Tourniquet Restriction of External Carotid Artery vs. Internal Maxillary Artery Ligation for Bleeding Control in Total Maxillectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Surgical Techniques
2.2.1. IMA Ligation
2.2.2. Rummel Tourniquet Restriction of the ECA
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, J.; Park, H.S. The clinical anatomy of the maxillary artery in the pterygopalatine fossa. J. Oral Maxillofac. Surg. 2003, 61, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Lanigan, D.T.; Hey, J.H.; West, R.A. Major vascular complications of orthognathic surgery: False aneurysms and arteriovenous fistulas following orthognathic surgery. J. Oral Maxillofac Surg. 1991, 49, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Lanigan, D.T.; Hey, J.H.; West, R.A. Major vascular complications of orthognathic surgery: Hemorrhage associated with Le Fort I osteotomies. J. Oral Maxillofac. Surg. 1990, 48, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.P.; Yang, T.L.; Ko, J.Y.; Lou, P.J. Ligation of the internal maxillary artery to reduce intraoperative bleeding during total maxillectomy. Laryngoscope 2007, 117, 1978–1981. [Google Scholar] [CrossRef]
- Erin, R.; İssak, A.; Baki Erin, K.; Kulaksiz, D.; Bayoğlu Tekin, Y. The efficiency of temporary uterine artery ligation on prevention of the bleeding in cesarean section. Gynecol. Obstet. Investig. 2021, 86, 486–493. [Google Scholar] [CrossRef]
- Hashiguchi, M. Temporary cross-clamping of the infrarenal abdominal aorta during cesarean hysterectomy to control operative blood loss. Surg. J. 2021, 7, S7–S10. [Google Scholar] [CrossRef] [PubMed]
- Votto, S.S.; Read-Fuller, A.; Reddy, L. Lip augmentation. Oral Maxillofac. Surg. Clin. North Am. 2021, 33, 185–195. [Google Scholar] [CrossRef]
- Sashi, R.; Tomura, N.; Hashimoto, M.; Kobayashi, M.; Watarai, J. Angiographic anatomy of the first and second segments of the maxillary artery. Radiat. Med. 1996, 14, 133–138. [Google Scholar]
- Pretterklieber, M.L.; Skopakoff, C.; Mayr, R. The human maxillary artery reinvestigated: I. Topographical relations in the infratemporal fossa. Acta. Anat. 1991, 142, 281–287. [Google Scholar] [CrossRef]
- Krizan, Z. Contribution to the descriptive and topographic anatomy of the maxillary artery. Acta. Anat. 1960, 41, 319–333. [Google Scholar]
- Crile, G. Landmark article Dec 1, 1906: Excision of cancer of the head and neck. With special reference to the plan of dissection based on one hundred and thirty-two operations. By George Crile. JAMA 1987, 258, 3286–3293. [Google Scholar] [CrossRef] [PubMed]
- Bocca, E.; Pignataro, O. A conservation technique in radical neck dissection. Ann. Otol. Rhinol. Laryngol. 1967, 76, 975–987. [Google Scholar] [CrossRef] [PubMed]
- Roger, V.; Hitier, M.; Robard, L.; Babin, E. Morbidity of neck dissection submuscular recess (sublevel IIb) in head and neck cancer. Rev. Laryngol. Otol. Rhinol. 2014, 135, 135–140. [Google Scholar]
- Byers, R.M.; Clayman, G.L.; McGill, D.; Andrews, T.; Kare, R.P.; Roberts, D.B.; Goepfert, H. Selective neck dissections for squamous carcinoma of the upper aerodigestive tract: Patterns of regional failure. Head Neck 1999, 21, 499–505. [Google Scholar] [CrossRef]
- Hwang, K.; Kim, J.Y.; Lim, J.H. Anatomy of the platysma muscle. J. Craniofac. Surg. 2017, 28, 539–542. [Google Scholar] [CrossRef]
- Hoerter, J.E.; Patel, B.C. Anatomy, Head and Neck, Platysma. StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545294/ (accessed on 13 August 2024). [PubMed]
- Riffat, F.; Buchanan, M.A.; Mahrous, A.K.; Fish, B.M.; Jani, P. Oncological safety of the Hayes-Martin manoeuvre in neck dissections for node-positive oropharyngeal squamous cell carcinoma. J. Laryngol. Otol. 2012, 126, 1045–1048. [Google Scholar] [CrossRef]
- Rodrigo, J.P.; Grilli, G.; Shah, J.P.; Medina, J.E.; Robbins, K.T.; Takes, R.P.; Hamoir, M.; Kowalski, L.P.; Suárez, C.; López, F.; et al. Selective neck dissection in surgically treated head and neck squamous cell carcinoma patients with a clinically positive neck: Systematic review. Eur. J. Surg. Oncol. 2018, 44, 395–403. [Google Scholar] [CrossRef]
- Lanišnik, B. Different branching patterns of the spinal accessory nerve: Impact on neck dissection technique and postoperative shoulder function. Curr. Opin. Otolaryngol. Head Neck Surg. 2017, 25, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.B.; Boone, J.L.; Schmalbach, C.E.; Miller, F.R. Intraoperative relationship of the spinal accessory nerve to the internal jugular vein: Variation from cadaver studies. Am. J. Otolaryngol. 2013, 34, 527–529. [Google Scholar] [CrossRef]
- David, M.; Mayaud, A.; Timochenko, A.; Asanau, A.; Prades, J.M. Topographical and functional anatomy of trapezius muscle innervation by spinal accessory nerve and C2 to C4 nerves of cervical plexus. Surg. Radiol. Anat. 2016, 38, 917–922. [Google Scholar] [CrossRef]
- Wistermayer, P.; Anderson, K.G. Radical Neck Dissection; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK563186/ (accessed on 13 August 2024). [PubMed]
- Hemmat, S.M.; Wang, S.J.; Ryan, W.R. Neck dissection technique commonality and variance: A survey on neck dissection technique preferences among head and neck oncologic surgeons in the American Head and Neck Society. Int. Arch. Otorhinolaryngol. 2017, 21, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Myers, E.N. Chapter 78, Neck Dissection. In Operative Otolaryngology: Head and Neck Surgery, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 1, pp. 679–708. [Google Scholar]
- Medina, J.E. Neck Dissection. In Head & Neck Surgery-Otolaryngology, 4th ed.; Bailey, B.J., Johnson, J.T., Eds.; Lippincoott Williams & Wilkins: Philadelphia, PA, USA, 2006; pp. 1585–1609. [Google Scholar]
- Yang, S.; Wang, X.; Su, J.Z.; Yu, G.Y. Rate of submandibular gland involvement in oral squamous cell carcinoma. J. Oral Maxillofac. Surg. 2019, 77, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Robbins, K.T.; Clayman, G.; Levine, P.A.; Medina, J.; Sessions, R.; Shaha, A.; Som, P.; Wolf, G.T.; American Head and Neck Society; American Academy of Otolaryngology—Head and Neck Surgery. Neck dissection classification update: Revisions proposed by the American Head and Neck Society and the American Academy of Otolaryngology—Head and Neck Surgery. Arch. Otolaryngol. Head Neck Surg. 2002, 128, 751–758. [Google Scholar] [CrossRef]
- Lemaire, V.; Jacquemin, G.; Nelissen, X.; Heymans, O. Tip of the greater horn of the hyoid bone: A landmark for cervical surgery. Surg. Radiol. Anat. 2005, 27, 33–36. [Google Scholar] [CrossRef]
- Parson, S.H. Clinically Oriented Anatomy. J. Anat. 2009, 215, 474. [Google Scholar] [CrossRef] [PubMed Central]
- Pessa, J.E.; Rohrich, R.J. Facial Topography: Clinical Anatomy of the Face, 1st ed.; Thieme: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Nooraei, N.; Dabbagh, A.; Niazi, F.; Mohammadi, S.; Mohajerani, S.A.; Radmand, G.; Hashemian, S.M. The Impact of Reverse Trendelenburg Versus Head-up Position on Intraoperative Bleeding of Elective Rhinoplasty. Int. J. Prev. Med. 2013, 4, 1438–1441. [Google Scholar] [PubMed]
- Conley, J.; Hicks, R.G.; Jasaitis, J.E. Hypotensive Anesthesia in Surgery of the Head and Neck. Arch Otolaryngol. 1965, 81, 580–583. [Google Scholar] [CrossRef] [PubMed]
- Taketomi, T.; Sanui, T.; Fukuda, T.; Takeshita, G.; Nojiri, J. Preoperative endovascular arterial embolization to avoid maxillary artery injury in maxillary gingival cancer surgery. Radiol. Case Rep. 2024, 19, 3561–3568. [Google Scholar] [CrossRef]
- Christensen, N.P.; Smith, D.S.; Barnwell, S.L.; Wax, M.K. Arterial embolization in the management of posterior epistaxis. Otolaryngol. Head Neck Surg. 2005, 133, 748–753. [Google Scholar] [CrossRef]
- Strong, E.B.; Bell, D.A.; Johnson, L.P.; Jacobs, J.M. Intractable epistaxis: Transantral ligation vs. embolization: Efficacy review and cost analysis. Otolaryngol. Head. Neck. Surg. 1995, 113, 674–678. [Google Scholar] [CrossRef]
- Schrank, T.P.; Mikhaylov, Y.; Zanation, A.M. Surgical excision of the submandibular gland. Oper. Tech. Otolaryngol. Head Neck Surg. 2018, 29, 162–167. [Google Scholar] [CrossRef]
- Kikuta, S.; Iwanaga, J.; Kusukawa, J.; Tubbs, R.S. Carotid sinus nerve: A comprehensive review of its anatomy, variations, pathology, and clinical applications. World Neurosurg. 2019, 127, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, A.; Lézy, J.P.; Vacher, C. Vascularization of the palate in maxillary osteotomies: Anatomical study. Surg Radiol Anat. 2002, 24, 13–17. [Google Scholar] [CrossRef]
- Siebert, J.W.; Angrigiani, C.; McCarthy, J.G.; Longaker, M.T. Blood supply of the Le Fort I maxillary segment: An anatomic study. Plast. Reconstr. Surg. 1997, 100, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Cooke, E.T. An evaluation and clinical study of severe epistaxis treated by arterial ligation. J. Laryngol. Otol. 1985, 99, 745–749. [Google Scholar] [CrossRef]
- Waldron, J.; Stafford, N. Ligation of the external carotid artery for severe epistaxis. J. Otolaryngol. 1992, 21, 249–251. [Google Scholar]
- Voris, H.C. Complications of ligation of the internal carotid artery. J. Neurosurg. 1951, 8, 119–131. [Google Scholar] [CrossRef]
Patient ID | Age | Gender | Cancer Type | Stage | Group | EBL (mL) |
---|---|---|---|---|---|---|
1 | 48 | M | Upper gum SCC | 4 | Control | 810 |
2 | 67 | F | Palatal mucosal melanoma | 3 | Control | 790 |
3 | 46 | F | Palate ACC | 4 | Control | 760 |
4 | 59 | M | Sinonasal SCC | 4 | Control | 830 |
5 | 48 | F | Sinonasal neuroendocrine Ca. | 4 | Control | 690 |
6 | 70 | M | Nasal mucosal melanoma | 4 | Control | 840 |
7 | 57 | M | Palate SCC | 4 | Control | 900 |
8 | 71 | M | Upper gum SCC | 4 | Control | 680 |
9 | 62 | M | Palate ACC | 4 | Control | 830 |
10 | 59 | F | Upper gum SCC | 4 | Control | 770 |
11 | 42 | M | Sinonasal SCC | 4 | Control | 790 |
12 | 49 | M | Sinonasal mucoepidermoid Ca. | 4 | Control | 840 |
13 | 59 | M | Sinonasal SCC | 4 | Rummel tourniquet restriction of ECA | 440 |
14 | 49 | F | Palate ACC | 4 | Rummel tourniquet restriction of ECA | 510 |
15 | 54 | M | Upper gum SCC | 4 | Rummel tourniquet restriction of ECA | 460 |
16 | 49 | M | Sinonasal SCC | 4 | Rummel tourniquet restriction of ECA | 560 |
17 | 58 | M | Ethmoidal adenocarcinoma | 4 | Rummel tourniquet restriction of ECA | 400 |
18 | 67 | F | Olfactory neuroblastoma | 4 | Rummel tourniquet restriction of ECA | 430 |
19 | 57 | M | Upper gum SCC | 4 | IMA ligation | 450 |
20 | 61 | M | Sinonasal SCC | 4 | IMA ligation | 530 |
21 | 39 | M | Palate ACC | 4 | IMA ligation | 500 |
22 | 49 | M | Sinonasal SCC | 4 | IMA ligation | 400 |
23 | 52 | F | Sinonasal ACC | 4 | IMA ligation | 500 |
24 | 49 | M | Upper gum SCC | 4 | IMA ligation | 430 |
25 | 64 | M | Upper gum SCC | 4 | IMA ligation | 420 |
Variable | N = 25 |
---|---|
AGE median (Q1, Q3) | 57 (49, 61) |
Gender | |
Male | 18 (72%) |
Female | 7 (28%) |
Surgical method | |
Control | 12 (48%) |
Rummel tourniquet restriction of ECA | 6 (24%) |
IMA Ligation | 7 (28%) |
Stage | |
Stage 3 | 1 (4%) |
Stage 4 | 24 (96%) |
Cancer | |
Sinonasal ACC | 1 (4%) |
Palate ACC | 4 (16%) |
Ethmoidal adenocarcinoma | 1 (4%) |
Sinonasal mucoepidermoid Ca. | 1 (4%) |
Palatal mucosal melanoma | 1 (4%) |
Nasal mucosa melanoma | 1 (4%) |
Sinonasal neuroendocrine Ca. | 1 (4%) |
Olfactory neuroblastoma | 1 (4%) |
Sinonasal SCC | 6 (24%) |
Upper gum SCC | 7 (28%) |
Palate SCC | 1 (4%) |
Variable | Group | N | Median | Q1, Q3 | p-Value 1 |
---|---|---|---|---|---|
EBL | Control | 12 | 803.3 | (762.5, 837.5) | 0.0001 |
Rummel tourniquet restriction of ECA | 6 | 450.0 | (422.5, 522.5) | ||
IMA Ligation | 7 | 450.0 | (420, 500) | ||
Total | 25 | 560.0 | (445, 800) |
Variable | Group Compared | Median Difference | p-Value | Adjusted p-Value |
---|---|---|---|---|
EBL | Rummel tourniquet restriction of ECA vs. IMA Ligation | 0 | 0.88 | 1 |
IMA Ligation vs. control | −353.3 | <0.001 | 0.001 | |
Rummel tourniquet restriction of ECA vs. control | −353.3 | 0.001 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-C.; Chen, P.-R. Tourniquet Restriction of External Carotid Artery vs. Internal Maxillary Artery Ligation for Bleeding Control in Total Maxillectomy. Surg. Tech. Dev. 2024, 13, 359-370. https://doi.org/10.3390/std13040028
Liu Y-C, Chen P-R. Tourniquet Restriction of External Carotid Artery vs. Internal Maxillary Artery Ligation for Bleeding Control in Total Maxillectomy. Surgical Techniques Development. 2024; 13(4):359-370. https://doi.org/10.3390/std13040028
Chicago/Turabian StyleLiu, Yuan-Cheng, and Peir-Rong Chen. 2024. "Tourniquet Restriction of External Carotid Artery vs. Internal Maxillary Artery Ligation for Bleeding Control in Total Maxillectomy" Surgical Techniques Development 13, no. 4: 359-370. https://doi.org/10.3390/std13040028
APA StyleLiu, Y. -C., & Chen, P. -R. (2024). Tourniquet Restriction of External Carotid Artery vs. Internal Maxillary Artery Ligation for Bleeding Control in Total Maxillectomy. Surgical Techniques Development, 13(4), 359-370. https://doi.org/10.3390/std13040028