Review of Bone Conduction Hearing Devices
Abstract
:1. Introduction
2. Bone Conduction Physiology
3. Currently Available Devices
3.1. Surgically Implanted Devices
3.1.1. Percutaneous Devices
3.1.2. Passive Transcutaneous Devices
3.1.3. Active Transcutaneous Devices
3.2. Extrinsic Devices
Device | Processor | Size | Weight | Battery Type | Average Battery Life | IP Rating [53] | |
---|---|---|---|---|---|---|---|
Percutaneous | Ponto [15,21] | Ponto 3 | 3.4 × 2.1 × 1.4 cm | 14 g (without battery) | 13 | 70–130 h | IP 57 |
Ponto 3 Power | 17 g (without battery) | 675 | 70–150 h | IP 57 | |||
Ponto 3 Superpower | 17 g (without battery) | 675 HP | 35–80 h | IP 57 | |||
Ponto 4 | 2.6 × 1.9 × 1.1 cm | 13.2 g (without battery) | 312 | 48–70 h | IP 57 | ||
Baha® Connect [16,17,54,55] | Baha® 5 | 2.6 × 1.9 × 1.2 cm | 9.8 g (without battery) | 312 | 36–100 h | IP 63 | |
Baha® 5 Power | 3.6 × 2.2 × 1.3 cm | 17 g (without battery) | 675 | 80–220 h | IP 63 | ||
Baha® 5 SuperPower | 3.9 × 4.8 × 0.9 cm | 14.4 g (actuator); 9.8 −12.7 g (processing unit + battery) | Rechargeable lithium | ≤16 h (mini) ≤32 h (standard) | IP 63 | ||
Baha® 6 Max | 2.6 × 1.9 × 1.2 cm | 11.5 g (without battery) | 312 | 44–132 h | IP 68 | ||
Transcutaneous Passive | Alpha 2 MPO [23] | Alpha 2 MPO ePlusTM | 4.1 cm × 1.63 cm | 13 or rechargeable | 320 h or 32 h (rechargeable) | IP 22 | |
Baha® Attract [16,17,24] | Same as Baha® Connect | Same as above | |||||
Transcutaneous Active | Osia® [22,25,26,27] | Osia® 2 | 3.6 × 3.2 x 1.04 | 7.8 g (with magnet; without battery) | 675 HP | IP 52; IP 68 (with cover) | |
BonebridgeTM [28,29,30] | SAMBA 2 | 3.0 × 3.5 × 1.0 cm | 7.5 g (with magnet; without battery) * | 675 | 133–210 h | IP 54; IP 68 (with cover) | |
Adhesive | ADHEAR [31] | ADHEAR | 0.6 × 3.0 cm (adhesive) 1.5 × 3.5 cm (processor) | 13.5 g (without battery) | 13 | Up to 300 h |
Device | Processor | Wireless Accessories | Streaming Method | Direct iPhone Streaming | Direct Android Streaming | |
---|---|---|---|---|---|---|
Percutaneous | Ponto [15,53,56] | Ponto 3 | Ponto 3
| NFMI on neck loop; 2.4 GHz to devices | ||
Ponto 3 Power | ||||||
Ponto 3 Superpower | ||||||
Ponto 4 | 2.4 GHz | X | ||||
Baha® Connect [16,17,21,54,55,57] | Baha® 5, Baha® 5 Power, and Baha® 5 SuperPower | Baha 5 and 6
| 2.4 GHz | X | ||
Baha® 6 Max | 2.4 GHz; Bluetooth LE | X | X | |||
Transcutaneous Passive | Alpha 2 MPO [23] | Alpha 2 MPO ePlusTM | None Note that DAI can be used for wired streaming and FM systems | DAI | ||
Baha® Attract [7,16,17,24] | Baha® 5, Baha® 5 Power, and Baha® 5 SuperPower; Baha® 6 Max | Same as above | ||||
Transcutaneous Active | Osia® [25,26,27,58] | Osia® 2 | Osia® Smart App TrueWirelessTM Phone Clip Mini mic 2 Remote control 2 TV streamer | 2.4 GHz | X | |
BONEBRIDGETM [9,28,29,30,59] | SAMBA 2 | SAMBA2GO SAMBA 2 Remote App Note that DAI can be used for wired streaming and FM systems | NFMI on neck loop; Bluetooth or DAI to devices | |||
Adhesive | ADHEAR [31,60] | ADHEAR | None Note that DAI can be used for wired streaming and FM systems | DAI |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mudry, A.; Tjellström, A. Historical background of bone conduction hearing devices and bone conduction hearing aids. Adv. Otorhinolaryngol. 2011, 71, 1–9. [Google Scholar]
- Tjellström, A.; Lindström, J.; Hallén, O.; Albrektsson, T.; Brånemark, P.I. Osseointegrated titanium implants in the temporal bone. A clinical study on bone-anchored hearing aids. Am. J. Otol. 1981, 2, 304–310. [Google Scholar] [PubMed]
- Brånemark, P.I.; Hansson, B.O.; Adell, R.; Breine, U.; Lindström, J.; Hallén, O.; Ohman, A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand. J. Plast Reconstr. Surg. Suppl. 1977, 16, 1–132. [Google Scholar] [PubMed]
- Dun, C.A.J.; Faber, H.T.; de Wolf, M.J.F.; Cremers, C.W.R.J.; Hol, M.K.S. An overview of different systems: The bone-anchored hearing aid. Adv. Otorhinolaryngol. 2011, 71, 22–31. [Google Scholar] [PubMed]
- Stenfelt, S. Acoustic and physiologic aspects of bone conduction hearing. Adv. Otorhinolaryngol. 2011, 71, 10–21. [Google Scholar] [PubMed] [Green Version]
- Stenfelt, S.; Goode, R.L. Bone-conducted sound: Physiological and clinical aspects. Otol. Neurotol. 2005, 26, 1245–1261. [Google Scholar] [CrossRef] [PubMed]
- Verstraeten, N.; Zarowski, A.J.; Somers, T.; Riff, D.; Offeciers, E.F. Comparison of the audiologic results obtained with the bone-anchored hearing aid attached to the headband, the testband, and to the “snap” abutment. Otol. Neurotol. 2009, 30, 70–75. [Google Scholar] [CrossRef]
- Calon, T.G.A.; Johansson, M.L.; de Brujin, A.J.; Berge, H.V.D.; Wagenaar, M.; Eichhorn, E.; Janssen, M.M.; Hof, J.R.; Brunings, J.-W.; Joore, M.A.; et al. Minimally invasive ponto surgery versus the linear incision technique with soft tissue preservation for bone conduction hearing implants: A multicenter randomized controlled trial. Otol. Neurotol. 2018, 39, 882–893. [Google Scholar] [CrossRef]
- Høgsbro, M.; Agger, A.; Johansen, L.V. Successful loading of a bone-anchored hearing implant at two weeks after surgery: Randomized trial of two surgical methods and detailed stability measurements. Otol. Neurotol. 2015, 36, e51–e57. [Google Scholar] [CrossRef]
- Høgsbro, M.; Agger, A.; Johansen, L.V. Successful Loading of a Bone-Anchored Hearing Implant at 1 Week After Surgery. Otol. Neurotol. 2017, 38, 207–211. [Google Scholar] [CrossRef]
- McElveen, J.T., Jr.; Green, J.D., Jr.; Arriaga, M.A.; Slattery, W.H., 3rd. Next-Day Loading of a Bone-Anchored Hearing System: Preliminary Results. Otolaryngol. Head Neck Surg. 2020, 163, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Holgers, K.M.; Tjellstro¨m, A.; Bjursten, L.M.; Erlandsson, B.E. Soft tissue reactions around percutaneous implants: A clinical study of soft tissue conditions around skin-penetrating titanium implants for bone-anchored hearing aids. Am. J. Otol. 1998, 9, 56–59. [Google Scholar]
- Mohamad, S.; Khan, I.; Hey, S.Y.; Hussain, S.S. A systematic review on skin complications of bone-anchored hearing aids in relation to surgical techniques. Eur. Arch. Otorhinolaryngol. 2016, 273, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Kiringoda, R.; Lustig, L.R. A meta-analysis of the complications associated with osseointegrated hearing aids. Otol. Neurotol. 2013, 34, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Candidacy Guide. Oticonmedical.com. 2017. Available online: https://www.oticonmedical.com/-/media/medical/main/files/for-professionals/bahs/audiological-materials/guide/eng/candidacy-guide---english---m52735.pdf?la=en-gb (accessed on 20 January 2021).
- Cochlear. Baha 6 Max Connect. Datasheet; Cochlear Bone Anchored Solutions AB: Mölnlycke, Sweden, 2020. [Google Scholar]
- Compare Baha® Sound Processors|Cochlear. Cochlear. 2018. Available online: https://www.cochlear.com/us/en/home/products-and-accessories/baha-system/baha-sound-processors/compare-baha-sound-processors (accessed on 22 January 2021).
- Mylanus, E.A.; van der Pouw, K.C.; Snik, A.F.; Cremers, C.W. Intraindividual comparison of the bone-anchored hearing aid and air-conduction hearing aids. Arch. Otolaryngol. Head Neck Surg. 1998, 124, 271–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruyt, I.J.; Nelissen, R.C.; Mylanus, E.A.M.; Hol, M.K.S. Three-year Outcomes of a Randomized Controlled Trial Comparing a 4.5-mm-Wide to a 3.75-mm-Wide Titanium Implant for Bone Conduction Hearing. Otol. Neurotol. 2018, 39, 609–615. [Google Scholar] [CrossRef]
- Accessdata.fda.gov. 2011. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf11/K110831.pdf (accessed on 22 February 2021).
- Oticon Ponto MRI Safety/Security Control Information. Oticonmedical.com. 2016. Available online: https://www.oticonmedical.com/-/media/medical/main/files/bahs/users-and-candidates/mri-security-card/eng/mri-security-card---english---m52283.pdf (accessed on 22 January 2021).
- CochlearTM Osia ® 2 Sound Processor User Manual. Cochlear.com. Available online: https://www.cochlear.com/e33e12e0-896e-4bac-baa3-f35683a95336/P1600518_D1600539-V2_Osia_2_SP_UM_EN_US.pdf?MOD=AJPERES (accessed on 10 March 2021).
- Product Specification: Medtronic Alpha 2 MPO ePlusTM. Asiapac.medtronic.com. 2017. Available online: https://asiapac.medtronic.com/content/dam/medtronic-com/us-en/patients/treatments-therapies/bone-conduction/documents/alpha-2-mpo-eplus-spec-sheet.pdf (accessed on 21 January 2021).
- CochlearTM Baha® Attract System: Radiographers Instructions for MRI. Cochlear.com. Published 2015. 2015. Available online: https://www.cochlear.com/f5917ef2-bb35-4307-b330-8c15ffdd993c/BUN264+ISS2+APR15+Baha+Attract+Radiographers+Instructions+for+MRI.pdf (accessed on 8 March 2021).
- CochlearTM Osia® System-Candidate Selection Guide. Cochlear.com. 2019. Available online: https://www.cochlear.com/2bae95f1-5a89-405c-8733-25d28b1e3c4e/OSI007-ISS1-DEC19-Osia-Candidate-Selection-Guide.pdf (accessed on 21 January 2021).
- Technical Specifications: CochlearTM Osia® 2 System. Cochlear.com. 2019. Available online: https://www.cochlear.com/b2f659ec-ca9a-4fad-b7a6-b929e6eaa078/OSI001-ISS1-NOV19-Osia-System-Tech-Spec.pdf (accessed on 8 March 2021).
- CochlearTM Osia® Magnetic Resonance Imaging (MRI) Guidelines. Cochlear.com. 2019. Available online: https://www.cochlear.com/ce7aa1b1-2862-4bcf-a9aa-491707b3556a/P1638364_D1638388-V3_Osia_MRI_Guidelines_EN-US%5B1%5D.pdf (accessed on 22 January 2021).
- MRI Technologist’s Guide: Medtronic Magnetic Implant Precautions. Medtronic.com. 2017. Available online: https://www.medtronic.com/content/dam/medtronic-com/us-en/patients/treatments-therapies/bone-conduction/documents/alpha-2-mpo-eplus-mri-tech-guide.pdf (accessed on 20 January 2021).
- BCI 602: Active Bone Conduction Implant-BONEBRIDGE System. Sf.cdn.medel.com. 2019. Available online: https://sf.cdn.medel.com/docs/librariesprovider2/product/bci602/29214ce_r2_0-bci-602fs-web.pdf (accessed on 21 January 2021).
- MED-EL. BONEBRIDGE SAMBA 2 Audio Processor–Instructions for Use; MED-EL: Innsbruck, Austria, 2020. [Google Scholar]
- ADHEAR System-Including the ADHEAR Audio Processor and the ADHEAR Adhesive Adapter. S3.medel.com. Available online: https://s3.medel.com/pdf/28867_30_ADHEAR_Factsheet-EN.pdf (accessed on 23 January 2021).
- Surgery Guide: A Bone Conduction Hearing Solution-Cochlear™ Baha® DermaLock™ Surgical Procedure. Cochlear.com. 2015. Available online: https://www.cochlear.com/66b43e66-3e0b-453b-9751-bc904f3961fd/BUN128+ISS4+NOV30+-+Baha+Connect+Surgery+Guide+FINAL.pdf (accessed on 8 March 2021).
- Chen, S.; Mancuso, D.; Lalwani, A. Skin Necrosis After Implantation with the BAHA Attract: A Case Report and Review of the Literature. Otol Neurotol. 2017, 38, 364–367. [Google Scholar] [CrossRef]
- Cooper, T.; McDonald, B.; Ho, A. Passive Transcutaneous Bone Conduction Hearing Implants: A Systematic Review. Otol. Neurotol. 2017, 38, 1225–1232. [Google Scholar] [CrossRef]
- Surgery Guide: CochlearTM Baha® Attract System Surgical Procedure. Cochlear.com. 2017. Available online: https://www.cochlear.com/5e7d4527-a3c0-4b19-8814-e7494fdaba07/BUN226-ISS4-APR17-Baha-Attract-Surgery-Guide.pdf (accessed on 8 March 2021).
- den Betsen, C.A.; Monksfuekd, P.; Bosman, A.; Skarzynski, P.H.; Green, K.; Runge, C.; Wigren, S.; Blechert, J.I.; Flynn, M.C.; Mylanus, E.A.M.; et al. Audiological and clinical outcomes of a transcutaneous bone conduction hearing implant: Six-month results from a multicentre study. Clin. Otolaryngol. 2019, 44, 144–157. [Google Scholar]
- Hol, M.K.; Nelissen, R.C.; Agterberg, M.J.; Cremers, C.W.; Snik, A.F. Comparison between a new implantable transcutaneous bone conductor and percutaneous bone-conduction hearing implant. Otol. Neurotol. 2013, 34, 1071–1075. [Google Scholar] [CrossRef]
- Kurz, A.; Flynn, M.; Caversaccio, M.; Kompis, M. Speech understanding with a new implant technology: A comparative study with a new nonskin penetrating Baha system. Biomed. Res. Int. 2014, 2014, 416205. [Google Scholar] [CrossRef] [PubMed]
- CochlearTM Baha® Attract System: Sound Processor Magnet Selection Guide. Cochlear.com. 2016. Available online: https://www.cochlear.com/d41ece87-f6a5-44e3-8f94-53dd6a77edcd/BUN225-ISS3-SEP16-Baha-Attract-SP-Magnet-Selection-Guide.pdf (accessed on 22 January 2021).
- Cedars, E.; Chan, D.; Lao, A.; Hardies, L.; Meyer, A.; Rosbe, K. Conversion of traditional osseointegrated bone-anchored hearing aids to the Baha® attract in four pediatric patients. Int. J. Pediatr. Otorhinolaryngol. 2016, 91, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Bere, Z.; Vass, G.; Perenyi, A.; Tobias, Z.; Rovo, L. Surgical Solution for the Transformation of the Percutaneous Bone Anchored Hearing Aid to a Transcutaneous System in Complicated Cases. J. Int. Adv. Otol. 2020, 16, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Alpha 2 MPO ePLUSTM Candidacy Guide. Medtronic.com. 2017. Available online: https://www.medtronic.com/content/dam/medtronic-com/us-en/patients/treatments-therapies/bone-conduction/documents/alpha-2-mpo-eplus-candidacy-guide.pdf (accessed on 21 January 2021).
- Sprinzl, G.M.; Wolf-Magele, A. The Bonebridge bone conduction hearing implant: Indication criteria, surgery, and a systemic review of the literature. Clin. Otolaryngology. 2016, 42, 131–143. [Google Scholar] [CrossRef]
- Oh, S.J.; Goh, E.K.; Choi, S.W.; Lee, S.; Lee, H.-M.; Lee, I.-W.; Kong, S.-K. Audiologic, surgical and subjective outcomes of active transcutaneous bone conduction implant system (Bonebridge). Int. J. Audiol. 2019, 58, 956–963. [Google Scholar] [CrossRef]
- Carnevale, C.; Thomás-Barberán, M.; Til-Pérez, G.; Sarría-Echegaray, P. The Bonebridge active bone conduction system: A fast and safe technique for a middle fossa approach. J. Laryngol. Otol. 2019, 133, 344–347. [Google Scholar] [CrossRef]
- Mylanus, E.A.M.; Hua, H.; Wigren, S.; Arndt, S.; Skarzynski, P.H.; Telian, S.A.; Briggs, R.J.S. Multicenter Clinical Investigation of a New Active Osseointegrated Steady-State Implant System. Otol. Neurotol. 2020, 41, 1249–1257. [Google Scholar] [CrossRef]
- Calero, D.; Paul, S.; Gesing, A.; Alves, F.; Cordioli, J.A. A technical review and evaluation of implantable sensors for hearing devices. BioMed Eng. OnLine. 2018, 17, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Skarzynski, P.H.; Ratuszniak, A.; Osinska, K.; Koziel, M.; Krol, B.; Cywka, K.B.; Skarzynski, H. A Comparative Study of a Novel Adhesive Bone Conduction Device and Conventional Treatment Options for Conductive Hearing Loss. Otol. Neurotol. 2019, 40, 858–864. [Google Scholar] [CrossRef]
- Accessdata.fda.gov. 2016. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf16/K161123.pdf (accessed on 24 January 2021).
- Popelka, G.R.; Derebery, J.; Blevins, N.H.; Murray, M.; Moore, B.C.; Sweetow, R.W.; Wu, B.; Katsis, M. Preliminary evaluation of a novel bone-conduction device for single-sided deafness. Otol. Neurotol. 2010, 31, 492–497. [Google Scholar] [CrossRef]
- Gurgel, R.K.; Shelton, C. The SoundBite hearing system: Patient-assessed safety and benefit study. Laryngoscope 2013, 123, 2807–2812. [Google Scholar] [CrossRef] [PubMed]
- Sonitus Technologies Wins Multi-Million Dollar DOD Award for ‘Molar Mic’. 11 September 2018. Available online: http://www.sonitustechnologies.com/sonitus-technologies-wins-multi-million-dollar-dod-award-for-molar-mic/ (accessed on 22 February 2021).
- IEC 60529. Degrees of Protection Provided by Enclosures (IP Codes); International Electrotechnical Commision: Geneva, Switzerland, 2011. [Google Scholar]
- CochlearTM Baha® Connect System: Radiographers Instructions for MRI. Cochlear.com. 2015. Available online: https://www.cochlear.com/107fc39f-bf96-47b6-9527-7d603b654344/BUN380+ISS1+AUG15+Radiographers+Instructions.pdf (accessed on 8 March 2021).
- Datasheet: CochlearTM Baha® 6 Max Sound Processor. Cochlear.com. BUN871 ISS1 FEB21. Available online: https://www.cochlear.com/d6cd6d3d-8c98-4fae-b0aa-8a6bcaba405e/BUN871+Cochlear+Baha+6+Max+DataSheet+ISS1.pdf?MOD=AJPERES&CVID=nxbWkhz (accessed on 10 March 2021).
- Featured Accessories. Oticon Medical. 2021. Available online: https://www.oticonmedical.com/us/bone-conduction/solutions/accessories (accessed on 10 March 2021).
- Baha Accessories. Cochlear.com. 2020. Available online: https://store.mycochlear.com/store/index.php/aub2c/baha-implants.html (accessed on 10 March 2021).
- Osia® Smartphone Compatibility. Cochlear.Com. 2019. Available online: https://www.cochlear.com/us/en/home/products-and-accessories/cochlear-osia-system/osia-2/osia-smartphone-compatibility (accessed on 10 March 2021).
- MED-EL. SAMBA 2 GO–Instructions for Use; MED-EL: Innsbruck, Austria, 2020. [Google Scholar]
- MED-EL. ADHEAR: A Revolution in Bone Conduction Technology. Connectivity Information Provided by MED-EL; MED-EL: Innsbruck, Austria, 2020. [Google Scholar]
- Siekkinen, M.; Hiienkari, M.; Nurminen, J.K.; Nieminen, J. How low energy is bluetooth low energy? Comparative measurements with ZigBee/802.15.4. In Proceedings of the 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Paris, France, 14 April 2012; pp. 232–237. [Google Scholar] [CrossRef]
Grade | Description | Management |
---|---|---|
0 | No irritation | Remove epithelial debris if present |
1 | Slight redness | Local treatment |
2 | Red and slightly moist tissue (no granuloma) | Local treatment |
3 | Reddish and moist (may have granulation tissue) | Revision surgery indicated |
4 | Infection | Removal of skin penetrating implant necessary |
Device | Processor | Fitting Range | Frequency Range (DIN45.605) | Peak OFL * at 90 dB SPL | Peak OFL * at 60 dB SPL | Processing Delay | MRI Compatibility | |
---|---|---|---|---|---|---|---|---|
Percutaneous | Ponto † [15,20] | Ponto 3 | BC PTA ≤ 45 dB | 200–9500 Hz | 124 dB | 107 dB | 6 ms | Compatible up to 3 Tesla |
Ponto 3 Power | BC PTA ≤ 55 dB | 260–9600 Hz | 128 dB | 116 dB | 6 ms | |||
Ponto 3 Superpower | BC PTA ≤ 65 dB | 260–9600 Hz | 135 dB | 125 dB | 6 ms | |||
Ponto 4 | BC PTA ≤ 45 dB | 200–9500 Hz | 124 dB | 108 dB | 8 ms | |||
Baha® Connect ‡ [16,17,21,22] | Baha® 5 | BC PTA ≤ 45 dB | 250–7000 Hz | 117 dB | 105 dB | 4.5 ms | Compatible up to 3 Tesla | |
Baha® 5 Power | BC PTA ≤ 55 dB | 250–7000 Hz | 123 dB | 113 dB | 4.5 ms | |||
Baha® 5 SuperPower | BC PTA ≤ 65 dB | 250–7000 Hz | 133 dB | 121 dB | 4.5 ms | |||
Baha® 6 Max | BC PTA ≤ 55 dB | 200–9700 Hz | 121 dB | 108 dB | <6 ms | |||
Transcutaneous Passive | Alpha 2 MPO ° [23] | Alpha 2 MPO ePlusTM | BC PTA ≤ 45 dB (ideal ≤ 35 dB) | 125–8000 Hz | 120 dB | 110 dB | Compatible up to 3 Tesla | |
Baha® Attract ‡ [16,17,22,24] | Baha® 5 | BC PTA ≤ 45 dB | 250–6300 Hz | 114 dB | 104 dB | 4.5 ms | Compatible up to 1.5 Tesla | |
Baha® 5 Power | BC PTA ≤ 55 dB | 250–7000 Hz | 125 dB | 115 dB | 4.5 ms | |||
Baha® 5 SuperPower | BC PTA ≤ 65 dB | 250–7000 Hz | 134 dB | 123 dB | 4.5 ms | |||
Baha® 6 Max | BC PTA ≤ 55 dB | 200–9250 Hz | 121 dB | 108 dB | <6 ms | |||
Transcutaneous Active | Osia® ‡ [25,26,27] | Osia® 2 | BC PTA ≤ 55 dB | 400–7000 Hz | <6 ms | No–internal magnet must be removed | ||
BONEBRIDGETM € [28,29,30] | SAMBA 2 | BC PTA ≤ 45 dB | 250–8000 Hz | 117 dB | 8 ms | Compatible up to 1.5 Tesla | ||
Adhesive | ADHEAR € [31] | ADHEAR | BC PTA ≤ 25 dB | 250–8000 Hz | 124 dB | 10 ms | Yes–remove external device |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellsperman, S.E.; Nairn, E.M.; Stucken, E.Z. Review of Bone Conduction Hearing Devices. Audiol. Res. 2021, 11, 207-219. https://doi.org/10.3390/audiolres11020019
Ellsperman SE, Nairn EM, Stucken EZ. Review of Bone Conduction Hearing Devices. Audiology Research. 2021; 11(2):207-219. https://doi.org/10.3390/audiolres11020019
Chicago/Turabian StyleEllsperman, Susan E., Emily M. Nairn, and Emily Z. Stucken. 2021. "Review of Bone Conduction Hearing Devices" Audiology Research 11, no. 2: 207-219. https://doi.org/10.3390/audiolres11020019
APA StyleEllsperman, S. E., Nairn, E. M., & Stucken, E. Z. (2021). Review of Bone Conduction Hearing Devices. Audiology Research, 11(2), 207-219. https://doi.org/10.3390/audiolres11020019