagenaar, M.; Eichhorn, E.; Janssen, M.M.; Hof, J.R.; Brunings, J.-W.; Joore, M.A.; et al. Minimally invasive ponto surgery versus the linear incision technique with soft tissue preservation for bone conduction hearing implants: A multicenter randomized controlled trial. Otol. Neurotol. 2018, 39, 882–893. [Google Scholar] [CrossRef]
- Høgsbro, M.; Agger, A.; Johansen, L.V. Successful loading of a bone-anchored hearing implant at two weeks after surgery: Randomized trial of two surgical methods and detailed stability measurements. Otol. Neurotol. 2015, 36, e51–e57. [Google Scholar] [CrossRef]
- Høgsbro, M.; Agger, A.; Johansen, L.V. Successful Loading of a Bone-Anchored Hearing Implant at 1 Week After Surgery. Otol. Neurotol. 2017, 38, 207–211. [Google Scholar] [CrossRef]
- McElveen, J.T., Jr.; Green, J.D., Jr.; Arriaga, M.A.; Slattery, W.H., 3rd. Next-Day Loading of a Bone-Anchored Hearing System: Preliminary Results. Otolaryngol. Head Neck Surg. 2020, 163, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Holgers, K.M.; Tjellstro¨m, A.; Bjursten, L.M.; Erlandsson, B.E. Soft tissue reactions around percutaneous implants: A clinical study of soft tissue conditions around skin-penetrating titanium implants for bone-anchored hearing aids. Am. J. Otol. 1998, 9, 56–59. [Google Scholar]
- Mohamad, S.; Khan, I.; Hey, S.Y.; Hussain, S.S. A systematic review on skin complications of bone-anchored hearing aids in relation to surgical techniques. Eur. Arch. Otorhinolaryngol. 2016, 273, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Kiringoda, R.; Lustig, L.R. A meta-analysis of the complications associated with osseointegrated hearing aids. Otol. Neurotol. 2013, 34, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Candidacy Guide. Oticonmedical.com. 2017. Available online: https://www.oticonmedical.com/-/media/medical/main/files/for-professionals/bahs/audiological-materials/guide/eng/candidacy-guide---english---m52735.pdf?la=en-gb (accessed on 20 January 2021).
- Cochlear. Baha 6 Max Connect. Datasheet; Cochlear Bone Anchored Solutions AB: Mölnlycke, Sweden, 2020. [Google Scholar]
- Compare Baha® Sound Processors|Cochlear. Cochlear. 2018. Available online: https://www.cochlear.com/us/en/home/products-and-accessories/baha-system/baha-sound-processors/compare-baha-sound-processors (accessed on 22 January 2021).
- Mylanus, E.A.; van der Pouw, K.C.; Snik, A.F.; Cremers, C.W. Intraindividual comparison of the bone-anchored hearing aid and air-conduction hearing aids. Arch. Otolaryngol. Head Neck Surg. 1998, 124, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Kruyt, I.J.; Nelissen, R.C.; Mylanus, E.A.M.; Hol, M.K.S. Three-year Outcomes of a Randomized Controlled Trial Comparing a 4.5-mm-Wide to a 3.75-mm-Wide Titanium Implant for Bone Conduction Hearing. Otol. Neurotol. 2018, 39, 609–615. [Google Scholar] [CrossRef]
- Accessdata.fda.gov. 2011. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf11/K110831.pdf (accessed on 22 February 2021).
- Oticon Ponto MRI Safety/Security Control Information. Oticonmedical.com. 2016. Available online: https://www.oticonmedical.com/-/media/medical/main/files/bahs/users-and-candidates/mri-security-card/eng/mri-security-card---english---m52283.pdf (accessed on 22 January 2021).
- CochlearTM Osia ® 2 Sound Processor User Manual. Cochlear.com. Available online: https://www.cochlear.com/e33e12e0-896e-4bac-baa3-f35683a95336/P1600518_D1600539-V2_Osia_2_SP_UM_EN_US.pdf?MOD=AJPERES (accessed on 10 March 2021).
- Product Specification: Medtronic Alpha 2 MPO ePlusTM. Asiapac.medtronic.com. 2017. Available online: https://asiapac.medtronic.com/content/dam/medtronic-com/us-en/patients/treatments-therapies/bone-conduction/documents/alpha-2-mpo-eplus-spec-sheet.pdf (accessed on 21 January 2021).
- CochlearTM Baha® Attract System: Radiographers Instructions for MRI. Cochlear.com. Published 2015. 2015. Available online: https://www.cochlear.com/f5917ef2-bb35-4307-b330-8c15ffdd993c/BUN264+ISS2+APR15+Baha+Attract+Radiographers+Instructions+for+MRI.pdf (accessed on 8 March 2021).
- CochlearTM Osia® System-Candidate Selection Guide. Cochlear.com. 2019. Available online: https://www.cochlear.com/2bae95f1-5a89-405c-8733-25d28b1e3c4e/OSI007-ISS1-DEC19-Osia-Candidate-Selection-Guide.pdf (accessed on 21 January 2021).
- Technical Specifications: CochlearTM Osia® 2 System. Cochlear.com. 2019. Available online: https://www.cochlear.com/b2f659ec-ca9a-4fad-b7a6-b929e6eaa078/OSI001-ISS1-NOV19-Osia-System-Tech-Spec.pdf (accessed on 8 March 2021).
- CochlearTM Osia® Magnetic Resonance Imaging (MRI) Guidelines. Cochlear.com. 2019. Available online: https://www.cochlear.com/ce7aa1b1-2862-4bcf-a9aa-491707b3556a/P1638364_D1638388-V3_Osia_MRI_Guidelines_EN-US%5B1%5D.pdf (accessed on 22 January 2021).
- MRI Technologist’s Guide: Medtronic Magnetic Implant Precautions. Medtronic.com. 2017. Available online: https://www.medtronic.com/content/dam/medtronic-com/us-en/patients/treatments-therapies/bone-conduction/documents/alpha-2-mpo-eplus-mri-tech-guide.pdf (accessed on 20 January 2021).
- BCI 602: Active Bone Conduction Implant-BONEBRIDGE System. Sf.cdn.medel.com. 2019. Available online: https://sf.cdn.medel.com/docs/librariesprovider2/product/bci602/29214ce_r2_0-bci-602fs-web.pdf (accessed on 21 January 2021).
- MED-EL. BONEBRIDGE SAMBA 2 Audio Processor–Instructions for Use; MED-EL: Innsbruck, Austria, 2020. [Google Scholar]
- ADHEAR System-Including the ADHEAR Audio Processor and the ADHEAR Adhesive Adapter. S3.medel.com. Available online: https://s3.medel.com/pdf/28867_30_ADHEAR_Factsheet-EN.pdf (accessed on 23 January 2021).
- Surgery Guide: A Bone Conduction Hearing Solution-Cochlear™ Baha® DermaLock™ Surgical Procedure. Cochlear.com. 2015. Available online: https://www.cochlear.com/66b43e66-3e0b-453b-9751-bc904f3961fd/BUN128+ISS4+NOV30+-+Baha+Connect+Surgery+Guide+FINAL.pdf (accessed on 8 March 2021).
- Chen, S.; Mancuso, D.; Lalwani, A. Skin Necrosis After Implantation with the BAHA Attract: A Case Report and Review of the Literature. Otol Neurotol. 2017, 38, 364–367. [Google Scholar] [CrossRef]
- Cooper, T.; McDonald, B.; Ho, A. Passive Transcutaneous Bone Conduction Hearing Implants: A Systematic Review. Otol. Neurotol. 2017, 38, 1225–1232. [Google Scholar] [CrossRef]
- Surgery Guide: CochlearTM Baha® Attract System Surgical Procedure. Cochlear.com. 2017. Available online: https://www.cochlear.com/5e7d4527-a3c0-4b19-8814-e7494fdaba07/BUN226-ISS4-APR17-Baha-Attract-Surgery-Guide.pdf (accessed on 8 March 2021).
- den Betsen, C.A.; Monksfuekd, P.; Bosman, A.; Skarzynski, P.H.; Green, K.; Runge, C.; Wigren, S.; Blechert, J.I.; Flynn, M.C.; Mylanus, E.A.M.; et al. Audiological and clinical outcomes of a transcutaneous bone conduction hearing implant: Six-month results from a multicentre study. Clin. Otolaryngol. 2019, 44, 144–157. [Google Scholar]
- Hol, M.K.; Nelissen, R.C.; Agterberg, M.J.; Cremers, C.W.; Snik, A.F. Comparison between a new implantable transcutaneous bone conductor and percutaneous bone-conduction hearing implant. Otol. Neurotol. 2013, 34, 1071–1075. [Google Scholar] [CrossRef]
- Kurz, A.; Flynn, M.; Caversaccio, M.; Kompis, M. Speech understanding with a new implant technology: A comparative study with a new nonskin penetrating Baha system. Biomed. Res. Int. 2014, 2014, 416205. [Google Scholar] [CrossRef] [PubMed]
- CochlearTM Baha® Attract System: Sound Processor Magnet Selection Guide. Cochlear.com. 2016. Available online: https://www.cochlear.com/d41ece87-f6a5-44e3-8f94-53dd6a77edcd/BUN225-ISS3-SEP16-Baha-Attract-SP-Magnet-Selection-Guide.pdf (accessed on 22 January 2021).
- Cedars, E.; Chan, D.; Lao, A.; Hardies, L.; Meyer, A.; Rosbe, K. Conversion of traditional osseointegrated bone-anchored hearing aids to the Baha® attract in four pediatric patients. Int. J. Pediatr. Otorhinolaryngol. 2016, 91, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Bere, Z.; Vass, G.; Perenyi, A.; Tobias, Z.; Rovo, L. Surgical Solution for the Transformation of the Percutaneous Bone Anchored Hearing Aid to a Transcutaneous System in Complicated Cases. J. Int. Adv. Otol. 2020, 16, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Alpha 2 MPO ePLUSTM Candidacy Guide. Medtronic.com. 2017. Available online: https://www.medtronic.com/content/dam/medtronic-com/us-en/patients/treatments-therapies/bone-conduction/documents/alpha-2-mpo-eplus-candidacy-guide.pdf (accessed on 21 January 2021).
- Sprinzl, G.M.; Wolf-Magele, A. The Bonebridge bone conduction hearing implant: Indication criteria, surgery, and a systemic review of the literature. Clin. Otolaryngology. 2016, 42, 131–143. [Google Scholar] [CrossRef]
- Oh, S.J.; Goh, E.K.; Choi, S.W.; Lee, S.; Lee, H.-M.; Lee, I.-W.; Kong, S.-K. Audiologic, surgical and subjective outcomes of active transcutaneous bone conduction implant system (Bonebridge). Int. J. Audiol. 2019, 58, 956–963. [Google Scholar] [CrossRef]
- Carnevale, C.; Thomás-Barberán, M.; Til-Pérez, G.; Sarría-Echegaray, P. The Bonebridge active bone conduction system: A fast and safe technique for a middle fossa approach. J. Laryngol. Otol. 2019, 133, 344–347. [Google Scholar] [CrossRef]
- Mylanus, E.A.M.; Hua, H.; Wigren, S.; Arndt, S.; Skarzynski, P.H.; Telian, S.A.; Briggs, R.J.S. Multicenter Clinical Investigation of a New Active Osseointegrated Steady-State Implant System. Otol. Neurotol. 2020, 41, 1249–1257. [Google Scholar] [CrossRef]
- Calero, D.; Paul, S.; Gesing, A.; Alves, F.; Cordioli, J.A. A technical review and evaluation of implantable sensors for hearing devices. BioMed Eng. OnLine. 2018, 17, 1–23. [Google Scholar] [CrossRef]
- Skarzynski, P.H.; Ratuszniak, A.; Osinska, K.; Koziel, M.; Krol, B.; Cywka, K.B.; Skarzynski, H. A Comparative Study of a Novel Adhesive Bone Conduction Device and Conventional Treatment Options for Conductive Hearing Loss. Otol. Neurotol. 2019, 40, 858–864. [Google Scholar] [CrossRef]
- Accessdata.fda.gov. 2016. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf16/K161123.pdf (accessed on 24 January 2021).
- Popelka, G.R.; Derebery, J.; Blevins, N.H.; Murray, M.; Moore, B.C.; Sweetow, R.W.; Wu, B.; Katsis, M. Preliminary evaluation of a novel bone-conduction device for single-sided deafness. Otol. Neurotol. 2010, 31, 492–497. [Google Scholar] [CrossRef]
- Gurgel, R.K.; Shelton, C. The SoundBite hearing system: Patient-assessed safety and benefit study. Laryngoscope 2013, 123, 2807–2812. [Google Scholar] [CrossRef] [PubMed]
- Sonitus Technologies Wins Multi-Million Dollar DOD Award for ‘Molar Mic’. 11 September 2018. Available online: http://www.sonitustechnologies.com/sonitus-technologies-wins-multi-million-dollar-dod-award-for-molar-mic/ (accessed on 22 February 2021).
- IEC 60529. Degrees of Protection Provided by Enclosures (IP Codes); International Electrotechnical Commision: Geneva, Switzerland, 2011. [Google Scholar]
- CochlearTM Baha® Connect System: Radiographers Instructions for MRI. Cochlear.com. 2015. Available online: https://www.cochlear.com/107fc39f-bf96-47b6-9527-7d603b654344/BUN380+ISS1+AUG15+Radiographers+Instructions.pdf (accessed on 8 March 2021).
- Datasheet: CochlearTM Baha® 6 Max Sound Processor. Cochlear.com. BUN871 ISS1 FEB21. Available online: https://www.cochlear.com/d6cd6d3d-8c98-4fae-b0aa-8a6bcaba405e/BUN871+Cochlear+Baha+6+Max+DataSheet+ISS1.pdf?MOD=AJPERES&CVID=nxbWkhz (accessed on 10 March 2021).
- Featured Accessories. Oticon Medical. 2021. Available online: https://www.oticonmedical.com/us/bone-conduction/solutions/accessories (accessed on 10 March 2021).
- Baha Accessories. Cochlear.com. 2020. Available online: https://store.mycochlear.com/store/index.php/aub2c/baha-implants.html (accessed on 10 March 2021).
- Osia® Smartphone Compatibility. Cochlear.Com. 2019. Available online: https://www.cochlear.com/us/en/home/products-and-accessories/cochlear-osia-system/osia-2/osia-smartphone-compatibility (accessed on 10 March 2021).
- MED-EL. SAMBA 2 GO–Instructions for Use; MED-EL: Innsbruck, Austria, 2020. [Google Scholar]
- MED-EL. ADHEAR: A Revolution in Bone Conduction Technology. Connectivity Information Provided by MED-EL; MED-EL: Innsbruck, Austria, 2020. [Google Scholar]
- Siekkinen, M.; Hiienkari, M.; Nurminen, J.K.; Nieminen, J. How low energy is bluetooth low energy? Comparative measurements with ZigBee/802.15.4. In Proceedings of the 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Paris, France, 14 April 2012; pp. 232–237. [Google Scholar] [CrossRef]
Grade | Description | Management |
---|---|---|
0 | No irritation | Remove epithelial debris if present |
1 | Slight redness | Local treatment |
2 | Red and slightly moist tissue (no granuloma) | Local treatment |
3 | Reddish and moist (may have granulation tissue) | Revision surgery indicated |
4 | Infection | Removal of skin penetrating implant necessary |
Device | Processor | Fitting Range | Frequency Range (DIN45.605) | Peak OFL * at 90 dB SPL | Peak OFL * at 60 dB SPL | Processing Delay | MRI Compatibility | |
---|---|---|---|---|---|---|---|---|
Percutaneous | Ponto † [15,20] | Ponto 3 | BC PTA ≤ 45 dB | 200–9500 Hz | 124 dB | 107 dB | 6 ms | Compatible up to 3 Tesla |
Ponto 3 Power | BC PTA ≤ 55 dB | 260–9600 Hz | 128 dB | 116 dB | 6 ms | |||
Ponto 3 Superpower | BC PTA ≤ 65 dB | 260–9600 Hz | 135 dB | 125 dB | 6 ms | |||
Ponto 4 | BC PTA ≤ 45 dB | 200–9500 Hz | 124 dB | 108 dB | 8 ms | |||
Baha® Connect ‡ [16,17,21,22] | Baha® 5 | BC PTA ≤ 45 dB | 250–7000 Hz | 117 dB | 105 dB | 4.5 ms | Compatible up to 3 Tesla | |
Baha® 5 Power | BC PTA ≤ 55 dB | 250–7000 Hz | 123 dB | 113 dB | 4.5 ms | |||
Baha® 5 SuperPower | BC PTA ≤ 65 dB | 250–7000 Hz | 133 dB | 121 dB | 4.5 ms | |||
Baha® 6 Max | BC PTA ≤ 55 dB | 200–9700 Hz | 121 dB | 108 dB | <6 ms | |||
Transcutaneous Passive | Alpha 2 MPO ° [23] | Alpha 2 MPO ePlusTM | BC PTA ≤ 45 dB (ideal ≤ 35 dB) | 125–8000 Hz | 120 dB | 110 dB | Compatible up to 3 Tesla | |
Baha® Attract ‡ [16,17,22,24] | Baha® 5 | BC PTA ≤ 45 dB | 250–6300 Hz | 114 dB | 104 dB | 4.5 ms | Compatible up to 1.5 Tesla | |
Baha® 5 Power | BC PTA ≤ 55 dB | 250–7000 Hz | 125 dB | 115 dB | 4.5 ms | |||
Baha® 5 SuperPower | BC PTA ≤ 65 dB | 250–7000 Hz | 134 dB | 123 dB | 4.5 ms | |||
Baha® 6 Max | BC PTA ≤ 55 dB | 200–9250 Hz | 121 dB | 108 dB | <6 ms | |||
Transcutaneous Active | Osia® ‡ [25,26,27] | Osia® 2 | BC PTA ≤ 55 dB | 400–7000 Hz | <6 ms | No–internal magnet must be removed | ||
BONEBRIDGETM € [28,29,30] | SAMBA 2 | BC PTA ≤ 45 dB | 250–8000 Hz | 117 dB | 8 ms | Compatible up to 1.5 Tesla | ||
Adhesive | ADHEAR € [31] | ADHEAR | BC PTA ≤ 25 dB | 250–8000 Hz | 124 dB | 10 ms | Yes–remove external device |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellsperman, S.E.; Nairn, E.M.; Stucken, E.Z. Review of Bone Conduction Hearing Devices. Audiol. Res. 2021, 11, 207-219. https://doi.org/10.3390/audiolres11020019
Ellsperman SE, Nairn EM, Stucken EZ. Review of Bone Conduction Hearing Devices. Audiology Research. 2021; 11(2):207-219. https://doi.org/10.3390/audiolres11020019
Chicago/Turabian StyleEllsperman, Susan E., Emily M. Nairn, and Emily Z. Stucken. 2021. "Review of Bone Conduction Hearing Devices" Audiology Research 11, no. 2: 207-219. https://doi.org/10.3390/audiolres11020019
APA StyleEllsperman, S. E., Nairn, E. M., & Stucken, E. Z. (2021). Review of Bone Conduction Hearing Devices. Audiology Research, 11(2), 207-219. https://doi.org/10.3390/audiolres11020019